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CHAPTER OPENING PHOTO: Turbulent jet: The jet of water from the pipe is turbulent. The complex, irregular,
unsteady structure typical of turbulent flows is apparent. (Laser-induced fluorescence of dye in water.) (Pho-
tography by P. E. Dimotakis, R. C. Lye, and D. Z. Papantoniou.)

Lear n in g  Ob je c t ive s

After completing this chapter, you should be able to:

■ identify and understand various characteristics of the flow in pipes.

■ discuss the main properties of laminar and turbulent pipe flow and appreciate
their differences.

■ calculate losses in straight portions of pipes as well as those in various
pipe system components.

■ apply appropriate equations and principles to analyze a variety of pipe
flow situations.

■ predict the flowrate in a pipe by use of common flowmeters.

In the previous chapters we have considered a variety of topics concerning the motion of fluids.
The basic governing principles concerning mass, momentum, and energy were developed and ap-
plied, in conjunction with rather severe assumptions, to numerous flow situations. In this chapter
we will apply the basic principles to a specific, important topic—the incompressible flow of vis-
cous fluids in pipes and ducts.

The transport of a fluid 1liquid or gas2 in a closed conduit 1commonly called a pipe if it is of
round cross section or a duct if it is not round2 is extremely important in our daily operations. A brief
consideration of the world around us will indicate that there is a wide variety of applications of pipe
flow. Such applications range from the large, man-made Alaskan pipeline that carries crude oil al-
most 800 miles across Alaska, to the more complex 1and certainly not less useful2 natural systems of
“pipes” that carry blood throughout our body and air into and out of our lungs. Other examples
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include the water pipes in our homes and the distribution system that delivers the water from the
city well to the house. Numerous hoses and pipes carry hydraulic fluid or other fluids to various
components of vehicles and machines. The air quality within our buildings is maintained at com-
fortable levels by the distribution of conditioned 1heated, cooled, humidifiedZdehumidified2 air
through a maze of pipes and ducts. Although all of these systems are different, the fluid mechan-
ics principles governing the fluid motions are common. The purpose of this chapter is to under-
stand the basic processes involved in such flows.

Some of the basic components of a typical pipe system are shown in Fig. 8.1. They include
the pipes themselves 1perhaps of more than one diameter2, the various fittings used to connect the
individual pipes to form the desired system, the flowrate control devices 1valves2, and the pumps
or turbines that add energy to or remove energy from the fluid. Even the most simple pipe systems
are actually quite complex when they are viewed in terms of rigorous analytical considerations.
We will use an “exact” analysis of the simplest pipe flow topics 1such as laminar flow in long,
straight, constant diameter pipes2 and dimensional analysis considerations combined with experi-
mental results for the other pipe flow topics. Such an approach is not unusual in fluid mechanics
investigations. When “real-world” effects are important 1such as viscous effects in pipe flows2, it
is often difficult or “impossible” to use only theoretical methods to obtain the desired results. A
judicious combination of experimental data with theoretical considerations and dimensional analy-
sis often provides the desired results. The flow in pipes discussed in this chapter is an example of
such an analysis.
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F I G U R E  8.1 Typical pipe system components.
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Before we apply the various governing equations to pipe flow examples, we will discuss some of
the basic concepts of pipe flow. With these ground rules established we can then proceed to for-
mulate and solve various important flow problems.

Although not all conduits used to transport fluid from one location to another are round in
cross section, most of the common ones are. These include typical water pipes, hydraulic hoses, and
other conduits that are designed to withstand a considerable pressure difference across their walls
without undue distortion of their shape. Typical conduits of noncircular cross section include heat-
ing and air conditioning ducts that are often of rectangular cross section. Normally the pressure dif-
ference between the inside and outside of these ducts is relatively small. Most of the basic princi-
ples involved are independent of the cross-sectional shape, although the details of the flow may be
dependent on it. Unless otherwise specified, we will assume that the conduit is round, although we
will show how to account for other shapes.

8.1 General Characteristics of Pipe Flow

The pipe is as-
sumed to be com-
pletely full of the
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For all flows involved in this chapter, we assume that the pipe is completely filled with the
fluid being transported as is shown in Fig. 8.2a. Thus, we will not consider a concrete pipe through
which rainwater flows without completely filling the pipe, as is shown in Fig. 8.2b. Such flows,
called open-channel flow, are treated in Chapter 10. The difference between open-channel flow and
the pipe flow of this chapter is in the fundamental mechanism that drives the flow. For open-chan-
nel flow, gravity alone is the driving force—the water flows down a hill. For pipe flow, gravity
may be important 1the pipe need not be horizontal2, but the main driving force is likely to be a
pressure gradient along the pipe. If the pipe is not full, it is not possible to maintain this pressure
difference,

8.1.1 Laminar or Turbulent Flow

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds
11842–19122, a British scientist and mathematician, was the first to distinguish the difference be-
tween these two classifications of flow by using a simple apparatus as shown by the figure in the
margin, which is a sketch of Reynolds’ dye experiment. Reynolds injected dye into a pipe in which
water flowed due to gravity. The entrance region of the pipe is depicted in Fig. 8.3a. If water runs
through a pipe of diameter D with an average velocity V, the following characteristics are ob-
served by injecting neutrally buoyant dye as shown. For “small enough flowrates” the dye streak
1a streakline2 will remain as a well-defined line as it flows along, with only slight blurring due to
molecular diffusion of the dye into the surrounding water. For a somewhat larger “intermediate
flowrate” the dye streak fluctuates in time and space, and intermittent bursts of irregular behav-
ior appear along the streak. On the other hand, for “large enough flowrates” the dye streak al-
most immediately becomes blurred and spreads across the entire pipe in a random fashion. These
three characteristics, denoted as laminar, transitional, and turbulent flow, respectively, are illus-
trated in Fig. 8.3b.

The curves shown in Fig. 8.4 represent the x component of the velocity as a function of
time at a point A in the flow. The random fluctuations of the turbulent flow 1with the associated
particle mixing2 are what disperse the dye throughout the pipe and cause the blurred appearance
illustrated in Fig. 8.3b. For laminar flow in a pipe there is only one component of velocity,

p1 � p2.
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F I G U R E  8.3 (a) Experiment to illustrate type of flow. (b) Typical dye streaks.



For turbulent flow the predominant component of velocity is also along the pipe, but it
is unsteady 1random2 and accompanied by random components normal to the pipe axis,

Such motion in a typical flow occurs too fast for our eyes to follow. Slow
motion pictures of the flow can more clearly reveal the irregular, random, turbulent nature of the
flow.

As was discussed in Chapter 7, we should not label dimensional quantities as being “large”
or “small,” such as “small enough flowrates” in the preceding paragraphs. Rather, the appropriate
dimensionless quantity should be identified and the “small” or “large” character attached to it. A
quantity is “large” or “small” only relative to a reference quantity. The ratio of those quantities re-
sults in a dimensionless quantity. For pipe flow the most important dimensionless parameter is the
Reynolds number, Re—the ratio of the inertia to viscous effects in the flow. Hence, in the previ-
ous paragraph the term flowrate should be replaced by Reynolds number, where V
is the average velocity in the pipe. That is, the flow in a pipe is laminar, transitional, or turbulent
provided the Reynolds number is “small enough,” “intermediate,” or “large enough.” It is not only
the fluid velocity that determines the character of the flow—its density, viscosity, and the pipe size
are of equal importance. These parameters combine to produce the Reynolds number. The distinc-
tion between laminar and turbulent pipe flow and its dependence on an appropriate dimensionless
quantity was first pointed out by Osborne Reynolds in 1883.

The Reynolds number ranges for which laminar, transitional, or turbulent pipe flows are ob-
tained cannot be precisely given. The actual transition from laminar to turbulent flow may take place
at various Reynolds numbers, depending on how much the flow is disturbed by vibrations of the pipe,
roughness of the entrance region, and the like. For general engineering purposes 1i.e., without undue
precautions to eliminate such disturbances2, the following values are appropriate: The flow in a round
pipe is laminar if the Reynolds number is less than approximately 2100. The flow in a round pipe is
turbulent if the Reynolds number is greater than approximately 4000. For Reynolds numbers between
these two limits, the flow may switch between laminar and turbulent conditions in an apparently ran-
dom fashion 1transitional flow2.

Re � rVD�m,

V � u î � v ĵ � wk̂.

V � uî.
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F I G U R E  8.4 Time dependence of fluid velocity at a point.
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Nanoscale flows The term nanoscale generally refers to objects
with characteristic lengths from atomic dimensions up to a few hun-
dred nanometers (nm). (Recall that .) Nanoscale
fluid mechanics research has recently uncovered many surprising
and useful phenomena. No doubt many more remain to be discov-
ered. For example, in the future researchers envision using
nanoscale tubes to push tiny amounts of water-soluble drugs to ex-
actly where they are needed in the human body. Because of the tiny
diameters involved, the Reynolds numbers for such flows are ex-
tremely small and the flow is definitely laminar. In addition, some

1 nm � 10�9 m

standard properties of everyday flows (for example, the fact that a
fluid sticks to a solid boundary) may not be valid for nanoscale
flows. Also, ultratiny mechanical pumps and valves are difficult to
manufacture and may become clogged by tiny particles such as bio-
logical molecules. As a possible solution to such problems, re-
searchers have investigated the possibility of using a system that
does not rely on mechanical parts. It involves using light-sensitive
molecules attached to the surface of the tubes. By shining light onto
the molecules, the light-responsive molecules attract water and
cause motion of water through the tube. (See Problem 8.10.)

Pipe flow character-
istics are dependent
on the value of the
Reynolds number.

V8.3 Intermittent
turbulent burst in
pipe flow
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GIVEN Water at a temperature of 50 °F flows through a pipe
of diameter D� 0.73 in. and into a glass as shown in Fig. E8.1a.

FIND Determine

(a) the minimum time taken to fill a 12-oz glass (volume �
0.0125 ft3) with water if the flow in the pipe is to be laminar.
Repeat the calculations if the water temperature is 140 °F.

(b) the maximum time taken to fill the glass if the flow is to be tur-
bulent. Repeat the calculations if the water temperature is 140 °F.

SOLUTION

F I G U R E  E8.1a

F I G U R E  E8.1b

Laminar or Turbulent FlowE XAMPLE 8.1

(a) If the flow in the pipe is to remain laminar, the minimum
time to fill the glass will occur if the Reynolds number is the max-
imum allowed for laminar flow, typically
Thus, where from Table B.1,
and at while 
and at Thus, the maximum
average velocity for laminar flow in the pipe is

Similarly, at With of glass
and we obtain

(Ans)

Similarly, at To maintain laminar flow, the less
viscous hot water requires a lower flowrate than the cold water.

(b) If the flow in the pipe is to be turbulent, the maximum time to
fill the glass will occur if the Reynolds number is the minimum al-
lowed for turbulent flow, Thus,

and 

at (Ans)

Similarly, and at 

COMMENTS Note that because water is “not very viscous,”
the velocity must be “fairly small” to maintain laminar flow. In
general, turbulent flows are encountered more often than lami-
nar flows because of the relatively small viscosity of most com-
mon fluids (water, gasoline, air). By repeating the calculations
at various water temperatures, T (i.e., with different densities
and viscosities), the results shown in Fig. E8.1b are obtained. As
the water temperature increases, the kinematic viscosity, O �
N/S, decreases and the corresponding times to fill the glass 
increase as indicated. (Temperature effects on the viscosity of
gases are the opposite; increase in temperature causes an in-
crease in viscosity.)

140 °F.t � 12.8 sV � 0.335 ft�s

50 °Ft � 4.65 s

rD � 0.925 ft�s
V � 4000m�Re � 4000.

140 °F.t � 24.4 s

 � 8.85 s at T � 50 °F

 t �
V�

Q
�

V�

1p�42D2V
�

410.0125 ft32
1p 30.73�12 42ft22 10.486 ft�s2

V� � Qt
V� � volume140 °F.V � 0.176 ft�s

 � 0.486 lb # s�slug � 0.486 ft�s

 V �
2100m

rD
�

210012.73 � 10�5 lb # s�ft22
11.94 slugs�ft32 10.73�12 ft 2

140 °F.lb # s�ft2m � 0.974 � 10�5 
r � 1.91 slugs�ft350 °F,m � 2.73 � 10�5 lb # s�ft2

slugs�ft3r � 1.94V � 2100 m�rD,
Re � rVD�m � 2100.

If the flowing fluid had been honey with a kinematic viscosity
(O� N/S) 3000 times greater than that of water, the velocities given
earlier would be increased by a factor of 3000 and the times re-
duced by the same factor. As shown in the following sections, the
pressure needed to force a very viscous fluid through a pipe at such
a high velocity may be unreasonably large.

�, �
Q
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8.1.2 Entrance Region and Fully Developed Flow

Any fluid flowing in a pipe had to enter the pipe at some location. The region of flow near where
the fluid enters the pipe is termed the entrance region and is illustrated in Fig. 8.5. It may be the
first few feet of a pipe connected to a tank or the initial portion of a long run of a hot air duct com-
ing from a furnace.

As is shown in Fig. 8.5, the fluid typically enters the pipe with a nearly uniform velocity
profile at section 112. As the fluid moves through the pipe, viscous effects cause it to stick to the
pipe wall 1the no-slip boundary condition2. This is true whether the fluid is relatively inviscid air
or a very viscous oil. Thus, a boundary layer in which viscous effects are important is produced
along the pipe wall such that the initial velocity profile changes with distance along the pipe, x,
until the fluid reaches the end of the entrance length, section 122, beyond which the velocity pro-
file does not vary with x. The boundary layer has grown in thickness to completely fill the pipe.
Viscous effects are of considerable importance within the boundary layer. For fluid outside the
boundary layer [within the inviscid core surrounding the centerline from 112 to 122], viscous effects
are negligible.

The shape of the velocity profile in the pipe depends on whether the flow is laminar or tur-
bulent, as does the length of the entrance region, As with many other properties of pipe flow,
the dimensionless entrance length, correlates quite well with the Reynolds number. Typi-
cal entrance lengths are given by

(8.1)

and

(8.2)

For very low Reynolds number flows the entrance length can be quite short if 
whereas for large Reynolds number flows it may take a length equal to many pipe diameters before
the end of the entrance region is reached for For many practical engineer-
ing problems, so that as shown by the figure in the margin,

Calculation of the velocity profile and pressure distribution within the entrance region is
quite complex. However, once the fluid reaches the end of the entrance region, section 122 of Fig.
8.5, the flow is simpler to describe because the velocity is a function of only the distance from
the pipe centerline, r, and independent of x. This is true until the character of the pipe changes
in some way, such as a change in diameter, or the fluid flows through a bend, valve, or some
other component at section 132. The flow between 122 and 132 is termed fully developed flow. Be-
yond the interruption of the fully developed flow [at section 142], the flow gradually begins its 

20D 6 /e 6 30D.104 6 Re 6 105
Re � 20002.1/e � 120D

Re � 102,1/e � 0.6D

/e

D
� 4.4 1Re21�6 for turbulent flow

/e

D
� 0.06 Re for laminar flow

/e�D,
/e.
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return to its fully developed character [section 152] and continues with this profile until the next
pipe system component is reached [section 162]. In many cases the pipe is long enough so that
there is a considerable length of fully developed flow compared with the developing flow length

and In other cases the distances between one component
1bend, tee, valve, etc.2 of the pipe system and the next component is so short that fully developed
flow is never achieved.

8.1.3 Pressure and Shear Stress

Fully developed steady flow in a constant diameter pipe may be driven by gravity andZor pressure
forces. For horizontal pipe flow, gravity has no effect except for a hydrostatic pressure variation
across the pipe, that is usually negligible. It is the pressure difference, between
one section of the horizontal pipe and another which forces the fluid through the pipe. Viscous ef-
fects provide the restraining force that exactly balances the pressure force, thereby allowing the
fluid to flow through the pipe with no acceleration. If viscous effects were absent in such flows,
the pressure would be constant throughout the pipe, except for the hydrostatic variation.

In non-fully developed flow regions, such as the entrance region of a pipe, the fluid accel-
erates or decelerates as it flows 1the velocity profile changes from a uniform profile at the entrance
of the pipe to its fully developed profile at the end of the entrance region2. Thus, in the entrance
region there is a balance between pressure, viscous, and inertia 1acceleration2 forces. The result is
a pressure distribution along the horizontal pipe as shown in Fig. 8.6. The magnitude of the pres-
sure gradient, is larger in the entrance region than in the fully developed region, where it
is a constant,

The fact that there is a nonzero pressure gradient along the horizontal pipe is a result of vis-
cous effects. As is discussed in Chapter 3, if the viscosity were zero, the pressure would not vary
with x. The need for the pressure drop can be viewed from two different standpoints. In terms of
a force balance, the pressure force is needed to overcome the viscous forces generated. In terms
of an energy balance, the work done by the pressure force is needed to overcome the viscous dis-
sipation of energy throughout the fluid. If the pipe is not horizontal, the pressure gradient along it
is due in part to the component of weight in that direction. As is discussed in Section 8.2.1, this
contribution due to the weight either enhances or retards the flow, depending on whether the flow
is downhill or uphill.

The nature of the pipe flow is strongly dependent on whether the flow is laminar or turbu-
lent. This is a direct consequence of the differences in the nature of the shear stress in laminar and
turbulent flows. As is discussed in some detail in Section 8.3.3, the shear stress in laminar flow is
a direct result of momentum transfer among the randomly moving molecules 1a microscopic phe-
nomenon2. The shear stress in turbulent flow is largely a result of momentum transfer among the
randomly moving, finite-sized fluid particles 1a macroscopic phenomenon2. The net result is that
the physical properties of the shear stress are quite different for laminar flow than for turbulent
flow.

0p�0x � �¢p�/ 6 0.
0p�0x,

¢p � p1 � p2,gD,

1x6 � x52 ! 1x5 � x42 4 .3 1x3 � x22 ! /e
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As is indicated in the previous section, the flow in long, straight, constant diameter sections of a
pipe becomes fully developed. That is, the velocity profile is the same at any cross section of the
pipe. Although this is true whether the flow is laminar or turbulent, the details of the velocity pro-
file 1and other flow properties2 are quite different for these two types of flow. As will be seen in
the remainder of this chapter, knowledge of the velocity profile can lead directly to other useful
information such as pressure drop, head loss, flowrate, and the like. Thus, we begin by develop-
ing the equation for the velocity profile in fully developed laminar flow. If the flow is not fully de-
veloped, a theoretical analysis becomes much more complex and is outside the scope of this text.
If the flow is turbulent, a rigorous theoretical analysis is as yet not possible.

Although most flows are turbulent rather than laminar, and many pipes are not long enough
to allow the attainment of fully developed flow, a theoretical treatment and full understanding of
fully developed laminar flow is of considerable importance. First, it represents one of the few the-
oretical viscous analyses that can be carried out “exactly” 1within the framework of quite general
assumptions2 without using other ad hoc assumptions or approximations. An understanding of the
method of analysis and the results obtained provides a foundation from which to carry out more
complicated analyses. Second, there are many practical situations involving the use of fully devel-
oped laminar pipe flow.

There are numerous ways to derive important results pertaining to fully developed laminar
flow. Three alternatives include: 112 from applied directly to a fluid element, 122 from the
Navier –Stokes equations of motion, and 132 from dimensional analysis methods.

8.2.1 From Applied Directly to a Fluid Element

We consider the fluid element at time t as is shown in Fig. 8.7. It is a circular cylinder of fluid of
length and radius r centered on the axis of a horizontal pipe of diameter D. Because the veloc-
ity is not uniform across the pipe, the initially flat ends of the cylinder of fluid at time t become
distorted at time when the fluid element has moved to its new location along the pipe as
shown in the figure. If the flow is fully developed and steady, the distortion on each end of the
fluid element is the same, and no part of the fluid experiences any acceleration as it flows, as shown
by the figure in the margin. The local acceleration is zero because the flow is steady,
and the convective acceleration is zero because the flow is fully devel-
oped. Thus, every part of the fluid merely flows along its streamline parallel to the pipe walls with
constant velocity, although neighboring particles have slightly different velocities. The velocity
varies from one pathline to the next. This velocity variation, combined with the fluid viscosity, pro-
duces the shear stress.

If gravitational effects are neglected, the pressure is constant across any vertical cross sec-
tion of the pipe, although it varies along the pipe from one section to the next. Thus, if the pres-
sure is at section 112, it is at section 122 where is the pressure drop be-
tween sections (1) and (2). We anticipate the fact that the pressure decreases in the direction of
flow so that A shear stress, acts on the surface of the cylinder of fluid. This viscous
stress is a function of the radius of the cylinder,

As was done in fluid statics analysis 1Chapter 22, we isolate the cylinder of fluid as is shown
in Fig. 8.8 and apply Newton’s second law, In this case, even though the fluid is mov-
ing, it is not accelerating, so that Thus, fully developed horizontal pipe flow is merely aax � 0.

Fx � max.

t � t1r2.
t,¢p 7 0.

¢pp2 � p1 � ¢pp � p1

1V  � V � u 0u�0x î � 02
10V�0t � 02

t � dt

/

F � ma

F � ma
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balance between pressure and viscous forces—the pressure difference acting on the end of the
cylinder of area and the shear stress acting on the lateral surface of the cylinder of area 
This force balance can be written as

which can be simplified to give

(8.3)

Equation 8.3 represents the basic balance in forces needed to drive each fluid particle along
the pipe with constant velocity. Since neither are functions of the radial coordinate, r, it
follows that must also be independent of r. That is, where C is a constant. At 
1the centerline of the pipe2 there is no shear stress At  1the pipe wall2 the shear
stress is a maximum, denoted the wall shear stress. Hence, and the shear stress
distribution throughout the pipe is a linear function of the radial coordinate

(8.4)

as is indicated in Fig. 8.9. The linear dependence of on r is a result of the pressure force being
proportional to 1the pressure acts on the end of the fluid cylinder; 2 and the shear
force being proportional to r 1the shear stress acts on the lateral sides of the cylinder; area 2.
If the viscosity were zero there would be no shear stress, and the pressure would be constant
throughout the horizontal pipe As is seen from Eqs. 8.3 and 8.4, the pressure drop and
wall shear stress are related by

(8.5)

A small shear stress can produce a large pressure difference if the pipe is relatively long

Although we are discussing laminar flow, a closer consideration of the assumptions involved
in the derivation of Eqs. 8.3, 8.4, and 8.5 reveals that these equations are valid for both laminar
and turbulent flow. To carry the analysis further we must prescribe how the shear stress is related
to the velocity. This is the critical step that separates the analysis of laminar from that of turbulent
flow—from being able to solve for the laminar flow properties and not being able to solve for the
turbulent flow properties without additional ad hoc assumptions. As is discussed in Section 8.3,
the shear stress dependence for turbulent flow is very complex. However, for laminar flow of a

1/�D ! 12.

¢p �
4/tw

D

1¢p � 02.

� 2pr/
area � pr 2r2

t

t �
2twr

D

C � 2tw�Dtw,
r � D�21t � 02.

r � 0t � Cr,2t�r
¢p nor /

¢p

/
�

2t
r

1p12pr 2 � 1 p1 � ¢p2pr2 � 1t22pr/ � 0
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Newtonian fluid, the shear stress is simply proportional to the velocity gradient,
1see Section 1.62. In the notation associated with our pipe flow, this becomes

(8.6)

The negative sign is included to give with 1the velocity decreases from the pipe
centerline to the pipe wall2.

Equations 8.3 and 8.6 represent the two governing laws for fully developed laminar flow of
a Newtonian fluid within a horizontal pipe. The one is Newton’s second law of motion and the
other is the definition of a Newtonian fluid. By combining these two equations we obtain

which can be integrated to give the velocity profile as follows:

or

where is a constant. Because the fluid is viscous it sticks to the pipe wall so that at
Thus, Hence, the velocity profile can be written as

(8.7)

where is the centerline velocity. An alternative expression can be written by us-
ing the relationship between the wall shear stress and the pressure gradient 1Eqs. 8.5 and 8.72 to give

where is the pipe radius.
This velocity profile, plotted in Fig. 8.9, is parabolic in the radial coordinate, r, has a max-

imum velocity, at the pipe centerline, and a minimum velocity 1zero2 at the pipe wall. The vol-
ume flowrate through the pipe can be obtained by integrating the velocity profile across the pipe.
Since the flow is axisymmetric about the centerline, the velocity is constant on small area elements
consisting of rings of radius r and thickness dr as shown in the figure in the margin. Thus,

or

By definition, the average velocity is the flowrate divided by the cross-sectional area,
so that for this flow

(8.8)

and
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Under certain re-
strictions the veloc-
ity profile in a pipe
is parabolic.

R

dr

r

dA = 2  r drπ



As is indicated in Eq. 8.8, the average velocity is one-half of the maximum velocity. In general,
for velocity profiles of other shapes 1such as for turbulent pipe flow2, the average velocity is not
merely the average of the maximum and minimum 102 velocities as it is for the laminar para-
bolic profile. The two velocity profiles indicated in Fig. 8.9 provide the same flowrate—one is the
fictitious ideal profile; the other is the actual laminar flow profile.

The above results confirm the following properties of laminar pipe flow. For a horizontal
pipe the flowrate is 1a2 directly proportional to the pressure drop, 1b2 inversely proportional to the
viscosity, 1c2 inversely proportional to the pipe length, and 1d2 proportional to the pipe diameter to
the fourth power. With all other parameters fixed, an increase in diameter by a factor of 2 will in-
crease the flowrate by a factor of 24 � 16—the flowrate is very strongly dependent on pipe size.
This dependence is shown by the figure in the margin. Likewise, a small error in pipe diameter
can cause a relatively large error in flowrate. For example, a 2% error in diameter gives an 8% er-
ror in flowrate or  so that This flow, the properties of
which were first established experimentally by two independent workers, G. Hagen 11797–18842
in 1839 and J. Poiseuille 11799–18692 in 1840, is termed Hagen–Poiseuille flow. Equation 8.9 is
commonly referred to as Poiseuille’s law. Recall that all of these results are restricted to laminar
flow 1those with Reynolds numbers less than approximately 21002 in a horizontal pipe.

The adjustment necessary to account for nonhorizontal pipes, as shown in Fig. 8.10, can be
easily included by replacing the pressure drop, by the combined effect of pressure and grav-
ity, , where is the angle between the pipe and the horizontal. 1Note that if
the flow is uphill, while if the flow is downhill.2 This can be seen from the force balance
in the x direction 1along the pipe axis2 on the cylinder of fluid shown in Fig. 8.10b. The method is
exactly analogous to that used to obtain the Bernoulli equation 1Eq. 3.62 when the streamline is not
horizontal. The net force in the x direction is a combination of the pressure force in that direction,

and the component of weight in that direction, The result is a slightly mod-
ified form of Eq. 8.3 given by

(8.10)

Thus, all of the results for the horizontal pipe are valid provided the pressure gradient is adjusted
for the elevation term, that is, is replaced by so that

(8.11)

and

(8.12)

It is seen that the driving force for pipe flow can be either a pressure drop in the flow direction,
or the component of weight in the flow direction, If the flow is downhill, gravity

helps the flow 1a smaller pressure drop is required; 2. If the flow is uphill, gravity works
against the flow 1a larger pressure drop is required; 2. Note that 1whereg/ sin u � g¢zsin u 7 0
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Poiseuille’s law is
valid for laminar
flow only.
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is the change in elevation2 is a hydrostatic type pressure term. If there is no flow,
as expected for fluid statics.V � 0 and ¢p � g/ sin u � g¢z,

¢z
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GIVEN An oil with a viscosity of and den-
sity flows in a pipe of diameter 

FIND (a) What pressure drop, is needed to produce
a flowrate of if the pipe is horizontal with

and x2 � 10 m?x1 � 0
Q � 2.0 � 10�5 m3�s

p1 � p2,

D � 0.020 m.r � 900 kg�m3
m � 0.40 N # s�m2 (b) How steep a hill, must the pipe be on if the oil is to flow

through the pipe at the same rate as in part 1a2, but with 

(c) For the conditions of part 1b2, if what is the
pressure at section where x is measured along the pipe?x3 � 5 m,

p1 � 200 kPa,

p1 � p2?
u,

SOLUTION

Laminar Pipe Flow

which is equivalent to that needed for
the horizontal pipe. For the horizontal pipe it is the work done by
the pressure forces that overcomes the viscous dissipation. For the
zero-pressure-drop pipe on the hill, it is the change in potential
energy of the fluid “falling” down the hill that is converted to the
energy lost by viscous dissipation. Note that if it is desired to in-
crease the flowrate to with the
value of given by Eq. 1 is  Since the sine of an
angle cannot be greater than 1, this flow would not be possible.
The weight of the fluid would not be large enough to offset the
viscous force generated for the flowrate desired. A larger diame-
ter pipe would be needed.

(c) With the length of the pipe, does not appear in the
flowrate equation 1Eq. 12. This is a statement of the fact that for such
cases the pressure is constant all along the pipe 1provided the pipe
lies on a hill of constant slope2. This can be seen by substituting the
values of Q and from case 1b2 into Eq. 8.12 and noting that 
for any For example, if 
Thus, so that

(Ans)

COMMENT Note that if the fluid were gasoline 
and the Reynolds number would

be the flow would probably not be laminar, and
use of Eqs. 8.9 and 8.12 would give incorrect results. Also note
from Eq. 1 that the kinematic viscosity, is the impor-
tant viscous parameter. This is a statement of the fact that with
constant pressure along the pipe, it is the ratio of the viscous
force to the weight force that determines the
value of u.

1
g � rg21
m2

n � m�r,

Re � 2790,
m32,r � 680 kg�10�4 N # s�m2

1m � 3.1 �

p3 � 200 kPa

p1 � p2 � p3

/ � x3 � x1 � 5 m.¢p � p1 � p3 � 0/.
¢p � 0u

/,p1 � p2

sin u � �1.15.u

p1 � p2,Q � 1.0 � 10�4 m3�s

N�m2,20,40012.31 m2 �

E XAMPLE 8.2

(a) If the Reynolds number is less than 2100 the flow is
laminar and the equations derived in this section are valid. Since
the average velocity is 

the Reynolds number is 
Hence, the flow is laminar and from Eq.

8.9 with the pressure drop is

or

(Ans)

(b) If the pipe is on a hill of angle such that 0,
Eq. 8.12 gives

(1)

or

Thus,

(Ans)

COMMENT This checks with the previous horizontal result
as is seen from the fact that a change in elevation of

is equivalent to
a pressure change of ¢p � rg ¢z � 1900 kg�m32 19.81 m�s22

110 m2 sin1�13.34°2 � �2.31 m¢z � / sin u �

u � �13.34°.

sin u �
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prgD4
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p10.020 m24

 ¢p � p1 � p2 �
128m/Q

pD4

/ � x2 � x1 � 10 m,
6 2100.rVD�m � 2.87

Re �3p10.02022m2�4 4 � 0.0637 m�s,
V � Q�A � 12.0 � 10�5 m3�s2�

8.2.2 From the Navier–Stokes Equations

In the previous section we obtained results for fully developed laminar pipe flow by applying
Newton’s second law and the assumption of a Newtonian fluid to a specific portion of the fluid—
a cylinder of fluid centered on the axis of a long, round pipe. When this governing law and assump-
tions are applied to a general fluid flow 1not restricted to pipe flow2, the result is the Navier –Stokes
equations as discussed in Chapter 6. In Section 6.9.3 these equations were solved for the specific
geometry of fully developed laminar flow in a round pipe. The results are the same as those given
in Eq. 8.7.

Poiseuille’s law can
be obtained from
the Navier–Stokes
equations.



We will not repeat the detailed steps used to obtain the laminar pipe flow from the Navier–
Stokes equations 1see Section 6.9.32 but will indicate how the various assumptions used and steps ap-
plied in the derivation correlate with the analysis used in the previous section.

General motion of an incompressible Newtonian fluid is governed by the continuity equa-
tion 1conservation of mass, Eq. 6.312 and the momentum equation 1Eq. 6.1272, which are rewritten
here for convenience:

(8.13)

(8.14)

For steady, fully developed flow in a pipe, the velocity contains only an axial component, which
is a function of only the radial coordinate For such conditions, the left-hand side of
the Eq. 8.14 is zero. This is equivalent to saying that the fluid experiences no acceleration as it
flows along. The same constraint was used in the previous section when considering for
the fluid cylinder. Thus, with the Navier –Stokes equations become

(8.15)

The flow is governed by a balance of pressure, weight, and viscous forces in the flow direction,
similar to that shown in Fig. 8.10 and Eq. 8.10. If the flow were not fully developed 1as in an en-
trance region, for example2, it would not be possible to simplify the Navier–Stokes equations to that
form given in Eq. 8.15 1the nonlinear term would not be zero2, and the solution would be
very difficult to obtain.

Because of the assumption that the continuity equation, Eq. 8.13, is auto-
matically satisfied. This conservation of mass condition was also automatically satisfied by the
incompressible flow assumption in the derivation in the previous section. The fluid flows across
one section of the pipe at the same rate that it flows across any other section 1see Fig. 8.82.

When it is written in terms of polar coordinates 1as was done in Section 6.9.32, the compo-
nent of Eq. 8.15 along the pipe becomes

(8.16)

Since the flow is fully developed, and the right-hand side is a function of, at most, only
r. The left-hand side is a function of, at most, only x. It was shown that this leads to the condition
that the pressure gradient in the x direction is a constant— The same condition
was used in the derivation of the previous section 1Eq. 8.32.

It is seen from Eq. 8.16 that the effect of a nonhorizontal pipe enters into the Navier–Stokes
equations in the same manner as was discussed in the previous section. The pressure gradient in
the flow direction is coupled with the effect of the weight in that direction to produce an effective
pressure gradient of 

The velocity profile is obtained by integration of Eq. 8.16. Since it is a second-order equa-
tion, two boundary conditions are needed—112 the fluid sticks to the pipe wall 1as was also done
in Eq. 8.72 and 122 either of the equivalent forms that the velocity remains finite throughout the
flow 1in particular at 2 or, because of symmetry, that at In the de-
rivation of the previous section, only one boundary condition 1the no-slip condition at the wall2 was
needed because the equation integrated was a first-order equation. The other condition

was automatically built into the analysis because of the fact that 
and at 

The results obtained by either applying to a fluid cylinder 1Section 8.2.12 or solving
the Navier–Stokes equations 1Section 6.9.32 are exactly the same. Similarly, the basic assumptions
regarding the flow structure are the same. This should not be surprising because the two methods
are based on the same principle—Newton’s second law. One is restricted to fully developed lam-
inar pipe flow from the beginning 1the drawing of the free-body diagram2, and the other starts with
the general governing equations 1the Navier –Stokes equations2 with the appropriate restrictions
concerning fully developed laminar flow applied as the solution process progresses.
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The governing
differential equa-
tions can be sim-
plified by
appropriate as-
sumptions.



8.2.3 From Dimensional Analysis

Although fully developed laminar pipe flow is simple enough to allow the rather straightfor-
ward solutions discussed in the previous two sections, it may be worthwhile to consider this
flow from a dimensional analysis standpoint. Thus, we assume that the pressure drop in the hor-
izontal pipe, is a function of the average velocity of the fluid in the pipe, V, the length of
the pipe, the pipe diameter, D, and the viscosity of the fluid, , as shown by the figure in the
margin. We have not included the density or the specific weight of the fluid as parameters be-
cause for such flows they are not important parameters. There is neither mass 1density2 times
acceleration nor a component of weight 1specific weight times volume2 in the flow direction in-
volved. Thus,

There are five variables that can be described in terms of three reference dimensions 1M, L, T 2 .
According to the results of dimensional analysis 1Chapter 7 2, this flow can be described in terms
of dimensionless groups. One such representation is

(8.17)

where is an unknown function of the length to diameter ratio of the pipe.
Although this is as far as dimensional analysis can take us, it seems reasonable to impose a

further assumption that the pressure drop is directly proportional to the pipe length. That is, it takes
twice the pressure drop to force fluid through a pipe if its length is doubled. The only way that
this can be true is if where C is a constant. Thus, Eq. 8.17 becomes

which can be rewritten as

or

(8.18)

The basic functional dependence for laminar pipe flow given by Eq. 8.18 is the same as that
obtained by the analysis of the two previous sections. The value of C must be determined by
theory 1as done in the previous two sections2 or experiment. For a round pipe, For ducts
of other cross-sectional shapes, the value of C is different 1see Section 8.4.32.

It is usually advantageous to describe a process in terms of dimensionless quantities. To this end
we rewrite the pressure drop equation for laminar horizontal pipe flow, Eq. 8.8, as 
and divide both sides by the dynamic pressure, to obtain the dimensionless form as

This is often written as

where the dimensionless quantity

is termed the friction factor, or sometimes the Darcy friction factor [H. P. G. Darcy 
(1803–1858)]. 1This parameter should not be confused with the less-used Fanning friction
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Dimensional analy-
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put pipe flow para-
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factor, which is defined to be In this text we will use only the Darcy friction factor.2 Thus,
the friction factor for laminar fully developed pipe flow is simply

(8.19)

as shown by the figure in the margin.
By substituting the pressure drop in terms of the wall shear stress 1Eq. 8.52, we obtain an al-

ternate expression for the friction factor as a dimensionless wall shear stress

(8.20)

Knowledge of the friction factor will allow us to obtain a variety of information regarding pipe
flow. For turbulent flow the dependence of the friction factor on the Reynolds number is much
more complex than that given by Eq. 8.19 for laminar flow. This is discussed in detail in 
Section 8.4.

8.2.4 Energy Considerations

In the previous three sections we derived the basic laminar flow results from application of 
or dimensional analysis considerations. It is equally important to understand the implications of
energy considerations of such flows. To this end we consider the energy equation for incompress-
ible, steady flow between two locations as is given in Eq. 5.89

(8.21)

Recall that the kinetic energy coefficients, and compensate for the fact that the velocity
profile across the pipe is not uniform. For uniform velocity profiles, whereas for any
nonuniform profile, The head loss term, accounts for any energy loss associated with
the flow. This loss is a direct consequence of the viscous dissipation that occurs throughout the
fluid in the pipe. For the ideal 1inviscid2 cases discussed in previous chapters,
and the energy equation reduces to the familiar Bernoulli equation discussed in Chapter 3 
1Eq. 3.72.

Even though the velocity profile in viscous pipe flow is not uniform, for fully developed
flow it does not change from section 112 to section 122 so that Thus, the kinetic energy
is the same at any section and the energy equation becomes

(8.22)

The energy dissipated by the viscous forces within the fluid is supplied by the excess work done
by the pressure and gravity forces as shown by the figure in the margin.

A comparison of Eqs. 8.22 and 8.10 shows that the head loss is given by

1recall and which, by use of Eq. 8.4, can be rewritten in the form

(8.23)

It is the shear stress at the wall 1which is directly related to the viscosity and the shear stress
throughout the fluid2 that is responsible for the head loss. A closer consideration of the assump-
tions involved in the derivation of Eq. 8.23 will show that it is valid for both laminar and turbu-
lent flow.

hL �
4/tw

gD

z2 � z1 � / sin u2,p1 � p2 � ¢p

hL �
2t/
gr

ap1

g
� z1b � a

p2

g
� z2b � hL

1a1 V 1
2�2 � a2 V 2

2�22
a1 � a2.

a1 � a2 � 1, hL � 0,

hL,a 7 1.
a � 1,

a2,a1

p1

g
� a1 

V 1
2

2g
� z1 �

p2

g
� a2 

V 2
2

2g
� z2 � hL

F � ma

f �
8tw

rV 2

f �
64

Re

f�4.

8.2 Fully Developed Laminar Flow 397

10

1

0.1

0.01
10 100

Laminar flow

1000

 f

Re

z2

hL

z1

(1)

(2)

p2
H

p1
H

The head loss in a
pipe is a result of
the viscous shear
stress on the wall.



398 Chapter 8 ■ Viscous Flow in Pipes

GIVEN The flowrate, Q, of corn syrup through the horizontal
pipe shown in Fig. E8.3a is to be monitored by measuring the pres-
sure difference between sections 112 and 122. It is proposed that

where the calibration constant, K, is a function of tem-
perature, T, because of the variation of the syrup’s viscosity and
density with temperature. These variations are given in Table E8.3.

FIND (a) Plot versus T for (b) De-
termine the wall shear stress and the pressure drop,

for and (c) For the con-
ditions of part 1b2, determine the net pressure force,
and the net shear force, on the fluid within the pipe be-
tween the sections 112 and 122.

pD/tw ,
1pD2�42 ¢p,

T � 100 °F.Q � 0.5 ft3�s¢p � p1 � p2,

60 °F � T � 160 °F.K1T 2

Q � K ¢p,

SOLUTION

Laminar Pipe Flow Properties

Hence, the flow is laminar. From Eq. 8.5 the wall shear stress
is

(Ans)

(c) For the conditions of part 1b2, the net pressure force, on
the fluid within the pipe between sections 112 and 122 is

(Ans)

Similarly, the net viscous force, on that portion of the fluid is

(Ans)

COMMENT Note that the values of these two forces are the
same. The net force is zero; there is no acceleration.

 � 2p c 3

21122  ft d 16 ft2 11.24 lb�ft22 � 5.84 lb

 Fv � 2p aD

2
b /tw

Fv,

Fp �
p

4
 D2 ¢p �

p

4
 a 3

12
 ftb

2

 1119 lb�ft22 � 5.84 lb

Fp,

tw �
¢pD

4/
�
1119 lb�ft22 1 3

12 ft 2
416 ft 2 � 1.24 lb�ft2

E XAMPLE 8.3

(a) If the flow is laminar it follows from Eq. 8.9 that

or

(1)

where the units on and are and re-
spectively. Thus

(Ans)

where the units of K are By using values of the viscosity
from Table E8.3, the calibration curve shown in Fig. E8.3b is ob-
tained. This result is valid only if the flow is laminar. 

COMMENT As shown in Section 8.5, for turbulent flow the
flowrate is not linearly related to the pressure drop so it would not
be possible to have Note also that the value of K is in-
dependent of the syrup density 1 was not used in the calculations2
since laminar pipe flow is governed by pressure and viscous ef-
fects; inertia is not important.

(b) For the viscosity is 
so that with a flowrate of the pressure drop 1accord-
ing to Eq. 8.92 is

(Ans)

provided the flow is laminar. For this case

so that
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In the previous section various properties of fully developed laminar pipe flow were discussed.
Since turbulent pipe flow is actually more likely to occur than laminar flow in practical situations,
it is necessary to obtain similar information for turbulent pipe flow. However, turbulent flow is a
very complex process. Numerous persons have devoted considerable effort in attempting to under-
stand the variety of baffling aspects of turbulence. Although a considerable amount of knowledge
about the topic has been developed, the field of turbulent flow still remains the least understood
area of fluid mechanics. In this book we can provide only some of the very basic ideas concern-
ing turbulence. The interested reader should consult some of the many books available for further
reading 1Refs. 1–32.

8.3.1 Transition from Laminar to Turbulent Flow

Flows are classified as laminar or turbulent. For any flow geometry, there is one 1or more2 di-
mensionless parameter such that with this parameter value below a particular value the flow is
laminar, whereas with the parameter value larger than a certain value the flow is turbulent. The
important parameters involved 1i.e., Reynolds number, Mach number2 and their critical values de-
pend on the specific flow situation involved. For example, flow in a pipe and flow along a flat
plate 1boundary layer flow, as is discussed in Section 9.2.42 can be laminar or turbulent, depend-
ing on the value of the Reynolds number involved. As a general rule for pipe flow, the value of
the Reynolds number must be less than approximately 2100 for laminar flow and greater than ap-
proximately 4000 for turbulent flow. For flow along a flat plate the transition between laminar
and turbulent flow occurs at a Reynolds number of approximately 500,000 1see Section 9.2.42,
where the length term in the Reynolds number is the distance measured from the leading edge of
the plate.

Consider a long section of pipe that is initially filled with a fluid at rest. As the valve is
opened to start the flow, the flow velocity and, hence, the Reynolds number increase from zero 1no
flow2 to their maximum steady-state flow values, as is shown in Fig. 8.11. Assume this transient
process is slow enough so that unsteady effects are negligible 1quasi-steady flow2. For an initial
time period the Reynolds number is small enough for laminar flow to occur. At some time the
Reynolds number reaches 2100, and the flow begins its transition to turbulent conditions. Intermit-
tent spots or bursts of turbulence appear. As the Reynolds number is increased, the entire flow field
becomes turbulent. The flow remains turbulent as long as the Reynolds number exceeds approxi-
mately 4000.

A typical trace of the axial component of velocity measured at a given location in the flow,
is shown in Fig. 8.12. Its irregular, random nature is the distinguishing feature of turbu-

lent flow. The character of many of the important properties of the flow 1pressure drop, heat trans-
fer, etc.2 depends strongly on the existence and nature of the turbulent fluctuations or randomness

u � u1t2,
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indicated. In previous considerations involving inviscid flow, the Reynolds number is 1strictly speak-
ing2 infinite 1because the viscosity is zero2, and the flow most surely would be turbulent. However,
reasonable results were obtained by using the inviscid Bernoulli equation as the governing equa-
tion. The reason that such simplified inviscid analyses gave reasonable results is that viscous 
effects were not very important and the velocity used in the calculations was actually the time-
averaged velocity, indicated in Fig. 8.12. Calculation of the heat transfer, pressure drop, and
many other parameters would not be possible without inclusion of the seemingly small, but very
important, effects associated with the randomness of the flow.

Consider flow in a pan of water placed on a stove. With the stove turned off, the fluid is
stationary. The initial sloshing has died out because of viscous dissipation within the water.
With the stove turned on, a temperature gradient in the vertical direction, is produced.
The water temperature is greatest near the pan bottom and decreases toward the top of the fluid
layer. If the temperature difference is very small, the water will remain stationary, even though
the water density is smallest near the bottom of the pan because of the decrease in density with
an increase in temperature. A further increase in the temperature gradient will cause a buoy-
ancy-driven instability that results in fluid motion—the light, warm water rises to the top, and
the heavy, cold water sinks to the bottom. This slow, regular “turning over” increases the heat
transfer from the pan to the water and promotes mixing within the pan. As the temperature gra-
dient increases still further, the fluid motion becomes more vigorous and eventually turns into
a chaotic, random, turbulent flow with considerable mixing, vaporization (boiling) and greatly
increased heat transfer rate. The flow has progressed from a stationary fluid, to laminar flow,
and finally to turbulent, multi-phase (liquid and vapor) flow.

Mixing processes and heat and mass transfer processes are considerably enhanced in turbu-
lent flow compared to laminar flow. This is due to the macroscopic scale of the randomness in tur-
bulent flow. We are all familiar with the “rolling,” vigorous eddy type motion of the water in a pan
being heated on the stove 1even if it is not heated to boiling2. Such finite-sized random mixing is
very effective in transporting energy and mass throughout the flow field, thereby increasing the var-
ious rate processes involved. Laminar flow, on the other hand, can be thought of as very small but
finite-sized fluid particles flowing smoothly in layers, one over another. The only randomness and
mixing take place on the molecular scale and result in relatively small heat, mass, and momentum
transfer rates.

Without turbulence it would be virtually impossible to carry out life as we now know it.
Mixing is one positive application of turbulence, as discussed above, but there are other situations
where turbulent flow is desirable. To transfer the required heat between a solid and an adjacent
fluid 1such as in the cooling coils of an air conditioner or a boiler of a power plant2 would require
an enormously large heat exchanger if the flow were laminar. Similarly, the required mass trans-
fer of a liquid state to a vapor state 1such as is needed in the evaporated cooling system associ-
ated with sweating2 would require very large surfaces if the fluid flowing past the surface were

0T�0z,

u,
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laminar rather than turbulent. As shown in Chapter 9, turbulence can also aid in delaying flow
separation.
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Smaller heat exchangers Automobile radiators, air condition-
ers, and refrigerators contain heat exchangers that transfer en-
ergy from (to) the hot (cold) fluid within the heat exchanger
tubes to (from) the colder (hotter) surrounding fluid. These
units can be made smaller and more efficient by increasing the
heat transfer rate across the tubes’ surfaces. If the flow through
the tubes is laminar, the heat transfer rate is relatively small.
Significantly larger heat transfer rates are obtained if the flow
within the tubes is turbulent. Even greater heat transfer rates
can be obtained by the use of turbulence promoters, sometimes

termed “turbulators,” which provide additional turbulent mix-
ing motion than would normally occur. Such enhancement
mechanisms include internal fins, spiral wire or ribbon inserts,
and ribs or grooves on the inner surface of the tube. While these
mechanisms can increase the heat transfer rate by 1.5 to 3 times
over that for a bare tube at the same flowrate, they also increase
the pressure drop (and therefore the power) needed to produce
the flow within the tube. Thus, a compromise involving in-
creased heat transfer rate and increased power consumption is
often needed.

Turbulence is also of importance in the mixing of fluids. Smoke from a stack would con-
tinue for miles as a ribbon of pollutant without rapid dispersion within the surrounding air if the
flow were laminar rather than turbulent. Under certain atmospheric conditions this is observed to
occur. Although there is mixing on a molecular scale 1laminar flow2, it is several orders of magni-
tude slower and less effective than the mixing on a macroscopic scale 1turbulent flow2. It is consid-
erably easier to mix cream into a cup of coffee 1turbulent flow2 than to thoroughly mix two colors
of a viscous paint 1laminar flow2.

In other situations laminar 1rather than turbulent2 flow is desirable. The pressure drop in pipes
1hence, the power requirements for pumping2 can be considerably lower if the flow is laminar rather
than turbulent. Fortunately, the blood flow through a person’s arteries is normally laminar, except
in the largest arteries with high blood flowrates. The aerodynamic drag on an airplane wing can
be considerably smaller with laminar flow past it than with turbulent flow.

8.3.2 Turbulent Shear Stress

The fundamental difference between laminar and turbulent flow lies in the chaotic, random behav-
ior of the various fluid parameters. Such variations occur in the three components of velocity, the
pressure, the shear stress, the temperature, and any other variable that has a field description. Tur-
bulent flow is characterized by random, three-dimensional vorticity 1i.e., fluid particle rotation or
spin; see Section 6.1.32. As is indicated in Fig. 8.12, such flows can be described in terms of their
mean values 1denoted with an overbar2 on which are superimposed the fluctuations 1denoted with
a prime2. Thus, if is the x component of instantaneous velocity, then its time mean
1or time-average2 value, is

(8.24)

where the time interval, T, is considerably longer than the period of the longest fluctuations, but con-
siderably shorter than any unsteadiness of the average velocity. This is illustrated in Fig. 8.12.

The fluctuating part of the velocity, , is that time-varying portion that differs from the av-
erage value

(8.25)

Clearly, the time average of the fluctuations is zero, since
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The fluctuations are equally distributed on either side of the average. It is also clear, as is indicated
in Fig. 8.13, that since the square of a fluctuation quantity cannot be negative its av-
erage value is positive. Thus,

On the other hand, it may be that the average of products of the fluctuations, such as are zero
or nonzero 1either positive or negative2.

The structure and characteristics of turbulence may vary from one flow situation to another.
For example, the turbulence intensity 1or the level of the turbulence2 may be larger in a very gusty
wind than it is in a relatively steady 1although turbulent2 wind. The turbulence intensity, is of-
ten defined as the square root of the mean square of the fluctuating velocity divided by the time-
averaged velocity, or

The larger the turbulence intensity, the larger the fluctuations of the velocity 1and other flow parame-
ters2. Well-designed wind tunnels have typical values of although with extreme care, values
as low as have been obtained. On the other hand, values of are found for the
flow in the atmosphere and rivers. A typical atmospheric wind speed graph is shown in the figure in
the margin.

Another turbulence parameter that is different from one flow situation to another is the pe-
riod of the fluctuations—the time scale of the fluctuations shown in Fig. 8.12. In many flows, such
as the flow of water from a faucet, typical frequencies are on the order of 10, 100, or 1000 cycles
per second 1cps2. For other flows, such as the Gulf Stream current in the Atlantic Ocean or flow
of the atmosphere of Jupiter, characteristic random oscillations may have a period on the order of
hours, days, or more.

It is tempting to extend the concept of viscous shear stress for laminar flow 
to that of turbulent flow by replacing u, the instantaneous velocity, by the time-averaged veloc-
ity. However, numerous experimental and theoretical studies have shown that such an approach
leads to completely incorrect results. That is, A physical explanation for this behav-
ior can be found in the concept of what produces a shear stress.

Laminar flow is modeled as fluid particles that flow smoothly along in layers, gliding past the
slightly slower or faster ones on either side. As is discussed in Chapter 1, the fluid actually consists
of numerous molecules darting about in an almost random fashion as is indicated in Fig. 8.14a. The
motion is not entirely random—a slight bias in one direction produces the flowrate we associate
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F I G U R E  8.14 (a) Laminar flow shear stress caused by random motion of molecules.
(b) Turbulent flow as a series of random, three-dimensional eddies.
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Listen to the flowrate Sonar systems are designed to listen to
transmitted and reflected sound waves in order to locate sub-
merged objects. They have been used successfully for many years
to detect and track underwater objects such as submarines and
aquatic animals. Recently, sonar techniques have been refined so
that they can be used to determine the flowrate in pipes. These
new flow meters work for turbulent, not laminar, pipe flows be-
cause their operation depends strictly on the existence of turbu-

lent eddies within the flow. The flow meters contain a sonar-based
array that listens to and interprets pressure fields generated by the
turbulent motion in pipes. By listening to the pressure fields asso-
ciated with the movement of the turbulent eddies, the device can
determine the speed at which the eddies travel past an array of sen-
sors. The flowrate is determined by using a calibration procedure
which links the speed of the turbulent structures to the volumetric
flowrate.

with the motion of fluid particles, As the molecules dart across a given plane 1plane A– A, for ex-
ample2, the ones moving upward have come from an area of smaller average x component of veloc-
ity than the ones moving downward, which have come from an area of larger velocity.

The momentum flux in the x direction across plane A– A gives rise to a drag 1to the left2 of
the lower fluid on the upper fluid and an equal but opposite effect of the upper fluid on the lower
fluid. The sluggish molecules moving upward across plane A– A must be accelerated by the fluid
above this plane. The rate of change of momentum in this process produces 1on the macroscopic
scale2 a shear force. Similarly, the more energetic molecules moving down across plane A– A must
be slowed down by the fluid below that plane. This shear force is present only if there is a gradi-
ent in otherwise the average x component of velocity 1and momentum2 of the upward and
downward molecules is exactly the same. In addition, there are attractive forces between molecules.
By combining these effects we obtain the well-known Newton viscosity law: where
on a molecular basis is related to the mass and speed 1temperature2 of the random motion of the
molecules.

Although the above random motion of the molecules is also present in turbulent flow, there
is another factor that is generally more important. A simplistic way of thinking about turbulent flow
is to consider it as consisting of a series of random, three-dimensional eddy type motions as is de-
picted 1in one dimension only2 in Fig. 8.14b. (See the photograph at the beginning of this chapter.)
These eddies range in size from very small diameter 1on the order of the size of a fluid particle2 to
fairly large diameter 1on the order of the size of the object or flow geometry considered2. They move
about randomly, conveying mass with an average velocity This eddy structure greatly pro-
motes mixing within the fluid. It also greatly increases the transport of x momentum across plane
A– A. That is, finite particles of fluid 1not merely individual molecules as in laminar flow2 are ran-
domly transported across this plane, resulting in a relatively large 1when compared with laminar
flow2 shear force. These particles vary in size but are much larger than molecules.

u � u1y2.

m

t � m du�dy,

u � u1y2,

u.

Turbulent flow
shear stress is
larger than laminar
flow shear stress
because of the 
irregular, random
motion.



The random velocity components that account for this momentum transfer 1hence, the shear
force2 are 1for the x component of velocity2 and 1for the rate of mass transfer crossing the
plane2. A more detailed consideration of the processes involved will show that the apparent shear
stress on plane A– A is given by the following 1Ref. 22:

(8.26)

Note that if the flow is laminar, so that and Eq. 8.26 reduces to the cus-
tomary random molecule-motion-induced laminar shear stress, For turbulent flow
it is found that the turbulent shear stress, is positive. Hence, the shear stress is
greater in turbulent flow than in laminar flow. Note the units on are 

or as expected. Terms of the form 
1or etc.2 are called Reynolds stresses in honor of Osborne Reynolds who first discussed
them in 1895.

It is seen from Eq. 8.26 that the shear stress in turbulent flow is not merely proportional to
the gradient of the time-averaged velocity, It also contains a contribution due to the random
fluctuations of the x and y components of velocity. The density is involved because of the momen-
tum transfer of the fluid within the random eddies. Although the relative magnitude of com-
pared to is a complex function dependent on the specific flow involved, typical measurements
indicate the structure shown in Fig. 8.15a. 1Recall from Eq. 8.4 that the shear stress is proportional
to the distance from the centerline of the pipe.2 In a very narrow region near the wall 1the viscous
sublayer2, the laminar shear stress is dominant. Away from the wall 1in the outer layer2 the turbu-
lent portion of the shear stress is dominant. The transition between these two regions occurs in the
overlap layer. The corresponding typical velocity profile is shown in Fig. 8.15b.

The scale of the sketches shown in Fig. 8.15 is not necessarily correct. Typically the value
of is 100 to 1000 times greater than in the outer region, while the converse is true in the
viscous sublayer. A correct modeling of turbulent flow is strongly dependent on an accurate knowl-
edge of This, in turn, requires an accurate knowledge of the fluctuations and or 
As yet it is not possible to solve the governing equations 1the Navier–Stokes equations2 for these
details of the flow, although numerical techniques 1see Appendix A2 using the largest and fastest
computers available have produced important information about some of the characteristics of tur-
bulence. Considerable effort has gone into the study of turbulence. Much remains to be learned.
Perhaps studies in the new areas of chaos and fractal geometry will provide the tools for a better
understanding of turbulence 1see Section 8.3.52.

The vertical scale of Fig. 8.15 is also distorted. The viscous sublayer is usually a very thin
layer adjacent to the wall. For example, for water flow in a 3-in.-diameter pipe with an average
velocity of the viscous sublayer is approximately 0.002 in. thick. Since the fluid motion
within this thin layer is critical in terms of the overall flow 1the no-slip condition and the wall shear
stress occur in this layer2, it is not surprising to find that turbulent pipe flow properties can be quite
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dependent on the roughness of the pipe wall, unlike laminar pipe flow which is independent of
roughness. Small roughness elements 1scratches, rust, sand or dirt particles, etc.2 can easily disturb
this viscous sublayer 1see Section 8.42, thereby affecting the entire flow.

An alternate form for the shear stress for turbulent flow is given in terms of the eddy viscos-
ity, where

(8.27)

This extension of laminar flow terminology was introduced by J. Boussinesq, a French scientist,
in 1877. Although the concept of an eddy viscosity is intriguing, in practice it is not an easy pa-
rameter to use. Unlike the absolute viscosity, which is a known value for a given fluid, the eddy
viscosity is a function of both the fluid and the flow conditions. That is, the eddy viscosity of wa-
ter cannot be looked up in handbooks—its value changes from one turbulent flow condition to an-
other and from one point in a turbulent flow to another.

The inability to accurately determine the Reynolds stress, is equivalent to not knowing
the eddy viscosity. Several semiempirical theories have been proposed 1Ref. 32 to determine approx-
imate values of L. Prandtl 11875–19532, a German physicist and aerodynamicist, proposed that
the turbulent process could be viewed as the random transport of bundles of fluid particles over a
certain distance, the mixing length, from a region of one velocity to another region of a differ-
ent velocity. By the use of some ad hoc assumptions and physical reasoning, it was concluded that
the eddy viscosity was given by

Thus, the turbulent shear stress is

(8.28)

The problem is thus shifted to that of determining the mixing length, Further considerations
indicate that is not a constant throughout the flow field. Near a solid surface the turbulence is
dependent on the distance from the surface. Thus, additional assumptions are made regarding how
the mixing length varies throughout the flow.

The net result is that as yet there is no general, all-encompassing, useful model that can ac-
curately predict the shear stress throughout a general incompressible, viscous turbulent flow. With-
out such information it is impossible to integrate the force balance equation to obtain the turbulent
velocity profile and other useful information, as was done for laminar flow.

8.3.3 Turbulent Velocity Profile

Considerable information concerning turbulent velocity profiles has been obtained through the use of
dimensional analysis, experimentation, numerical simulations, and semiempirical theoretical efforts.
As is indicated in Fig. 8.15, fully developed turbulent flow in a pipe can be broken into three regions
which are characterized by their distances from the wall: the viscous sublayer very near the pipe wall,
the overlap region, and the outer turbulent layer throughout the center portion of the flow. Within the
viscous sublayer the viscous shear stress is dominant compared with the turbulent 1or Reynolds2 stress,
and the random, eddying nature of the flow is essentially absent. In the outer turbulent layer the
Reynolds stress is dominant, and there is considerable mixing and randomness to the flow.

The character of the flow within these two regions is entirely different. For example, within
the viscous sublayer the fluid viscosity is an important parameter; the density is unimportant. In
the outer layer the opposite is true. By a careful use of dimensional analysis arguments for the flow
in each layer and by a matching of the results in the common overlap layer, it has been possible
to obtain the following conclusions about the turbulent velocity profile in a smooth pipe 1Ref. 52.

In the viscous sublayer the velocity profile can be written in dimensionless form as

(8.29)
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where is the distance measured from the wall, is the time-averaged x component of ve-
locity, and is termed the friction velocity. Note that u* is not an actual velocity of the
fluid—it is merely a quantity that has dimensions of velocity. As is indicated in Fig. 8.16, Eq. 8.29
1commonly called the law of the wall 2 is valid very near the smooth wall, for 

Dimensional analysis arguments indicate that in the overlap region the velocity should vary
as the logarithm of y. Thus, the following expression has been proposed:

(8.30)

where the constants 2.5 and 5.0 have been determined experimentally. As is indicated in Fig. 8.16,
for regions not too close to the smooth wall, but not all the way out to the pipe center, Eq. 8.30
gives a reasonable correlation with the experimental data. Note that the horizontal scale is a loga-
rithmic scale. This tends to exaggerate the size of the viscous sublayer relative to the remainder of
the flow. As is shown in Example 8.4, the viscous sublayer is usually quite thin. Similar results
can be obtained for turbulent flow past rough walls 1Ref. 172.

A number of other correlations exist for the velocity profile in turbulent pipe flow. In the cen-
tral region 1the outer turbulent layer2 the expression where is the cen-
terline velocity, is often suggested as a good correlation with experimental data. Another often-used
1and relatively easy to use2 correlation is the empirical power-law velocity profile

(8.31)

In this representation, the value of n is a function of the Reynolds number, as is indicated in
Fig. 8.17. The one-seventh power-law velocity profile is often used as a reasonable ap-
proximation for many practical flows. Typical turbulent velocity profiles based on this power-law
representation are shown in Fig. 8.18.

A closer examination of Eq. 8.31 shows that the power-law profile cannot be valid near the
wall, since according to this equation the velocity gradient is infinite there. In addition, Eq. 8.31
cannot be precisely valid near the centerline because it does not give at How-
ever, it does provide a reasonable approximation to the measured velocity profiles across most of
the pipe.

Note from Fig. 8.18 that the turbulent profiles are much “flatter” than the laminar profile
and that this flatness increases with Reynolds number 1i.e., with n2. Recall from Chapter 3 that
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reasonable approximate results are often obtained by using the inviscid Bernoulli equation and by
assuming a fictitious uniform velocity profile. Since most flows are turbulent and turbulent flows
tend to have nearly uniform velocity profiles, the usefulness of the Bernoulli equation and the uni-
form profile assumption is not unexpected. Of course, many properties of the flow cannot be ac-
counted for without including viscous effects.
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GIVEN Water at and 
flows through a horizontal pipe of 0.1-m diameter

with a flowrate of and a pressure gradient of
2.59 kPa m. 

FIND (a) Determine the approximate thickness of the vis-
cous sublayer. 

�
Q � 4 � 10�2 m3�s

10�6 m2�s2
n � 1.004 �20 °C 1r � 998 kg�m3

Turbulent Pipe Flow PropertiesE XAMPLE 8.4

(b) Determine the approximate centerline velocity,

(c) Determine the ratio of the turbulent to laminar shear stress,
at a point midway between the centerline and the pipe

wall 1i.e., at r � 0.025 m2.
tturb �tlam,

Vc.
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SOLUTION
obtained by integration of the power-law velocity profile as fol-
lows. Since the flow is axisymmetric,

which can be integrated to give

Thus, since we obtain

With in the present case, this gives

(Ans)

Recall that for laminar pipe flow.

(c) From Eq. 8.4, which is valid for laminar or turbulent flow,
the shear stress at is

or

where From the power-law velocity profile 
1Eq. 8.312 we obtain the gradient of the average velocity as

which gives

Thus,

Thus, the ratio of turbulent to laminar shear stress is given by

(Ans)

COMMENT As expected, most of the shear stress at this lo-
cation in the turbulent flow is due to the turbulent shear stress.
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D
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Vc � 2V

 � 6.04 m�s
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1n � 12 12n � 12

2n2  V � 1.186V � 1.186 15.09 m�s2

n � 8.4

V
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�

2n2

1n � 12 12n � 12

Q � pR2V,

Q � 2pR2Vc 
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Q � AV � �  u dA � Vc �
r�R
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a1 � r

R
b

1�n 

12pr2 dr

(a) According to Fig. 8.16, the thickness of the viscous sub-
layer, is approximately

Therefore,

where

(1)

The wall shear stress can be obtained from the pressure drop data
and Eq. 8.5, which is valid for either laminar or turbulent flow.
Thus,

Hence, from Eq. 1 we obtain

so that

(Ans)

COMMENT As stated previously, the viscous sublayer is
very thin. Minute imperfections on the pipe wall will protrude
into this sublayer and affect some of the characteristics of the
flow 1i.e., wall shear stress and pressure drop2.
(b) The centerline velocity can be obtained from the average
velocity and the assumption of a power-law velocity profile as
follows. For this flow with

the Reynolds number is

Thus, from Fig. 8.17, so that

To determine the centerline velocity, we must know the re-
lationship between V 1the average velocity2 and This can beVc.

Vc,

u

Vc

� a1 � r

R
b

1�8.4

n � 8.4

Re �
VD

n
�
15.09 m�s2 10.1 m2
11.004 � 10�6 m2�s2 � 5.07 � 105

V �
Q

A
�

0.04 m3�s
p10.1 m22�4 � 5.09 m�s

 � 1.97 � 10�5 m � 0.02 mm

 ds �
511.004 � 10�6 m2�s2

0.255 m�s

u* � a64.8 N�m2

998 kg�m3b
1�2

� 0.255 m�s

tw �
D ¢p

4/
�
10.1 m2 12.59 � 103 N�m22

411 m2 � 64.8 N�m2

u* � atw

r
b

1�2

ds � 5 
n

u*

dsu*

n
� 5

ds,

The turbulent flow characteristics discussed in this section are not unique to turbulent flow in
round pipes. Many of the characteristics introduced 1i.e., the Reynolds stress, the viscous sublayer, the
overlap layer, the outer layer, the general characteristics of the velocity profile, etc.2 are found in other
turbulent flows. In particular, turbulent pipe flow and turbulent flow past a solid wall 1boundary layer
flow2 share many of these common traits. Such ideas are discussed more fully in Chapter 9.



8.3.4 Turbulence Modeling

Although it is not yet possible to theoretically predict the random, irregular details of turbulent
flows, it would be useful to be able to predict the time-averaged flow fields 1pressure, velocity, etc.2
directly from the basic governing equations. To this end one can time average the governing Navier–
Stokes equations 1Eqs. 6.31 and 6.1272 to obtain equations for the average velocity and pressure.
However, because the Navier –Stokes equations are nonlinear, the resulting time-averaged differ-
ential equations contain not only the desired average pressure and velocity as variables, but also
averages of products of the fluctuations—terms of the type that one tried to eliminate by averag-
ing the equations! For example, the Reynolds stress 1see Eq. 8.262 occurs in the time-
averaged momentum equation.

Thus, it is not possible to merely average the basic differential equations and obtain govern-
ing equations involving only the desired averaged quantities. This is the reason for the variety of
ad hoc assumptions that have been proposed to provide “closure” to the equations governing the
average flow. That is, the set of governing equations must be a complete or closed set of equa-
tions—the same number of equation as unknowns.

Various attempts have been made to solve this closure problem 1Refs. 1, 322. Such schemes
involving the introduction of an eddy viscosity or the mixing length 1as introduced in Section
8.3.22 are termed algebraic or zero-equation models. Other methods, which are beyond the scope
of this book, include the one-equation model and the two-equation model. These turbulence
models are based on the equation for the turbulence kinetic energy and require significant com-
puter usage.

Turbulence modeling is an important and extremely difficult topic. Although considerable
progress has been made, much remains to be done in this area.

8.3.5 Chaos and Turbulence

Chaos theory is a relatively new branch of mathematical physics that may provide insight into the com-
plex nature of turbulence. This method combines mathematics and numerical 1computer2 techniques
to provide a new way to analyze certain problems. Chaos theory, which is quite complex and is cur-
rently under development, involves the behavior of nonlinear dynamical systems and their response to
initial and boundary conditions. The flow of a viscous fluid, which is governed by the nonlinear Navier–
Stokes equations 1Eq. 6.1272, may be such a system.

To solve the Navier–Stokes equations for the velocity and pressure fields in a viscous flow, one
must specify the particular flow geometry being considered 1the boundary conditions2 and the condi-
tion of the flow at some particular time 1the initial conditions2. If, as some researchers predict, the
Navier–Stokes equations allow chaotic behavior, then the state of the flow at times after the initial
time may be very, very sensitive to the initial conditions. A slight variation to the initial flow condi-
tions may cause the flow at later times to be quite different than it would have been with the original,
only slightly different initial conditions. When carried to the extreme, the flow may be “chaotic,” “ran-
dom,” or perhaps 1in current terminology2, “turbulent.”

The occurrence of such behavior would depend on the value of the Reynolds number. For
example, it may be found that for sufficiently small Reynolds numbers the flow is not chaotic 1i.e.,
it is laminar2, while for large Reynolds numbers it is chaotic with turbulent characteristics.

Thus, with the advancement of chaos theory it may be found that the numerous ad hoc tur-
bulence ideas mentioned in previous sections 1i.e., eddy viscosity, mixing length, law of the wall,
etc.2 may not be needed. It may be that chaos theory can provide the turbulence properties and
structure directly from the governing equations. As of now we must wait until this exciting topic
is developed further. The interested reader is encouraged to consult Ref. 4 for a general introduc-
tion to chaos or Ref. 33 for additional material.
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As noted previously, turbulent flow can be a very complex, difficult topic—one that as yet has
defied a rigorous theoretical treatment. Thus, most turbulent pipe flow analyses are based on
experimental data and semi-empirical formulas. These data are expressed conveniently in dimen-
sionless form.

8.4 Dimensional Analysis of Pipe Flow

Chaos theory may
eventually provide a
deeper understand-
ing of turbulence.



It is often necessary to determine the head loss, , that occurs in a pipe flow so that the
energy equation, Eq. 5.84, can be used in the analysis of pipe flow problems. As shown in Fig.
8.1, a typical pipe system usually consists of various lengths of straight pipe interspersed with
various types of components (valves, elbows, etc.). The overall head loss for the pipe system con-
sists of the head loss due to viscous effects in the straight pipes, termed the major loss and denoted

, and the head loss in the various pipe components, termed the minor loss and denoted
. That is,

The head loss designations of “major” and “minor” do not necessarily reflect the relative impor-
tance of each type of loss. For a pipe system that contains many components and a relatively
short length of pipe, the minor loss may actually be larger than the major loss.

8.4.1 Major Losses

A dimensional analysis treatment of pipe flow provides the most convenient base from which to
consider turbulent, fully developed pipe flow. An introduction to this topic was given in Section
8.3. As is discussed in Sections 8.2.1 and 8.2.4, the pressure drop and head loss in a pipe are de-
pendent on the wall shear stress, between the fluid and pipe surface. A fundamental difference
between laminar and turbulent flow is that the shear stress for turbulent flow is a function of the
density of the fluid, For laminar flow, the shear stress is independent of the density, leaving the
viscosity, as the only important fluid property.

Thus, as indicated by the figure in the margin, the pressure drop, for steady, incompress-
ible turbulent flow in a horizontal round pipe of diameter D can be written in functional form as

(8.32)

where V is the average velocity, is the pipe length, and is a measure of the roughness of the
pipe wall. It is clear that should be a function of V, D, and The dependence of on the
fluid properties and is expected because of the dependence of on these parameters.

Although the pressure drop for laminar pipe flow is found to be independent of the roughness
of the pipe, it is necessary to include this parameter when considering turbulent flow. As is dis-
cussed in Section 8.3.3 and illustrated in Fig. 8.19, for turbulent flow there is a relatively thin vis-
cous sublayer formed in the fluid near the pipe wall. In many instances this layer is very thin;

where is the sublayer thickness. If a typical wall roughness element protrudes suffi-
ciently far into 1or even through2 this layer, the structure and properties of the viscous sublayer 1along
with and 2 will be different than if the wall were smooth. Thus, for turbulent flow the pres-
sure drop is expected to be a function of the wall roughness. For laminar flow there is no thin vis-
cous layer—viscous effects are important across the entire pipe. Thus, relatively small roughness 
elements have completely negligible effects on laminar pipe flow. Of course, for pipes with very large
wall “roughness” such as that in corrugated pipes, the flowrate may be a function of
the “roughness.” We will consider only typical constant diameter pipes with relative roughnesses in
the range Analysis of flow in corrugated pipes does not fit into the standard con-
stant diameter pipe category, although experimental results for such pipes are available 1Ref. 302.

The list of parameters given in Eq. 8.32 is apparently a complete one. That is, experiments
have shown that other parameters 1such as surface tension, vapor pressure, etc.2 do not affect the
pressure drop for the conditions stated 1steady, incompressible flow; round, horizontal pipe2. Since
there are seven variables which can be written in terms of the three reference dimensions
MLT Eq. 8.32 can be written in dimensionless form in terms of dimensionless
groups. As was discussed in Section 7.9.1, one such representation is

This result differs from that used for laminar flow 1see Eq. 8.172 in two ways. First, we have cho-
sen to make the pressure dimensionless by dividing by the dynamic pressure, rather than a
characteristic viscous shear stress, This convention was chosen in recognition of the fact
that the shear stress for turbulent flow is normally dominated by which is a stronger functiontturb,
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rV 2�2,

¢p
1
2rV

2
� f

~
 arVD

m
, 
/

D
, 
e

D
b

k � r � 41r � 32,
1k � 72

0 � e�D f 0.05.

1e�D g 0.12,

tw¢p

dsds�D � 1,

trm

¢p/.¢p
e/

¢p � F1V, D, /, e, m, r2

¢p,
m,

r.

tw,

hL � hL major � hL minor

hL minor

hL major

hL

410 Chapter 8 ■ Viscous Flow in Pipes

(1) (2)

D
εV

ρ, µ

�

∆p = p1 – p2

Turbulent pipe flow
properties depend
on the fluid density
and the pipe rough-
ness.



of the density than it is of viscosity. Second, we have introduced two additional dimensionless 
parameters, the Reynolds number, and the relative roughness, which are not
present in the laminar formulation because the two parameters and are not important in fully
developed laminar pipe flow.

As was done for laminar flow, the functional representation can be simplified by imposing
the reasonable assumption that the pressure drop should be proportional to the pipe length. 1Such
a step is not within the realm of dimensional analysis. It is merely a logical assumption supported
by experiments.2 The only way that this can be true is if the dependence is factored out as

As was discussed in Section 8.2.3, the quantity is termed the friction factor, f. Thus,
for a horizontal pipe

(8.33)

where

For laminar fully developed flow, the value of f is simply independent of For tur-
bulent flow, the functional dependence of the friction factor on the Reynolds number and the relative
roughness, is a rather complex one that cannot, as yet, be obtained from a theoret-
ical analysis. The results are obtained from an exhaustive set of experiments and usually presented
in terms of a curve-fitting formula or the equivalent graphical form.

From Eq. 5.89 the energy equation for steady incompressible flow is

where is the head loss between sections 112 and 122. With the assumption of a constant diame-
ter so that horizontal pipe with fully developed flow this
becomes which can be combined with Eq. 8.33 to give
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F I G U R E  8.19 Flow in the
viscous sublayer near rough and smooth
walls.
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The major head
loss in pipe flow is
given in terms of
the friction factor.



Equation 8.34, called the Darcy–Weisbach equation, is valid for any fully developed, steady, in-
compressible pipe flow—whether the pipe is horizontal or on a hill. On the other hand, Eq. 8.33
is valid only for horizontal pipes. In general, with the energy equation gives

Part of the pressure change is due to the elevation change and part is due to the head loss associ-
ated with frictional effects, which are given in terms of the friction factor, f.

It is not easy to determine the functional dependence of the friction factor on the Reynolds
number and relative roughness. Much of this information is a result of experiments conducted by
J. Nikuradse in 1933 1Ref. 62 and amplified by many others since then. One difficulty lies in the
determination of the roughness of the pipe. Nikuradse used artificially roughened pipes produced
by gluing sand grains of known size onto pipe walls to produce pipes with sandpaper-type sur-
faces. The pressure drop needed to produce a desired flowrate was measured and the data were
converted into the friction factor for the corresponding Reynolds number and relative roughness.
The tests were repeated numerous times for a wide range of Re and to determine the

dependence.
In commercially available pipes the roughness is not as uniform and well defined as in the

artificially roughened pipes used by Nikuradse. However, it is possible to obtain a measure of the
effective relative roughness of typical pipes and thus to obtain the friction factor. Typical rough-
ness values for various pipe surfaces are given in Table 8.1. Figure 8.20 shows the functional de-
pendence of f on Re and and is called the Moody chart in honor of L. F. Moody, who, along
with C. F. Colebrook, correlated the original data of Nikuradse in terms of the relative roughness
of commercially available pipe materials. It should be noted that the values of do not neces-
sarily correspond to the actual values obtained by a microscopic determination of the average
height of the roughness of the surface. They do, however, provide the correct correlation for

It is important to observe that the values of relative roughness given pertain to new, clean
pipes. After considerable use, most pipes 1because of a buildup of corrosion or scale2 may have a
relative roughness that is considerably larger 1perhaps by an order of magnitude2 than that given.
As shown by the figure in the margin, very old pipes may have enough scale buildup to not only
alter the value of but also to change their effective diameter by a considerable amount.

The following characteristics are observed from the data of Fig. 8.20. For laminar flow,
which is independent of relative roughness. For turbulent flows with very large Reynolds

numbers, which, as shown by the figure in the margin, is independent of the Reynolds
number. For such flows, commonly termed completely turbulent flow 1or wholly turbulent flow2, the
laminar sublayer is so thin 1its thickness decreases with increasing Re2 that the surface roughness
completely dominates the character of the flow near the wall. Hence, the pressure drop required is a
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TA BLE 8 . 1
Equivalent Roughness for New Pipes [From Moody
(Ref. 7) and Colebrook (Ref. 8)]

Equivalent Roughness,

Pipe Feet Millimeters

Riveted steel 0.003–0.03 0.9–9.0
Concrete 0.001–0.01 0.3–3.0
Wood stave 0.0006–0.003 0.18–0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Commercial steel
or wrought iron 0.00015 0.045

Drawn tubing 0.000005 0.0015
Plastic, glass 0.0 1smooth2 0.0 1smooth2
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result of an inertia-dominated turbulent shear stress rather than the viscosity-dominated laminar shear
stress normally found in the viscous sublayer. For flows with moderate values of Re, the friction fac-
tor is indeed dependent on both the Reynolds number and relative roughness— The
gap in the figure for which no values of f are given 1the range2 is a result of the
fact that the flow in this transition range may be laminar or turbulent 1or an unsteady mix of both2
depending on the specific circumstances involved.

Note that even for smooth pipes the friction factor is not zero. That is, there is a
head loss in any pipe, no matter how smooth the surface is made. This is a result of the no-slip
boundary condition that requires any fluid to stick to any solid surface it flows over. There is al-
ways some microscopic surface roughness that produces the no-slip behavior 1and thus 2 on
the molecular level, even when the roughness is considerably less than the viscous sublayer thick-
ness. Such pipes are called hydraulically smooth.

Various investigators have attempted to obtain an analytical expression for Note
that the Moody chart covers an extremely wide range in flow parameters. The nonlaminar region cov-
ers more than four orders of magnitude in Reynolds number—from to Ob-
viously, for a given pipe and fluid, typical values of the average velocity do not cover this range. How-
ever, because of the large variety in pipes 1D2, fluids and and velocities 1V 2, such a wide range
in Re is needed to accommodate nearly all applications of pipe flow. In many cases the particular pipe
flow of interest is confined to a relatively small region of the Moody chart, and simple semiempirical
expressions can be developed for those conditions. For example, a company that manufactures cast
iron water pipes with diameters between 2 and 12 in. may use a simple equation valid for their con-
ditions only. The Moody chart, on the other hand, is universally valid for all steady, fully developed,
incompressible pipe flows.

m2,1r

Re � 108.Re � 4 � 103

f1Re, e�D2.f �

f q 0

1e � 02

2100 6 Re 6 4000
f � f1Re, e�D2.
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For any pipe, even
smooth ones, the
head loss is not
zero.

F I G U R E  8.20 Friction factor as a function of Reynolds number and relative roughness for round pipes—the Moody 
chart. (Data from Ref. 7 with permission.)
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The following equation from Colebrook is valid for the entire nonlaminar range of the Moody
chart

(8.35a)

In fact, the Moody chart is a graphical representation of this equation, which is an empirical
fit of the pipe flow pressure drop data. Equation 8.35 is called the Colebrook formula. A dif-
ficulty with its use is that it is implicit in the dependence of f. That is, for given conditions

it is not possible to solve for f without some sort of iterative scheme. With the
use of modern computers and calculators, such calculations are not difficult. A word of cau-
tion is in order concerning the use of the Moody chart or the equivalent Colebrook formula.
Because of various inherent inaccuracies involved 1uncertainty in the relative roughness, un-
certainty in the experimental data used to produce the Moody chart, etc.2, the use of several
place accuracy in pipe flow problems is usually not justified. As a rule of thumb, a 10% ac-
curacy is the best expected. It is possible to obtain an equation that adequately approximates
the ColebrookZMoody chart relationship but does not require an iterative scheme. For exam-
ple, an alternate form (Ref. 34), which is easier to use, is given by

(8.35b)

where one can solve for f explicitly.
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The turbulent por-
tion of the Moody
chart is represented
by the Colebrook
formula.

GIVEN Air under standard conditions flows through a 4.0-mm-
diameter drawn tubing with an average velocity of 
For such conditions the flow would normally be turbulent. How-
ever, if precautions are taken to eliminate disturbances to the flow
1the entrance to the tube is very smooth, the air is dust free, the tube
does not vibrate, etc.2, it may be possible to maintain laminar flow. 

V � 50 m�s.
FIND (a) Determine the pressure drop in a 0.1-m section of
the tube if the flow is laminar. 

(b) Repeat the calculations if the flow is turbulent.

SOLUTION

Comparison of Laminar or Turbulent Pressure Drop

COMMENT Note that the same result is obtained from Eq. 8.8:

(b) If the flow were turbulent, then where
from Table 8.1, so that 

From the Moody chart with 
we obtain Thus, the pressure

drop in this case would be approximately

or

(Ans)¢p � 1.076 kPa

¢p� f 
/

D
 
1

2
 rV 2� 10.0282 10.1 m2

10.004 m2  
1

2
 11.23 kg�m32 150 m�s22

f � 0.028.104 and e�D � 0.000375
Re � 1.37 �4.0 mm � 0.000375.

e�D � 0.0015 mm�e � 0.0015 mm
f � f1Re, e�D2,

 � 179 N�m2

 �
3211.79 � 10�5 N # s�m22 10.1 m2 150 m�s2

10.004 m22

¢p �
32m/

D2  V

E XAMPLE 8.5

Under standard temperature and pressure conditions the density
and viscosity are and 

Thus, the Reynolds number is

which would normally indicate turbulent flow.

(a) If the flow were laminar, then
and the pressure drop in a 0.1-m-long horizontal section

of the pipe would be

or

(Ans)¢p � 0.179 kPa

 � 10.004672 10.1 m2
10.004 m2  

1

2
 11.23 kg�m32 150 m�s22

¢p � f 
/
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2
 rV 2

0.00467
f � 64�Re � 64�13,700 �

Re �
rVD

m
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11.23 kg�m32 150 m�s2 10.004 m2

1.79 � 10�5 N # s�m2 � 13,700

N # s�m2.
m � 1.79 � 10�5r � 1.23 kg�m3



8.4.2 Minor Losses

As discussed in the previous section, the head loss in long, straight sections of pipe, the major losses,
can be calculated by use of the friction factor obtained from either the Moody chart or the Colebrook
equation. Most pipe systems, however, consist of considerably more than straight pipes. These addi-
tional components 1valves, bends, tees, and the like2 add to the overall head loss of the system. Such
losses are generally termed minor losses, with the corresponding head loss denoted In this
section we indicate how to determine the various minor losses that commonly occur in pipe systems.

The head loss associated with flow through a valve is a common minor loss. The purpose of
a valve is to provide a means to regulate the flowrate. This is accomplished by changing the geom-
etry of the system 1i.e., closing or opening the valve alters the flow pattern through the valve2,
which in turn alters the losses associated with the flow through the valve. The flow resistance or
head loss through the valve may be a significant portion of the resistance in the system. In fact,
with the valve closed, the resistance to the flow is infinite—the fluid cannot flow. Such minor
losses may be very important indeed. With the valve wide open the extra resistance due to the pres-
ence of the valve may or may not be negligible.

The flow pattern through a typical component such as a valve is shown in Fig. 8.21. It is not
difficult to realize that a theoretical analysis to predict the details of such flows to obtain the head
loss for these components is not, as yet, possible. Thus, the head loss information for essentially
all components is given in dimensionless form and based on experimental data. The most common
method used to determine these head losses or pressure drops is to specify the loss coefficient,
which is defined as

KL �
hL minor

1V2�2g2 �
¢p

1
2rV

2

KL,

hL minor.
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COMMENT A considerable savings in effort to force the fluid
through the pipe could be realized 10.179 kPa rather than 1.076 kPa2
if the flow could be maintained as laminar flow at this Reynolds
number. In general this is very difficult to do, although laminar flow
in pipes has been maintained up to in rare instances.

An alternate method to determine the friction factor for
the turbulent flow would be to use the Colebrook formula,
Eq. 8.35a. Thus,

or

(1)

By using a root-finding technique on a computer or calculator, the
solution to Eq. 1 is determined to be in agreement
1within the accuracy of reading the graph2 with the Moody chart
method of 

Eq. 8.35b provides an alternate form to the Colebrook formula
that can be used to solve for the friction factor directly.

This agrees with the Colebrook formula and Moody chart values ob-
tained above.

Numerous other empirical formulas can be found in the litera-
ture 1Ref. 52 for portions of the Moody chart. For example, an often-
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Re � 100,000

used equation, commonly referred to as the Blasius formula, for tur-
bulent flow in smooth pipes with is

For our case this gives

which is in agreement with the previous results. Note that the
value of f is relatively insensitive to for this particular situa-
tion. Whether the tube was smooth glass or the drawn
tubing would not make much difference in the
pressure drop. For this flow, an increase in relative roughness by
a factor of 30 to 1equivalent to a commercial steel
surface; see Table 8.12 would give  This would repre-
sent an increase in pressure drop and head loss by a factor of

compared with that for the original drawn
tubing.

The pressure drop of 1.076 kPa in a length of 0.1 m of pipe
corresponds to a change in absolute pressure [assuming 

] of approximately or
about 1%. Thus, the incompressible flow assumption on which the
above calculations 1and all of the formulas in this chapter2 are based
is reasonable. However, if the pipe were 2-m long the pressure drop
would be 21.5 kPa, approximately 20% of the original pressure. In
this case the density would not be approximately constant along the
pipe, and a compressible flow analysis would be needed. Such con-
siderations are discussed in Chapter 11.

1.076�101 � 0.0107,101 kPa 1abs2 at x � 0
p �

0.043�0.0291 � 1.48

f � 0.043.
e�D � 0.0113

1e�D � 0.0003752
1e�D � 02

e�D

f � 0.316113,7002�0.25 � 0.0292

f �
0.316

Re1�4

Re 6 1051e�D � 02

Losses due to pipe
system components
are given in terms
of loss coefficients.



so that

or

(8.36)

The pressure drop across a component that has a loss coefficient of is equal to the dynamic
pressure, As shown by Eq. 8.36 and the figure in the margin, for a given value of KL the
head loss is proportional to the square of the velocity.

The actual value of is strongly dependent on the geometry of the component considered.
It may also be dependent on the fluid properties. That is,

where is the pipe Reynolds number. For many practical applications the Reynolds
number is large enough so that the flow through the component is dominated by inertia effects, with
viscous effects being of secondary importance. This is true because of the relatively large acceler-
ations and decelerations experienced by the fluid as it flows along a rather curved, variable area
1perhaps even torturous2 path through the component 1see Fig. 8.212. In a flow that is dominated by
inertia effects rather than viscous effects, it is usually found that pressure drops and head losses cor-
relate directly with the dynamic pressure. This is the reason why the friction factor for very large
Reynolds number, fully developed pipe flow is independent of the Reynolds number. The same con-
dition is found to be true for flow through pipe components. Thus, in most cases of practical inter-
est the loss coefficients for components are a function of geometry only,

Minor losses are sometimes given in terms of an equivalent length, In this terminology,
the head loss through a component is given in terms of the equivalent length of pipe that would
produce the same head loss as the component. That is,

or

/eq �
KLD

f

hL minor � KL 
V 2

2g
� f 
/eq

D
 
V 2

2g

/eq.
KL � f1geometry 2.

Re � rVD�m

KL � f1geometry, Re 2

KL

rV 2�2.
KL � 1

hL minor � KL 
V 2

2g

¢p � KL 12rV
2
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F I G U R E  8.21 Flow through a valve.
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For most flows the
loss coefficient is
independent of the
Reynolds number.



where D and f are based on the pipe containing the component. The head loss of the pipe system
is the same as that produced in a straight pipe whose length is equal to the pipes of the original
system plus the sum of the additional equivalent lengths of all of the components of the system.
Most pipe flow analyses, including those in this book, use the loss coefficient method rather than
the equivalent length method to determine the minor losses.

Many pipe systems contain various transition sections in which the pipe diameter changes
from one size to another. Such changes may occur abruptly or rather smoothly through some type
of area change section. Any change in flow area contributes losses that are not accounted for in
the fully developed head loss calculation 1the friction factor2. The extreme cases involve flow into
a pipe from a reservoir 1an entrance2 or out of a pipe into a reservoir 1an exit2.

A fluid may flow from a reservoir into a pipe through any number of differently shaped en-
trance regions as are sketched in Fig. 8.22. Each geometry has an associated loss coefficient. A
typical flow pattern for flow entering a pipe through a square-edged entrance is sketched in Fig.
8.23. As was discussed in Chapter 3, a vena contracta region may result because the fluid cannot
turn a sharp right-angle corner. The flow is said to separate from the sharp corner. The maximum
velocity at section 122 is greater than that in the pipe at section 132, and the pressure there is lower.
If this high-speed fluid could slow down efficiently, the kinetic energy could be converted into
pressure 1the Bernoulli effect2, and the ideal pressure distribution indicated in Fig. 8.23 would re-
sult. The head loss for the entrance would be essentially zero.

Such is not the case. Although a fluid may be accelerated very efficiently, it is very difficult
to slow down 1decelerate2 a fluid efficiently. Thus, the extra kinetic energy of the fluid at section
122 is partially lost because of viscous dissipation, so that the pressure does not return to the ideal
value. An entrance head loss 1pressure drop2 is produced as is indicated in Fig. 8.23. The majority
of this loss is due to inertia effects that are eventually dissipated by the shear stresses within the
fluid. Only a small portion of the loss is due to the wall shear stress within the entrance region.
The net effect is that the loss coefficient for a square-edged entrance is approximately 
One-half of a velocity head is lost as the fluid enters the pipe. If the pipe protrudes into the tank
1a reentrant entrance2 as is shown in Fig. 8.22a, the losses are even greater.

An obvious way to reduce the entrance loss is to round the entrance region as is shown in
Fig. 8.22c, thereby reducing or eliminating the vena contracta effect. Typical values for the loss
coefficient for entrances with various amounts of rounding of the lip are shown in Fig. 8.24. A sig-
nificant reduction in can be obtained with only slight rounding.KL

KL � 0.50.
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(a) (b)

(c) (d)

F I G U R E  8.22 Entrance flow conditions and loss coefficient
(Refs. 28, 29). (a) Reentrant, (b) sharp-edged, (c) slightly
rounded, (see Fig. 8.24), (d) well-rounded, (see Fig. 8.24).KL � 0.04KL � 0.2

KL � 0.5,KL � 0.8,

Minor head losses
are often a result of
the dissipation of
kinetic energy.



A head loss 1the exit loss2 is also produced when a fluid flows from a pipe into a tank as is shown
in Fig. 8.25. In these cases the entire kinetic energy of the exiting fluid 1velocity 2 is dissipated through
viscous effects as the stream of fluid mixes with the fluid in the tank and eventually comes to rest

The exit loss from points 112 and 122 is therefore equivalent to one velocity head, or 
Losses also occur because of a change in pipe diameter as is shown in Figs. 8.26 and 8.27.

The sharp-edged entrance and exit flows discussed in the previous paragraphs are limiting cases
of this type of flow with either respectively. The loss coefficient for a
sudden contraction, is a function of the area ratio, as is shown in Fig.
8.26. The value of changes gradually from one extreme of a sharp-edged entrance 
with to the other extreme of no area change with 

In many ways, the flow in a sudden expansion is similar to exit flow. As is indicated in Fig.
8.28, the fluid leaves the smaller pipe and initially forms a jet-type structure as it enters the larger
pipe. Within a few diameters downstream of the expansion, the jet becomes dispersed across the
pipe, and fully developed flow becomes established again. In this process [between sections 122 and
132] a portion of the kinetic energy of the fluid is dissipated as a result of viscous effects. A square-
edged exit is the limiting case with 

A sudden expansion is one of the few components 1perhaps the only one2 for which the loss
coefficient can be obtained by means of a simple analysis. To do this we consider the continuity

A1�A2 � 0.

KL � 02.1A2�A1 � 1KL � 0.502
1A2 �A1 � 0KL

A2�A1,KL � hL � 1V 2
2 �2g2,
A1�A2 � q, or A1�A2 � 0,

KL � 1.1V2 � 02.

V1
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F I G U R E  8.23 Flow pattern and pressure distribution for a sharp-
edged entrance.
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(a)

(c) (d)

(b)

(1)

(2)

F I G U R E  8.25 Exit flow conditions and loss coefficient. 
(a) Reentrant, (b) sharp-edged, (c) slightly rounded,
(d) well-rounded, KL � 1.0.
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Loss coefficient for a sudden
contraction (Ref. 10).
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and momentum equations for the control volume shown in Fig. 8.28 and the energy equation ap-
plied between 122 and 132. We assume that the flow is uniform at sections 112, 122, and 132 and the
pressure is constant across the left-hand side of the control volume The re-
sulting three governing equations 1mass, momentum, and energy2 are

and

These can be rearranged to give the loss coefficient, as

where we have used the fact that This result, plotted in Fig. 8.27, is in good agreement
with experimental data. As with so many minor loss situations, it is not the viscous effects directly
1i.e., the wall shear stress2 that cause the loss. Rather, it is the dissipation of kinetic energy 1another
type of viscous effect2 as the fluid decelerates inefficiently.

The losses may be quite different if the contraction or expansion is gradual. Typical re-
sults for a conical diffuser with a given area ratio, are shown in Fig. 8.29. 1A diffuser 
is a device shaped to decelerate a fluid.2 Clearly the included angle of the diffuser, is a very
important parameter. For very small angles, the diffuser is excessively long and most of the head
loss is due to the wall shear stress as in fully developed flow. For moderate or large angles, the flow
separates from the walls and the losses are due mainly to a dissipation of the kinetic energy of the jet
leaving the smaller diameter pipe. In fact, for moderate or large values of 1i.e., for the caseu 7 35°u

u,
A2�A1,

A2 � A3.

KL � a1 �
A1

A2
b

2

KL � hL � 1V 2
1�2g2,

p1

g
�

V 2
1

2g
�

p3

g
�

V 2
3

2g
� hL

 p1A3 � p3A3 � rA3V31V3 � V12
 A1V1 � A3V3

1 pa � pb � pc � p12.
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Control volume

F I G U R E  8.28 Control volume used to calculate the loss coefficient
for a sudden expansion.

The loss coefficient
for a sudden expan-
sion can be theoret-
ically calculated.

F I G U R E  8.29 Loss coefficient for a typical conical diffuser (Ref. 5).
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V8.12 Car exhaust
system

F I G U R E  8.30 Character of the flow in a bend and the
associated loss coefficient (Ref. 5).
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shown in Fig. 8.292, the conical diffuser is, perhaps unexpectedly, less efficient than a sharp-edged ex-
pansion which has There is an optimum angle 1 for the case illustrated2 for
which the loss coefficient is a minimum. The relatively small value of for the minimum results
in a long diffuser and is an indication of the fact that it is difficult to efficiently decelerate a fluid.

It must be noted that the conditions indicated in Fig. 8.29 represent typical results only. Flow
through a diffuser is very complicated and may be strongly dependent on the area ratio spe-
cific details of the geometry, and the Reynolds number. The data are often presented in terms of a
pressure recovery coefficient, which is the ratio of the static pressure rise
across the diffuser to the inlet dynamic pressure. Considerable effort has gone into understanding
this important topic 1Refs. 11, 122.

Flow in a conical contraction 1a nozzle; reverse the flow direction shown in Fig. 8.292 is
less complex than that in a conical expansion. Typical loss coefficients based on the downstream
1high-speed2 velocity can be quite small, ranging from for to for

for example. It is relatively easy to accelerate a fluid efficiently.
Bends in pipes produce a greater head loss than if the pipe were straight. The losses are due

to the separated region of flow near the inside of the bend 1especially if the bend is sharp2 and the
swirling secondary flow that occurs because of the imbalance of centripetal forces as a result of
the curvature of the pipe centerline. These effects and the associated values of for large Reynolds
number flows through a bend are shown in Fig. 8.30. The friction loss due to the axial length
of the pipe bend must be calculated and added to that given by the loss coefficient of Fig. 8.30.

For situations in which space is limited, a flow direction change is often accomplished by
use of miter bends, as is shown in Fig. 8.31, rather than smooth bends. The considerable losses in
such bends can be reduced by the use of carefully designed guide vanes that help direct the flow
with less unwanted swirl and disturbances.

Another important category of pipe system components is that of commercially available
pipe fittings such as elbows, tees, reducers, valves, and filters. The values of for such compo-
nents depend strongly on the shape of the component and only very weakly on the Reynolds num-
ber for typical large Re flows. Thus, the loss coefficient for a elbow depends on whether the
pipe joints are threaded or flanged but is, within the accuracy of the data, fairly independent of the
pipe diameter, flow rate, or fluid properties 1the Reynolds number effect2. Typical values of for
such components are given in Table 8.2. These typical components are designed more for ease of
manufacturing and costs than for reduction of the head losses that they produce. The flowrate from
a faucet in a typical house is sufficient whether the value of for an elbow is the typical 
or it is reduced to by use of a more expensive long-radius, gradual bend 1Fig. 8.302.KL � 0.2

KL � 1.5,KL

KL

90°

KL

90°
KL

u � 60°,
KL � 0.07u � 30°,KL � 0.02

Cp � 1p2 � p12� 1rV 2
1�22,

A2�A1,

KLu

u � 8°KL � 11 � A1�A222.

Extensive tables are
available for loss
coefficients of stan-
dard pipe compo-
nents.
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KL ≈ 1.1

Q

Separated
flow

KL ≈ 0.2 

Guide vanes

Q

(a) (b)

F I G U R E  8.31 Character
of the flow in a mitered bend and the
associated loss coefficient: (a) without
guide vanes, (b) with guide vanes.

90�

TA BLE 8 . 2

Loss Coefficients for Pipe Components (Data from Refs. 5, 10, 27)

Component

a. Elbows
Regular flanged 0.3
Regular threaded 1.5
Long radius flanged 0.2
Long radius threaded 0.7
Long radius flanged 0.2
Regular threaded 0.4

b. return bends
return bend, flanged 0.2
return bend, threaded 1.5

c. Tees
Line flow, flanged 0.2
Line flow, threaded 0.9
Branch flow, flanged 1.0
Branch flow, threaded 2.0

d. Union, threaded 0.08

*e. Valves
Globe, fully open 10
Angle, fully open 2
Gate, fully open 0.15
Gate, closed 0.26
Gate, closed 2.1
Gate, closed 17
Swing check, forward flow 2
Swing check, backward flow A

Ball valve, fully open 0.05
Ball valve, closed 5.5
Ball valve, closed 210

*See Fig. 8.32 for typical valve geometry.

2
3

1
3

3
4

1
2

1
4

180°
180°
180�

45°,
45°,
90°,
90°,

90°,
90°,

KL

ahL � KL V
2

2g b

V

V

V

V

V

V



8.4 Dimensional Analysis of Pipe Flow 423

F I G U R E  8.32 Internal structure of various valves: (a) globe valve, (b) gate valve,
(c) swing check valve, (d ) stop check valve. (Courtesy of Crane Co., Valve Division.)

F I G U R E  8.33 Head loss in a valve
is due to dissipation of the kinetic energy of the
large-velocity fluid near the valve seat.

V3 >> V1
V1 V2 = V1

(1) (2)

Valves control the flowrate by providing a means to adjust the overall system loss coefficient
to the desired value. When the valve is closed, the value of is infinite and no fluid flows. Open-
ing of the valve reduces producing the desired flowrate. Typical cross sections of various types
of valves are shown in Fig. 8.32. Some valves 1such as the conventional globe valve2 are designed
for general use, providing convenient control between the extremes of fully closed and fully open.
Others 1such as a needle valve2 are designed to provide very fine control of the flowrate. The check
valve provides a diode type operation that allows fluid to flow in one direction only.

Loss coefficients for typical valves are given in Table 8.2. As with many system components,
the head loss in valves is mainly a result of the dissipation of kinetic energy of a high-speed por-
tion of the flow. This high speed, is illustrated in Fig. 8.33.V3,

KL,
KL
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GIVEN The closed-circuit wind tunnel shown in Fig. E8.6a is a
smaller version of that depicted in Fig. E8.6b in which air at stan-
dard conditions is to flow through the test section [between sections
(5) and (6)] with a velocity of 200 ft/s. The flow is driven by a fan
that essentially increases the static pressure by the amount p1 � p9

that is needed to overcome the head losses experienced by the fluid
as it flows around the circuit.

FIND Estimate the value of and the horsepower sup-
plied to the fluid by the fan.

p1 � p9

SOLUTION

Minor Losses

where is the actual head rise supplied by the pump 1fan2 to the
air. Again since and this, when combined with
Eq. 1, becomes

The actual power supplied to the air 1horsepower, 2 is obtained
from the fan head by

(2)

Thus, the power that the fan must supply to the air depends on
the head loss associated with the flow through the wind tunnel. To
obtain a reasonable, approximate answer we make the following
assumptions. We treat each of the four turning corners as a mitered
bend with guide vanes so that from Fig. 8.31 Thus,
for each corner

where, because the flow is assumed incompressible,
The values of A and the corresponding velocities throughout the
tunnel are given in Table E8.6.

We also treat the enlarging sections from the end of the test
section 162 to the beginning of the nozzle 142 as a conical diffuser
with a loss coefficient of This value is larger than that
of a well-designed diffuser 1see Fig. 8.29, for example2. Since the

KLdif � 0.6.

V � V5 A5�A.

hLcorner � KL 
V 2

2g
� 0.2 

V 2

2g

KLcorner
� 0.2.

pa � gQhp � gA5V5hp � gA5V5hL1�9

pa

hp �
1p1 � p92
g

� hL1�9

V9 � V1z9 � z1

hp

E XAMPLE 8.6

The maximum velocity within the wind tunnel occurs in the
test section 1smallest area; see Table E8.6 on the next page2.
Thus, the maximum Mach number of the flow is 
where and from Eq. 1.20 the speed of sound is

Thus, As was indicated in
Chapter 3 and discussed fully in Chapter 11, most flows can be con-
sidered as incompressible if the Mach number is less than about 0.3.
Hence, we can use the incompressible formulas for this problem.

The purpose of the fan in the wind tunnel is to provide the nec-
essary energy to overcome the net head loss experienced by the
air as it flows around the circuit. This can be found from the en-
ergy equation between points 112 and 192 as

where is the total head loss from 112 to 192. With and
this gives

(1)

Similarly, by writing the energy equation 1Eq. 5.842 across the fan,
from 192 to 112, we obtain
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Fan
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Flow-straightening
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F I G U R E  E8.6bF I G U R E  E8.6a
(Photograph courtesy of
DELTALAB.France.)



8.4.3 Noncircular Conduits

Many of the conduits that are used for conveying fluids are not circular in cross section. Although the
details of the flows in such conduits depend on the exact cross-sectional shape, many round pipe re-
sults can be carried over, with slight modification, to flow in conduits of other shapes.

Theoretical results can be obtained for fully developed laminar flow in noncircular 
ducts, although the detailed mathematics often becomes rather cumbersome. For an arbitrary
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wind tunnel diffuser is interrupted by the four turning corners and
the fan, it may not be possible to obtain a smaller value of for
this situation. Thus,

The loss coefficients for the conical nozzle between section 142
and 152 and the flow-straightening screens are assumed to be

and 1Ref. 132, respectively. We neglect the
head loss in the relatively short test section.

Thus, the total head loss is

or

or

Hence, from Eq. 1 we obtain the pressure rise across the fan as

(Ans)

From Eq. 2 we obtain the power added to the fluid as

or

(Ans)pa �
34,300 ft # lb�s

550 1ft # lb�s2�hp
� 62.3 hp

� 34,300 ft # lb�s
pa � 10.0765 lb�ft32 14.0 ft22 1200 ft�s2 1560 ft 2

 � 42.8 lb�ft2 � 0.298 psi

 p1 � p9 � ghL1�9 � 10.0765 lb�ft32 1560 ft 2

hL1�9
� 560 ft

 � 0.2120022 � 4.0122.922 4  ft2�s2� 32132.2 ft�s22 4
 � 30.2180.02 � 44.42 � 28.62 � 22.922 � 0.6120022

 � 0.6V 2
6 � 0.2V 2
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4 4 �2g
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COMMENTS By repeating the calculations with various test
section velocities, , the results shown in Fig. E8.6c are ob-
tained. Since the head loss varies as and the power varies as
head loss times , it follows that the power varies as the cube of
the velocity. Thus, doubling the wind tunnel speed requires an
eightfold increase in power.

With a closed-return wind tunnel of this type, all of the
power required to maintain the flow is dissipated through vis-
cous effects, with the energy remaining within the closed tun-
nel. If heat transfer across the tunnel walls is negligible, the air
temperature within the tunnel will increase in time. For steady-
state operations of such tunnels, it is often necessary to provide
some means of cooling to maintain the temperature at accept-
able levels.

It should be noted that the actual size of the motor that powers
the fan must be greater than the calculated 62.3 hp because the fan
is not 100% efficient. The power calculated above is that needed
by the fluid to overcome losses in the tunnel, excluding those in
the fan. If the fan were 60% efficient, it would require a shaft
power of to run the fan. Determi-
nation of fan 1or pump2 efficiencies can be a complex problem that
depends on the specific geometry of the fan. Introductory mater-
ial about fan performance is presented in Chapter 12; additional
material can be found in various references 1Refs. 14, 15, 16, for
example2.

It should also be noted that the above results are only
approximate. Clever, careful design of the various components
1corners, diffuser, etc.2 may lead to improved 1i.e., lower2
values of the various loss coefficients, and hence lower power re-
quirements. Since is proportional to the components with
the larger V tend to have the larger head loss. Thus, even though

for each of the four corners, the head loss for corner 172
is  times greater than it is for cor-
ner 132.
1V7�V322 � 180�22.922 � 12.2

KL � 0.2

V 2,hL

p � 62.3 hp� 10.602 � 104 hp

V5

V5
2

V5

TAB LE E 8 . 6

Location Area ( ) Velocity ( )

1 22.0 36.4
2 28.0 28.6
3 35.0 22.9
4 35.0 22.9
5 4.0 200.0
6 4.0 200.0
7 10.0 80.0
8 18.0 44.4
9 22.0 36.4

ft�sft2

(200 ft/s, 62.3 hp)
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F I G U R E  E8.6c



cross section, as is shown in Fig. 8.34, the velocity profile is a function of both y and z
This means that the governing equation from which the velocity profile is obtained

1either the Navier–Stokes equations of motion or a force balance equation similar to that used for
circular pipes, Eq. 8.62 is a partial differential equation rather than an ordinary differential equa-
tion. Although the equation is linear 1for fully developed flow the convective acceleration is zero2,
its solution is not as straightforward as for round pipes. Typically the velocity profile is given in
terms of an infinite series representation 1Ref. 172.

Practical, easy-to-use results can be obtained as follows. Regardless of the cross-sectional
shape, there are no inertia effects in fully developed laminar pipe flow. Thus, the friction fac-
tor can be written as where the constant C depends on the particular shape of the
duct, and is the Reynolds number, based on the hydraulic diameter. The
hydraulic diameter defined as is four times the ratio of the cross-sectional flow area
divided by the wetted perimeter, P, of the pipe as is illustrated in Fig. 8.34. It represents a char-
acteristic length that defines the size of a cross section of a specified shape. The factor of 4 is
included in the definition of so that for round pipes the diameter and hydraulic diameter are
equal The hydraulic diameter is also used in the definition
of the friction factor, and the relative roughness,

The values of for laminar flow have been obtained from theory and or experiment
for various shapes. Typical values are given in Table 8.3 along with the hydraulic diameter. Note

�C � f Reh

e�Dh.hL � f 1/�Dh2V 2�2g,
3Dh � 4A�P � 41pD2�42� 1pD2 � D 4 .

Dh

Dh � 4A�P
Reh � rVDh�m,Reh

f � C�Reh,

3V � u1y, z2 î 4 .
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A = cross-sectional
area

P = perimeter
of pipe

Dh = 4A/P = hydraulic
diameter

(a) (b)

y

z

x

z V = u(y,z)

F I G U R E  8.34 Noncircular duct.

The hydraulic di-
ameter is used for
noncircular duct
calculations.

■ TAB LE 8 . 3
Friction Factors for Laminar Flow in Noncircular Ducts (Data from Ref. 18)

Shape Parameter

0.0001 71.8
0.01 80.1
0.1 89.4
0.6 95.6
1.00 96.0

aZb
0 96.0
0.05 89.9
0.10 84.7
0.25 72.9
0.50 62.2
0.75 57.9
1.00 56.9

D1�D2

C � f Reh

D1

D2

Concentric AnnulusI.
Dh = D2 – D1

a

b

Dh =
2ab_____

a + b

RectangleII.



that the value of C is relatively insensitive to the shape of the conduit. Unless the cross section is
very “thin” in some sense, the value of C is not too different from its circular pipe value,
Once the friction factor is obtained, the calculations for noncircular conduits are identical to those
for round pipes.

Calculations for fully developed turbulent flow in ducts of noncircular cross section are usu-
ally carried out by using the Moody chart data for round pipes with the diameter replaced by the
hydraulic diameter and the Reynolds number based on the hydraulic diameter. Such calculations
are usually accurate to within about 15%. If greater accuracy is needed, a more detailed analysis
based on the specific geometry of interest is needed.

C � 64.

8.4 Dimensional Analysis of Pipe Flow 427

The Moody chart,
developed for round
pipes, can also be
used for noncircu-
lar ducts.

GIVEN Air at a temperature of 120 ºF and standard pressure
flows from a furnace through an 8-in.-diameter pipe with an av-
erage velocity of 10 ft/s. It then passes through a transition sec-
tion similar to the one shown in Fig. E8.7 and into a square duct
whose side is of length a. The pipe and duct surfaces are smooth

. The head loss per foot is to be the same for the pipe and
the duct.

FIND Determine the duct size, a.

1e � 02

Noncircular ConduitE XAMPLE 8.7

V

F I G U R E  E8.7

SOLUTION

where a is in feet. Similarly, the Reynolds number based on the
hydraulic diameter is

(4)

We have three unknowns 1a, f, and Reh2 and three equations—
Eqs. 3, 4, and either in graphical form the Moody chart 1Fig. 8.202
or the Colebrook equation (Eq. 8.35a). 

If we use the Moody chart, we can use a trial and error solution
as follows. As an initial attempt, assume the friction factor for the
duct is the same as for the pipe. That is, assume From
Eq. 3 we obtain while from Eq. 4 we have

From Fig. 8.20, with this Reynolds number
and the given smooth duct we obtain which does not
quite agree with the assumed value of f. Hence, we do not have the
solution. We try again, using the latest calculated value of

as our guess. The calculations are repeated until the
guessed value of f agrees with the value obtained from Fig. 8.20.
The final result 1after only two iterations2 is 

and

(Ans)

COMMENTS Alternatively, we can use the Colebrook equa-
tion (rather than the Moody chart) to obtain the solution as 

a � 0.611 ft � 7.34 in.

Reh � 3.03 � 104,
f � 0.023,

f � 0.023

f � 0.023,
Reh � 3.05 � 104.

a � 0.606 ft,
f � 0.022.

Reh �
VsDh

n
�
13.49�a 22a

1.89 � 10�4 �
1.85 � 104

a

We first determine the head loss per foot for the pipe,
and then size the square duct to give the

same value. For the given pressure and temperature we obtain
1from Table B.32 so that

With this Reynolds number and with we obtain the fric-
tion factor from Fig. 8.20 as so that

Thus, for the square duct we must have

(1)

where

(2)

is the velocity in the duct.
By combining Eqs. 1 and 2 we obtain

or

(3)a � 1.30 f 1�5

0.0512 �
f

a
 
13.49�a 222

2132.22

 Vs �
Q

A
�

p

4
 a 8

12
 ftb

2 

110 ft�s2
a 2 �

3.49

a 2

 Dh � 4A�P � 4a 2�4a � a and

hL

/
�

f

Dh
 
V 2

s

2g
� 0.0512

hL

/
�

0.022

1 8
12 ft 2  

110 ft�s22
2132.2 ft�s22 � 0.0512

f � 0.022
e�D � 0

Re �
VD
n
�
110 ft�s2 1 812 ft 2

1.89 � 10�4 ft2�s
� 35,300

n � 1.89 � 10�4 ft2�s

hL �/ � 1 f�D2 V 2�2g,
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follows. For a smooth pipe the Colebrook equation,
Eq. 8.35a, becomes

(5)

where from Eq. 3,

(6)

If we combine Eqs. 4, 5, and 6 and simplify, Eq. 7 is obtained for a.

(7)1.928 a�5�2 � �2 log12.62 � 10�4 a�3�22

f � 0.269 a5

 � �2.0 log a 2.51

Reh1f
b

1

1f
� �2.0 log ae�Dh

3.7
�

2.51

Reh1f
b

1e�Dh � 02 By using a root-finding technique on a computer or calculator, the
solution to Eq. 7 is determined to be , in agreement
(given the accuracy of reading the Moody chart) with that ob-
tained by the trial and error method given above.

Note that the length of the side of the equivalent square duct
is or approximately 92% of the diameter
of the equivalent duct. It can be shown that this value, 92%, is a
very good approximation for any pipe flow—laminar or turbu-
lent. The cross-sectional area of the duct is
greater than that of the round pipe Also,
it takes less material to form the round pipe 

than the square duct Cir-
cles are very efficient shapes.

1perimeter � 4a � 29.4 in.2.25.1 in.2
1perimeter� pD �

1A�pD2�4� 50.3 in.22.
1A � a 2 � 53.9 in.22

a�D � 7.34�8 � 0.918,

a � 0.614 ft

In the previous sections of this chapter, we discussed concepts concerning flow in pipes and ducts.
The purpose of this section is to apply these ideas to the solutions of various practical problems.
The application of the pertinent equations is straightforward, with rather simple calculations that
give answers to problems of engineering importance. The main idea involved is to apply the en-
ergy equation between appropriate locations within the flow system, with the head loss written in
terms of the friction factor and the minor loss coefficients. We will consider two classes of pipe
systems: those containing a single pipe 1whose length may be interrupted by various components2,
and those containing multiple pipes in parallel, series, or network configurations.

Pipe systems may
contain a single
pipe with compo-
nents or multiple
interconnected
pipes.

F l u i d s  i n  t h e  N e w s

New hi-tech fountains Ancient Egyptians used fountains in
their palaces for decorative and cooling purposes. Current use of
fountains continues, but with a hi-tech flair. Although the basic
fountain still consists of a typical pipe system (i.e., pump, pipe,
regulating valve, nozzle, filter, and basin), recent use of computer-
controlled devices has led to the design of innovative fountains
with special effects. For example, by using several rows of multi-
ple nozzles, it is possible to program and activate control valves to
produce water jets that resemble symbols, letters, or the time of
day. Other fountains use specially designed nozzles to produce

coherent, laminar streams of water that look like glass rods flying
through the air. By using fast-acting control valves in a synchronized
manner it is possible to produce mesmerizing three-dimensional
patterns of water droplets. The possibilities are nearly limitless.
With the initial artistic design of the fountain established, the ini-
tial engineering design (i.e., the capacity and pressure require-
ments of the nozzles and the size of the pipes and pumps) can be
carried out. It is often necessary to modify the artistic and/or en-
gineering aspects of the design in order to obtain a functional,
pleasing fountain. (See Problem 8.64.)

8.5.1 Single Pipes

The nature of the solution process for pipe flow problems can depend strongly on which of the var-
ious parameters are independent parameters 1the “given”2 and which is the dependent parameter 1the
“determine”2. The three most common types of problems are shown in Table 8.4 in terms of the pa-
rameters involved. We assume the pipe system is defined in terms of the length of pipe sections used
and the number of elbows, bends, and valves needed to convey the fluid between the desired loca-
tions. In all instances we assume the fluid properties are given.

In a Type I problem we specify the desired flowrate or average velocity and determine the
necessary pressure difference or head loss. For example, if a flowrate of 2.0 galZmin is required
for a dishwasher that is connected to the water heater by a given pipe system as shown by the fig-
ure in the margin, what pressure is needed in the water heater?

In a Type II problem we specify the applied driving pressure 1or, alternatively, the head loss2
and determine the flowrate. For example, how many galZmin of hot water are supplied to the dish-
washer if the pressure within the water heater is 60 psi and the pipe system details 1length, diam-
eter, roughness of the pipe; number of elbows; etc.2 are specified?

I: ∆p = ?III: D = ?

II: Q = ?



In a Type III problem we specify the pressure drop and the flowrate and determine the diame-
ter of the pipe needed. For example, what diameter of pipe is needed between the water heater and
dishwasher if the pressure in the water heater is 60 psi 1determined by the city water system2 and the
flowrate is to be not less than 2.0 galZmin 1determined by the manufacturer2?

Several examples of these types of problems follow.
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■ TAB L E 8 . 4
Pipe Flow Types

Variable Type I Type II Type III

a. Fluid
Density Given Given Given
Viscosity Given Given Given

b. Pipe
Diameter Given Given Determine
Length Given Given Given
Roughness Given Given Given

c. Flow
Flowrate or Given Determine Given
Average Velocity

d. Pressure
Pressure Drop or Determine Given Given
Head Loss

Pipe flow problems
can be categorized
by what parameters
are given and what
is to be calculated.

GIVEN Water at 60 ºF flows from the basement to the second
floor through the 0.75-in. (0.0625-ft)-diameter copper pipe 
(a drawn tubing) at a rate of 
and exits through a faucet of diameter 0.50 in. as shown in Fig.
E8.8a.

FIND Determine the pressure at point (1) if

(a) all losses are neglected,

(b) the only losses included are major losses, or

(c) all losses are included.

Q � 12.0 gal�min � 0.0267 ft3�s

Type I, Determine Pressure DropE XAMPLE 8.8

SOLUTION

(1)

where the head loss is different for each of the three cases.

(a) If all losses are neglected Eq. 1 gives

or

(Ans)p1 � 10.7 psi

 � 11248 � 2992 lb�ft2 � 1547 lb�ft2

 �
1.94 slugs�ft3

2
 c a19.6 

ft

s
b

2

� a8.70 
ft

s
b

2

d
p1 � 162.4 lb�ft32 120 ft 2

1hL � 02,

p1 � gz2 �
1
2r1V 2

2 � V 2
12 � ghL

Since the fluid velocity in the pipe is given by 
and the

fluid properties are and 
1see Table B.12, it follows that 

Thus, the flow is turbulent. The governing equation for either case
1a2, 1b2, or 1c2 is the energy equation given by Eq. 8.21,

where lb�ft3,
and the outlet velocity is 

We assume that the kinetic energy coeffi-
cients and are unity. This is reasonable because turbulent ve-
locity profiles are nearly uniform across the pipe. Thus,

a2a1

� 19.6 ft�s.1222ft2�4 4
3p10.50�V2 � Q�A2 � 10.0267 ft3�s2�

z1� 0, z2� 20 ft, p2� 0 1free jet2, g� rg� 62.4

p1

g
� a1 

V 2
1

2g
� z1 �

p2

g
� a2 

V 2
2

2g
� z2 � hL

lb # s�ft22 � 45,000.slugs�ft32 18.70 ft�s2 10.0625 ft2� 12.34 � 10�5
rVD�m � 11.94Re �10�5 lb # s�ft2
m � 2.34 �r � 1.94 slugs�ft3

ft3�s2� 3p 10.0625 ft22�4 4� 8.70 ft �s,Q� 1pD2�42� 10.0267
V1 � Q�A1 �

Q =
12.0

gal/min

(1)

(2)

(3)

15 ft

10 ft

5 ft 10 ft

10 ft 10 ft
(8)(7)

(6)

(4)

(5)

g

Threaded
90° elbows

0.75-in.-diameter
copper pipe

Wide open
globe valve

0.50-in.
diameter

KL = 2 based on
pipe

velocity

F I G U R E  E8.8a
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COMMENT Note that for this pressure drop, the amount due
to elevation change 1the hydrostatic effect2 is 
and the amount due to the increase in kinetic energy is

(b) If the only losses included are the major losses, the head
loss is

From Table 8.1 the roughness for a 0.75-in.-diameter copper
pipe 1drawn tubing2 is so that 
With this and the calculated Reynolds number 

the value of f is obtained from the Moody chart as
Note that the Colebrook equation 1Eq. 8.352 would

give the same value of f. Hence, with the total length of the pipe
as and the elevation
and kinetic energy portions the same as for part 1a2, Eq. 1 gives

or

(Ans)

COMMENT Of this pressure drop, the amount due to pipe
friction is approximately 

(c) If major and minor losses are included, Eq. 1 becomes

or

(2)

where the 21.3 psi contribution is due to elevation change, kinetic
energy change, and major losses [part 1b2], and the last term rep-
resents the sum of all of the minor losses. The loss coefficients of
the components 1 for each elbow and for the
wide-open globe valve2 are given in Table 8.2 1except for the loss
coefficient of the faucet, which is given in Fig. E8.8a as 2.
Thus,

or

(3)

Note that we did not include an entrance or exit loss because points
112 and 122 are located within the fluid streams, not within an at-

a rKL 
V 2

2
� 9.17 psi 

 � 1321 lb�ft2

 a rKL 
V 2

2
� 11.94 slugs�ft32 18.70 ft 22

2
 310 � 411.52 � 2 4

KL � 2

KL � 10KL � 1.5

p1 � 21.3 psi � a rKL 
V 2

2

p1 � gz2 �
1
2

 r1V 2
2 � V 2

12 � fg 
/

D
 
V 2

1

2g
� a rKL 

V 2

2

psi � 10.6 psi.121.3 � 10.72

p1 � 21.3 psi

 � 11248 � 299 � 15152 lb�ft2 � 3062 lb�ft2

 � 11.94 slugs�ft32 10.02152 a 60 ft

0.0625 ft
b 18.70 ft�s22

2

 � 11248 � 2992 lb�ft2

 p1 � gz2 �
1
2

 r1V 2
2 � V 2

12 � rf /D 
V 2

1

2

� 60 ft/ � 115 � 5 � 10 � 10 � 202 ft

f � 0.0215.
45,0002,

1Re �e�D
e�D � 8 � 10�5.e � 0.000005 ft

hL � f 
/

D
 
V 1

2

2g

2.07 psi.r1V 2
2 � V 2

12�2 �

g1z2 � z12 � 8.67 psi

taching reservoir where the kinetic energy is zero. Thus, by com-
bining Eqs. 2 and 3 we obtain the entire pressure drop as

(Ans)

This pressure drop calculated by including all losses should be the
most realistic answer of the three cases considered.

COMMENTS More detailed calculations will show that the
pressure distribution along the pipe is as illustrated in Fig. E8.8b
for cases 1a2 and 1c2—neglecting all losses or including all losses.
Note that not all of the pressure drop, is a “pressure
loss.” The pressure change due to the elevation and velocity
changes is completely reversible. The portion due to the major
and minor losses is irreversible.

This flow can be illustrated in terms of the energy line and hy-
draulic grade line concepts introduced in Section 3.7. As is shown
in Fig. E8.8c, for case 1a2 there are no losses and the energy line
1EL2 is horizontal, one velocity head above the hydraulic
grade line 1HGL2, which is one pressure head above the pipe
itself. For cases 1b2 or 1c2 the energy line is not horizontal. Each bit
of friction in the pipe or loss in a component reduces the available

1gz2
1V 2�2g2

p1 � p2,

p1 � 121.3 � 9.172 psi � 30.5 psi

80

60

40

20

0
0 10 20 30 40 50 60

Distance along pipe from point (1), ft

H
, 
el

ev
at

io
n 

to
 e

ne
rg

y 
lin

e,
 f

t

Energy line with no losses, case (a)

Energy line including all
losses, case (c)

Sharp drop due to component loss
Slope due to pipe friction

F I G U R E  E8.8c

F I G U R E  E8.8b

30

20

10

0
0 10 20 30 40 50 60

10.7 10.7

6.37

2.07
2.07

4.84
3.09

9.93

12.411.7

30.5 psi

27.1
27.8

20.2
21.0

18.5
19.3

(a) No losses
(c) Including all

losses    

Pressure
loss

Elevation
and

kinetic
energy

p2 = 0

Distance along pipe from point (1), ft

p,
 p

si

Location:  (1) (3) (4) (5) (6) (7)(8) (2)

6.37



Although the governing pipe flow equations are quite simple, they can provide very reason-
able results for a variety of applications, as is shown in the next example.

8.5 Pipe Flow Examples 431

energy, thereby lowering the energy line. Thus, for case 1a2 the to-
tal head remains constant throughout the flow with a value of

For case 1c2 the energy line starts at

and falls to a final value of

� 26.0 ft

H2 �
p2

g
�

V 2
2

2g
� z2 � 0 �

119.6 ft�s22
2132.2 ft�s22 � 20 ft

�
130.5 � 1442lb�ft2

162.4 lb�ft32 �
18.70 ft�s22

2132.2 ft�s22 � 0 � 71.6 ft

H1 �
p1

g
�

V 2
1

2g
� z1

 �
p2

g
�

V 2
2

2g
� z2 �

p3

g
�

V 3
3

2g
� z3 � p

 � 26.0 ft.

 H �  
p1

g
�

V 2
1

2g
� z1 �

11547 lb�ft22
162.4 lb�ft32 �

18.70 ft�s22
2132.2 ft�s22 � 0

The elevation of the energy line can be calculated at any point
along the pipe. For example, at point 172, 50 ft from point 112,

The head loss per foot of pipe is the same all along the pipe.
That is,

Thus, the energy line is a set of straight line segments of the same
slope separated by steps whose height equals the head loss of the
minor component at that location. As is seen from Fig. E8.8c, the
globe valve produces the largest of all the minor losses.

hL

/
� f 

V 2

2gD
�

0.021518.70 ft�s22
2132.2 ft�s22 10.0625 ft 2 � 0.404 ft�ft

 � 44.1 ft

 �
19.93 � 1442 lb�ft2

162.4 lb�ft32 �
18.70 ft�s22

2132.2 ft�s22 � 20 ft

 H7 �
p7

g
�

V 2
7

2g
� z7

GIVEN As shown in Fig. E8.9a, crude oil at 140 °F with H �
53.7 lb ft3 and N � 8 � 10�5 lb  s ft2 (about four times the vis-
cosity of water) is pumped across Alaska through the Alaskan
pipeline, a 799-mile-long, 4-ft-diameter steel pipe, at a maxi-
mum rate of Q � 2.4 million barrels day � 117 ft3 s. 

FIND Determine the horsepower needed for the pumps that
drive this large system.

��

��

Type I, Determine Head LossE XAMPLE 8.9

SOLUTION

1see Table 8.12 and 

Thus,

and the actual power supplied to the fluid, is

(Ans)

COMMENTS There are many reasons why it is not practical
to drive this flow with a single pump of this size. First, there are no
pumps this large! Second, the pressure at the pump outlet would

 � 202,000 hp

 � 1.11 � 108 ft # lb�s a 1 hp

550 ft # lb�s
b

 pa � gQhp � 153.7 lb�ft32 1117 ft3�s2 117,700 ft 2
pa,

hp � 0.012511.05 � 1062 19.31 ft�s22
2132.2 ft�s22 � 17,700 ft

7.76 � 105.s�ft22  �19.31 ft �s2 14.0 ft 2 � 18 � 10�5 lb #slugs�ft3 4
m � 3 153.7�32.22Re � rVD�� 0.0000375From the energy equation 1Eq. 8.212 we obtain

where points 112 and 122 represent locations within the large hold-
ing tanks at either end of the line and is the head provided to the
oil by the pumps. We assume that 1pumped from sea level
to sea level2, 1large, open tanks2 and

Minor losses are negligible because of the
large length-to-diameter ratio of the relatively straight, uninterrupted
pipe; � Thus,

where V � Q A � (117 ft3 s) From Fig.
8.20 or Eq. 8.35, since 10.00015 ft 2� 14 ft2e�D �f � 0.0125

3p14 ft 22�4 4 � 9.31 ft�s.���

hp � hL � f 
/

D
 
V 2

2g

1.05 � 106.mi2� 14 ft 2 �15280 ft�/�D � 1799 mi2

1  f/�D2V 2�2g.hL �
V1 � V2 � 0p1 � p2 �

z1 � z2

hp

p1

g
�

V 2
1

2g
� z1 � hp �

p2

g
�

V 2
2

2g
� z2 � hL

Pump

Oil: �  = 53.7 lb/ft3 

         � = 8 � 10�5 lbf . s/ft2
4-ft-diameter, 
799-mile-long 

steel pipe

Prudhoe Bay, Alaska

(1) (2)

Valdez, Alaska

F I G U R E  E8.9a



Pipe flow problems in which it is desired to determine the flowrate for a given set of condi-
tions 1Type II problems2 often require trial-and-error or numerical root-finding techniques. This is
because it is necessary to know the value of the friction factor to carry out the calculations, but
the friction factor is a function of the unknown velocity 1flowrate2 in terms of the Reynolds num-
ber. The solution procedure is indicated in Example 8.10.
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need to be
No practical 4-ft-diameter pipe would withstand this

pressure. An equally unfeasible alternative would be to place the
holding tank at the beginning of the pipe on top of a hill of height

and let gravity force the oil through the 799-mi
pipe! How much power would it take to lift the oil to the top of the
hill?

To produce the desired flow, the actual system contains 12
pumping stations positioned at strategic locations along the
pipeline. Each station contains four pumps, three of which oper-
ate at any one time 1the fourth is in reserve in case of emergency2.
Each pump is driven by a 13,500-hp motor, thereby producing a
total horsepower of stations 2

If we assume that the combi-
nation is approximately 60% efficient, there is a total of

available to drive the fluid. This
number compares favorably with the 202,000-hp answer calcu-
lated above.

The assumption of a oil temperature may not seem reason-
able for flow across Alaska. Note, however, that the oil is warm when
it is pumped from the ground and that the 202,000 hp needed to pump
the oil is dissipated as a head loss 1and therefore a temperature rise2
along the pipe. However, if the oil temperature were rather than

, the viscosity would be approximately 
1twice as large2, but the friction factor would only increase from

at to at
This doubling of viscosity would result in70 °F 1Re � 3.88 � 1052.

f � 0.0140140 °F 1Re � 7.76 � 1052f � 0.0125

16 � 10�5 lb # s�ft2140 °F
70 °F

140 °F

0.60 1486,0002 hp � 292,000 hp

motorpump�pump2 � 486,000 hp.
113,500 hp�station13 pump�p � 12

hL � 17,700 ft

6600 psi.
11 ft2�144 in.22 �p� ghL� 153.7 lb�ft32 117,700 ft 2 only an 11% increase in power 1from 202,000 to 226,000 hp2. Because

of the large Reynolds numbers involved, the shear stress is due mostly
to the turbulent nature of the flow. That is, the value of Re for this flow
is large enough 1on the relatively flat part of the Moody chart2 so that f
is nearly independent of Re 1or viscosity2.

By repeating the calculations for various values of the pipe di-
ameter, D, the results shown in Fig. E8.9b are obtained. Clearly the
required pump power, is a strong function of the pipe diameter,
with if the friction factor is constant. The actual 4-ft-
diameter pipe used represents a compromise between using smaller
diameter pipes which are less expensive to make but require consid-
erably more pump power, and larger diameter pipes which require
less pump power but are very expensive to make and maintain.

pa ~ D�4
pa,

4 × 106

3 × 106

2 × 106

1 × 106

0
0 1 2 3 4 5 6

(4 ft, 2.02 × 105 hp)

D, ft

�
a,

 h
p

F I G U R E  E8.9b

GIVEN Air at a temperature of 100 °F and standard pressure
flows from a clothes dryer. According to the appliance manufac-
turer, the 4-in.-diameter galvanized iron vent on the clothes dryer is
not to contain more than 20 ft of pipe and four 90� elbows.

FIND Under these conditions determine the air flowrate if the
pressure at the start of the vent pipe, directly downstream of the
dryer fan, is 0.20 in. of water.

Type II, Determine FlowrateE XAMPLE 8.10

SOLUTION

Thus, with 1see Table B.32 and 1the air
velocity in the pipe2, Eq. 1 becomes

or

(2)

where V is in ft�s.

945 � 16.0 � 60 f 2V 2

� 411.52 d  V 2

2132.2 ft�s22
11.04 lb�ft22
10.0709 lb�ft32 � c f 

120 ft 2
1 4
12 ft 2

V2 � Vg � 0.0709 lb�ft3Application of the energy equation 1Eq. 8.212 between the beginning
of the vent pipe, point 112, and the exit of the pipe, point 122, gives

(1)

where for each elbow is assumed to be 1.5. In addition,
and 1The change in elevation is often negligible

for gas flows.2Also, and or

p1 � 10.2 in.2 a 1 ft
12 in.

b 162.4 lb�ft32 � 1.04 lb�ft2

p1�gH2O � 0.2 in.,p2 � 0,
z1 � z2.V1 � V2

KL

p1

g
�

V 2
1

2g
� z1 �

p2

g
�

V 2
2

2g
� z2 � f 

/

D
 
V 2

2g
�a KL 

V 2

2g

Some pipe flow
problems require a
trial-and-error solu-
tion technique.
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The value of f is dependent on Re, which is dependent on V,
an unknown. However, from Table B.3, and
we obtain

or

(3)

where again V is in 
Also, since 1see Table

8.1 for the value of 2, we know which particular curve of the
Moody chart is pertinent to this flow. Thus, we have three rela-
tionships 1Eqs. 2, 3, and the curve of Fig. 8.202
from which we can solve for the three unknowns f, Re, and V.
This is done easily by an iterative scheme as follows.

It is usually simplest to assume a value of f, calculate V from Eq.
2, calculate Re from Eq. 3, and look up the appropriate value of f in
the Moody chart for this value of Re. If the assumed f and the new f
do not agree, the assumed answer is not correct—we do not have the
solution to the three equations. Although values of either f, V, or Re
could be assumed as starting values, it is usually simplest to assume
a value of f because the correct value often lies on the relatively flat
portion of the Moody chart for which f is quite insensitive to Re.

Thus, we assume approximately the large Re limit
for the given relative roughness. From Eq. 2 we obtain

and from Eq. 3

With this Re and Fig. 8.20 gives which is not
equal to the assumed solution 1although it is close!2.
We try again, this time with the newly obtained value of

which gives and With
these values, Fig. 8.20 gives  which agrees with the as-
sumed value. Thus, the solution is or

(Ans)Q � AV �
p

4
 1 4

12 ft 22111.0 ft�s2 � 0.960 ft3�s

V � 11.0 ft�s,
f � 0.029,

Re � 20,500.V � 11.0 ft�sf � 0.029,

f � 0.022
f � 0.029,e�D,

Re � 1860111.42 � 21,200

V � c 945

6.0 � 6010.0222 d
1�2

� 11.4 ft�s

f � 0.022,

e�D � 0.0015

e

e�D � 10.0005 ft2� 14�12 ft 2 � 0.0015
ft�s.

 Re � 1860 V

 Re �
VD
n

�
1 4
12 ft 2 V

 1.79 � 10�4 ft2�s

n � 1.79 � 10�4 ft2�s
COMMENTS Note that the need for the iteration scheme is
because one of the equations, is in graphical
form 1the Moody chart2. If the dependence of f on Re and is
known in equation form, this graphical dependency is elimi-
nated, and the solution technique may be easier. Such is the case
if the flow is laminar so that the friction factor is simply

For turbulent flow, we can use the Colebrook equa-
tion rather than the Moody chart. Thus, we keep Eqs. 2 and 3
and use the Colebrook equation 1Eq. 8.35a) with 
to give

(4)

From Eq. 2 we have which can be
combined with Eq. 3 to give

(5)

The combination of Eqs. 4 and 5 provides a single equation for
the determination of f

(6)

By using a root-finding technique on a computer or calculator,
the solution to this equation is determined to be in
agreement with the above solution which used the Moody
chart. 

Note that unlike the Alaskan pipeline example 1Example
8.92 in which we assumed minor losses are negligible, minor
losses are of importance in this example because of the rela-
tively small length-to-diameter ratio:
The ratio of minor to major losses in this case is 

The elbows and entrance produce
considerably more loss than the pipe itself.
6.0� 30.029 1602 4 � 3.45.

KL �1 f/�D2 �
/�D � 20� 14�122 � 60.

f � 0.029,

� 4.39 � 10�5 
B

60 �
6.0

f
b

1

1f
� �2.0 log a4.05 � 10�4

Re �
57,200

16.0 � 60 f

V � 3945� 16.0 � 60 f 2 41�2,

 � �2.0 log a4.05 � 10�4 �
2.51

Re1f
b

1

1f
� �2.0 log ae�D

3.7
�

2.51

Re1f
b

e�D � 0.0015

f � 64�Re.

e�D
f � f1Re, e�D2,

GIVEN The turbine shown in Fig. E8.11 extracts 50 hp from
the water flowing through it. The 1-ft-diameter, 300-ft-long
pipe is assumed to have a friction factor of 0.02. Minor losses
are negligible.

FIND Determine the flowrate through the pipe and turbine.

Type II, Determine FlowrateE XAMPLE 8.11

(2)

Free jet
Turbine

300-ft-long,
1-ft-diameter pipe

(1)

f = 0.02 z2 = 0

z1 = 90 ft

F I G U R E  E8.11



In pipe flow problems for which the diameter is the unknown 1Type III2, an iterative or numer-
ical root-finding technique is required. This is, again, because the friction factor is a function of the
diameter—through both the Reynolds number and the relative roughness. Thus, neither 

are known unless D is known. Examples 8.12 and 8.13 illustrate this.4rQ�pmD nor e�D
Re� rVD�m�
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SOLUTION

and has no physical meaning for this flow.
Thus, the two acceptable flowrates are

(Ans)

or

(Ans)

COMMENTS Either of these two flowrates gives the same
power, The reason for two possible solutions can be
seen from the following. With the low flowrate we
obtain the head loss and turbine head as and

Because of the relatively low velocity there is a rela-
tively small head loss and, therefore, a large head available for the
turbine. With the large flowrate we find

and The high-speed flow in the pipe pro-
duces a relatively large loss due to friction, leaving a relatively small
head for the turbine. However, in either case the product of the tur-
bine head times the flowrate is the same. That is, the power extracted

is identical for each case. Although either flowrate
will allow the extraction of 50 hp from the water, the details of the
design of the turbine itself will depend strongly on which flowrate is
to be used. Such information can be found in Chapter 12 and various
references about turbomachines 1Refs. 14, 19, 202.

If the friction factor were not given, the solution to the prob-
lem would be much more lengthy. A trial-and-error solution sim-
ilar to that in Example 8.10 would be required along with the so-
lution of a cubic equation.

1pa � gQhT2

hT � 22.5 ft.hL � 57.8 ft
1Q � 19.6 ft3�s2,

hT � 85.3 ft.
hL � 4.04 ft
1Q � 5.17 ft3�s2,

pa � gQhT.

Q �
p

4
 11 ft 22124.9 ft�s2 � 19.6 ft3�s

Q �
p

4
 D2V �

p

4
 11 ft 2216.58 ft�s2 � 5.17 ft3�s

1V � �31.4 ft�s2The energy equation 1Eq. 8.212 can be applied between the surface
of the lake [point 112] and the outlet of the pipe as

(1)

where hT is the turbine head,
and the fluid velocity in the pipe. The head loss is given by

where V is in ftZs. Also, the turbine head is

Thus, Eq. 1 can be written as

or

(2)

where V is in ftZs. The velocity of the water in the pipe is found as
the solution of Eq. 2. Surprisingly, there are two real, positive
roots: The third root is negativeV � 6.58 ft�s or V � 24.9 ft�s.

0.109V 3 � 90V � 561 � 0

90 �
V 2

2132.22 � 0.0932V 2 �
561
V

 �
150 hp2 3 1550 ft # lb�s2�hp 4
162.4 lb�ft32 3 1p�42 11 ft22V 4 �

561
V

 ft

hT �
pa

gQ
�

pa

g1p�42D2V

hL � f 
/

D
 
V 2

2g
� 0.02 

1300 ft 2
11 ft 2  

V 2

2132.2 ft�s22 � 0.0932V 2 ft

V2 � V,
p1 � V1 � p2 � z2 � 0, z1 � 90 ft,

p1

g
�

V 1
2

2g
� z1 �

p2

g
�

V 2
2

2g
� z2 � hL � hT

GIVEN Air at standard temperature and pressure flows
through a horizontal, galvanized iron pipe at a
rate of The pressure drop is to be no more than 0.50 psi
per 100 ft of pipe.

2.0 ft3�s.
1e � 0.0005 ft2

FIND Determine the minimum pipe diameter.

Type III without Minor Losses, Determine DiameterE XAMPLE 8.12

SOLUTION

With and the energy equation 1Eq. 8.212
becomes

(1)

where or

V �
2.55

D2

V � Q�A � 4Q� 1pD22 � 412.0 ft3�s2�pD2,

p1 � p2 � f 
/

D
 
rV 2

2

V1 � V2z1 � z2We assume the flow to be incompressible with 
and Note that if the

pipe were too long, the pressure drop from one end to the other,
would not be small relative to the pressure at the begin-

ning, and compressible flow considerations would be required.
For example, a pipe length of 200 ft gives 

which is
probably small enough to justify the incompressible as-
sumption.

3 10.50 psi2� 1100 ft 2 4 1200 ft 2�14.7 psia � 0.068� 6.8%,
1p1 � p22�p1 �

p1 � p2,

10�7 lb # s�ft2.m � 3.74 �0.00238 slugs�ft3
r �



In the previous example we only had to consider major losses. In some instances the inclu-
sion of major and minor losses can cause a slightly more lengthy solution procedure, even though
the governing equations are essentially the same. This is illustrated in Example 8.13.
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where D is in feet. Thus, with 
and Eq. 1 becomes

or

(2)

where D is in feet. Also 
or

(3)

and

(4)

Thus, we have four equations 1Eqs. 2, 3, 4, and either the
Moody chart or the Colebrook equation2 and four unknowns 1 f, D,

and Re2 from which the solution can be obtained by trial-
and-error methods.

If we use the Moody chart, it is probably easiest to assume a
value of f, use Eqs. 2, 3, and 4 to calculate D, Re, and and
then compare the assumed f with that from the Moody chart. If
they do not agree, try again. Thus, we assume a typi-
cal value, and obtain which gives

and 
From the Moody chart we obtain for these

values of and Re. Since this is not the same as our assumed
value of f, we try again. With we obtain 

and which in turn give
in agreement with the assumed value. Thus, the diam-

eter of the pipe should be

(Ans)D � 0.196 ft

f � 0.027,
Re � 8.27 � 104,e�D � 0.0026,

D � 0.196 ft,f � 0.027,
e�D

f � 0.0278.76 � 104.
Re � 1.62 � 104�0.185 �e�D � 0.0005�0.185 � 0.0027

0.185 ft,D � 0.40410.0221�5 �
f � 0.02,

e�D,

e�D,

e

D
�

0.0005

D

Re �
1.62 � 104

D

10�7 lb # s�ft22,3 12.55�D22 ft�s 4D� 13.74 �
Re � rVD�m � 10.00238 slugs�ft32

D � 0.404 f 1�5

 � f 
1100 ft 2

D
 10.00238 slugs�ft32 1

2
 a2.55

D2  
ft
s
b

2

 p1 � p2 � 10.52 11442 lb�ft2

/ � 100 ft,
1144 in.2�ft22p1 � p2 � 10.5 lb�in.22 COMMENT If we use the Colebrook equation 1Eq. 8.35a2

with and 
we obtain

or

By using a root-finding technique on a computer or calculator,
the solution to this equation is determined to be and
hence in agreement with the Moody chart
method.

By repeating the calculations for various values of the
flowrate, Q, the results shown in Fig. E8.12 are obtained. Al-
though an increase in flowrate requires a larger diameter pipe (for
the given pressure drop), the increase in diameter is minimal. For
example, if the flowrate is doubled from to , the di-
ameter increases from 0.151 ft to 0.196 ft.

2 ft3�s1 ft3�s

D � 0.196 ft,
f � 0.027,

1

1f
� �2.0 log a3.35 � 10�4

f 1�5
�

6.26 � 10�5

f 3�10 b

1

1f
� �2.0 log ae�D

3.7
�

2.51

Re1f
b

104�0.404 f 1�5 � 4.01 � 104�f 1�5,
Re � 1.62 �e�D� 0.0005�0.404 f 1�5 � 0.00124�f 1�5

(2 ft3/s, 0.196 ft)

0.25

0.20

0.15

0.10

0.05

0
0 0.5 1 1.5

Q, ft3/s

D
, 

ft

2 2.5 3

F I G U R E  E8.12

GIVEN Water at 1 see Table 1.52
is to flow from reservoir A to reservoir B through a pipe of
length 1700 ft and roughness 0.0005 ft at a rate of 
as shown in Fig. E8.13a. The system contains a sharp-edged
entrance and four flanged elbows.

FIND Determine the pipe diameter needed.

45°

Q � 26 ft3�s

n � 1.21 � 10�5 ft2�s,60 °F

Type III with Minor Losses, Determine DiameterE XAMPLE 8.13

(2)

(1)

Elevation z2 = 0

Elevation z1 = 44 ft

Total length = 1700 ft

D

B

A

F I G U R E  E8.13a
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SOLUTION
ment. A few rounds of calculation will reveal that the solution is
given by

(Ans)

COMMENTS Alternatively, we can use the Colebrook equa-
tion rather than the Moody chart to solve for D. This is easily
done by using the Colebrook equation (Eq. 8.35a) with f as a
function of D obtained from Eq. 3 and Re and as functions of
D from Eqs. 4 and 5. The resulting single equation for D can be
solved by using a root-finding technique on a computer or calcu-
lator to obtain . This agrees with the solution ob-
tained using the Moody chart.

By repeating the calculations for various pipe lengths, ,
the results shown in Fig. E8.13b are obtained. As the pipe
length increases it is necessary, because of the increased fric-
tion, to increase the pipe diameter to maintain the same
flowrate.

It is interesting to attempt to solve this example if all losses are
neglected so that Eq. 1 becomes Clearly from Fig. E8.13a,

Obviously something is wrong. A fluid cannot flow
from one elevation, beginning with zero pressure and velocity,
and end up at a lower elevation with zero pressure and velocity
unless energy is removed 1i.e., a head loss or a turbine2 some-
where between the two locations. If the pipe is short 1negligible
friction2 and the minor losses are negligible, there is still the ki-
netic energy of the fluid as it leaves the pipe and enters the reser-
voir. After the fluid meanders around in the reservoir for some
time, this kinetic energy is lost and the fluid is stationary. No mat-
ter how small the viscosity is, the exit loss cannot be neglected.
The same result can be seen if the energy equation is written from
the free surface of the upstream tank to the exit plane of the pipe,
at which point the kinetic energy is still available to the fluid. In
either case the energy equation becomes in agree-
ment with the inviscid results of Chapter 3 1the Bernoulli
equation2.

z1 � V 2�2g

z1 � 44 ft.
z1 � 0.

/

D � 1 .63 ft

e�D

D � 1.63 ft

The energy equation 1Eq. 8.212 can be applied between two points
on the surfaces of the reservoirs 
as follows:

or

(1)

where or

(2)

is the velocity within the pipe. 1Note that the units on V and D are
and ft, respectively.2 The loss coefficients are obtained from

Table 8.2 and Figs. 8.22 and 8.25 as 
and Thus, Eq. 1 can be written as

or, when combined with Eq. 2 to eliminate V,

(3)

To determine D we must know f, which is a function of Re and
where

(4)

and

(5)

where D is in feet. Again, we have four equations 1Eqs. 3, 4, 5, and
the Moody chart or the Colebrook equation2 for the four un-
knowns D, f, Re, and 

Consider the solution by using the Moody chart. Although
it is often easiest to assume a value of f and make calculations
to determine if the assumed value is the correct one, with the
inclusion of minor losses this may not be the simplest method.
For example, if we assume and calculate D from
Eq. 3, we would have to solve a fifth-order equation. With
only major losses 1see Example 8.122, the term proportional to
D in Eq. 3 is absent, and it is easy to solve for D if f is given.
With both major and minor losses included, this solution
for D 1given f 2 would require a trial-and-error or iterative
technique.

Thus, for this type of problem it is perhaps easier to assume
a value of D, calculate the corresponding f from Eq. 3, and with
the values of Re and determined from Eqs. 4 and 5, look up
the value of f in the Moody chart 1or the Colebrook equation2.
The solution is obtained when the two values of f are in agree-

e�D

f � 0.02

e�D.

e

D
�

0.0005
D

Re �
VD
n
�
3 133.12�D2 4D
1.21 � 10�5 �

2.74 � 106

D

e�D,

f � 0.00152 D5 � 0.00135 D

44 ft �
V 2

2132.2 ft�s22  e
1700

D
 f � 3410.22 � 0.5 � 1 4 f

KLexit� 1.
KLelbow� 0.2,KLent� 0.5,

ft�s

V �
33.1

D2

V � Q�A � 4Q�pD2 � 4126 ft3�s2�pD2,

z1 �
V 2

2g
 af /

D
�a

 

KLb

p1

g
�

V 2
1

2g
� z1 �

p2

g
�

V 2
2

2g
� z2 � hL

V2 � z2 � 021p1 � p2 � V1 �

(1700 ft, 1.63 ft)

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 500 1000

�, ft

D
, 

ft

1500 2000

F I G U R E  E8.13b



8.5.2 Multiple Pipe Systems

In many pipe systems there is more than one pipe involved. The complex system of tubes in
our lungs 1beginning as shown by the figure in the margin, with the relatively large-diameter
trachea and ending in tens of thousands of minute bronchioles after numerous branchings2 and
the maze of pipes in a city’s water distribution system are typical of such systems. The gov-
erning mechanisms for the flow in multiple pipe systems are the same as for the single pipe
systems discussed in this chapter. However, because of the numerous unknowns involved,
additional complexities may arise in solving for the flow in multiple pipe systems. Some of
these complexities are discussed in this section.
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Bronchiole

Lung

Trachea

F l u i d s  i n  t h e  N e w s

Deepwater pipeline Pipelines used to transport oil and gas are
commonplace. But south of New Orleans, in deep waters of the
Gulf of Mexico, a not-so-common multiple pipe system is being
built. The new so-called Mardi Gras system of pipes is being laid
in water depths of 4300 to 7300 feet. It will transport oil and gas
from five deepwater fields with the interesting names of Holstein,
Mad Dog, Thunder Horse, Atlantis, and Na Kika. The deepwater
pipelines will connect with lines at intermediate water depths to
transport the oil and gas to shallow-water fixed platforms and

shore. The steel pipe used is 28 inches in diameter with a wall
thickness of 1 1Z8 in. The thick-walled pipe is needed to with-
stand the large external pressure which is about 3250 psi at a
depth of 7300 ft. The pipe is installed in 240-ft sections from a
vessel the size of a large football stadium. Upon completion, the
deepwater pipeline system will have a total length of more than
450 miles and the capability of transporting more than 1 million
barrels of oil per day and 1.5 billion cubic feet of gas per day.
(See Problem 8.113.)

The simplest multiple pipe systems can be classified into series or parallel flows, as are shown
in Fig. 8.35. The nomenclature is similar to that used in electrical circuits. Indeed, an analogy be-
tween fluid and electrical circuits is often made as follows. In a simple electrical circuit, there is
a balance between the voltage 1e2, current 1i2, and resistance 1R2 as given by Ohm’s law: In a
fluid circuit there is a balance between the pressure drop the flowrate or velocity 1Q or V 2,
and the flow resistance as given in terms of the friction factor and minor loss coefficients .
For a simple flow it follows that where a measure of the
resistance to the flow, is proportional to f.

The main differences between the solution methods used to solve electrical circuit problems
and those for fluid circuit problems lie in the fact that Ohm’s law is a linear equation 1doubling
the voltage doubles the current2, while the fluid equations are generally nonlinear 1doubling the
pressure drop does not double the flowrate unless the flow is laminar2. Thus, although some of the

R
~,¢p � Q2R

~,3¢p � f 1/�D2 1rV2�22 4 ,
1 f and KL2

1¢p2,
e � iR.

Q A V1
(1) (2) (3) 

V2D1 D2 D3 B 
Q

V3

(a)

V1

V2

V3

D3

D2

D1

(1)

(2)

(3)

Q1

Q2

Q3

B
A

(b)
F I G U R E  8.35 (a) Series and (b)

parallel pipe systems.



standard electrical engineering methods can be carried over to help solve fluid mechanics prob-
lems, others cannot.

One of the simplest multiple pipe systems is that containing pipes in series, as is shown in
Fig. 8.35a. Every fluid particle that passes through the system passes through each of the pipes.
Thus, the flowrate 1but not the velocity2 is the same in each pipe, and the head loss from point A
to point B is the sum of the head losses in each of the pipes. The governing equations can be writ-
ten as follows:

and

where the subscripts refer to each of the pipes. In general, the friction factors will be different for
each pipe because the Reynolds numbers and the relative roughnesses will
be different. If the flowrate is given, it is a straightforward calculation to determine the head loss or
pressure drop 1Type I problem2. If the pressure drop is given and the flowrate is to be calculated
1Type II problem2, an iteration scheme is needed. In this situation none of the friction factors, are
known, so the calculations may involve more trial-and-error attempts than for corresponding single
pipe systems. The same is true for problems in which the pipe diameter 1or diameters2 is to be de-
termined 1Type III problems2.

Another common multiple pipe system contains pipes in parallel, as is shown in Fig. 8.35b.
In this system a fluid particle traveling from A to B may take any of the paths available, with the
total flowrate equal to the sum of the flowrates in each pipe. However, by writing the energy equa-
tion between points A and B it is found that the head loss experienced by any fluid particle traveling
between these locations is the same, independent of the path taken. Thus, the governing equations
for parallel pipes are

and

Again, the method of solution of these equations depends on what information is given and what
is to be calculated.

Another type of multiple pipe system called a loop is shown in Fig. 8.36. In this case the
flowrate through pipe 112 equals the sum of the flowrates through pipes 122 and 132, or 
As can be seen by writing the energy equation between the surfaces of each reservoir, the head
loss for pipe 122 must equal that for pipe 132, even though the pipe sizes and flowrates may be dif-
ferent for each. That is,

for a fluid particle traveling through pipes 112 and 122, while

pA

g
�

V 2
A

2g
� zA �

pB

g
�

V 2
B

2g
� zB � hL1

� hL3

pA

g
�

V 2
A

2g
� zA �

pB

g
�

V 2
B

2g
� zB � hL1

� hL2

Q1 � Q2 � Q3.

hL1
� hL2

� hL3

Q � Q1 � Q2 � Q3

fi,

1ei�Di21Rei � rViDi�m2

hLA – B
� hL1

� hL2
� hL3

Q1 � Q2 � Q3
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F I G U R E  8.36 Multiple pipe loop system.

B

A

(2)
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Series and parallel
pipe systems are of-
ten encountered.



for fluid that travels through pipes 112 and 132. These can be combined to give This is a
statement of the fact that fluid particles that travel through pipe 122 and particles that travel through
pipe 132 all originate from common conditions at the junction 1or node, N 2 of the pipes and all end
up at the same final conditions.

The flow in a relatively simple looking multiple pipe system may be more complex than
it appears initially. The branching system termed the three-reservoir problem shown in Fig. 8.37
is such a system. Three reservoirs at known elevations are connected together with three pipes
of known properties 1lengths, diameters, and roughnesses2. The problem is to determine the
flowrates into or out of the reservoirs. If valve 112 were closed, the fluid would flow from
reservoir B to C, and the flowrate could be easily calculated. Similar calculations could be
carried out if valves 122 or 132 were closed with the others open.

With all valves open, however, it is not necessarily obvious which direction the fluid flows.
For the conditions indicated in Fig. 8.37, it is clear that fluid flows from reservoir A because the
other two reservoir levels are lower. Whether the fluid flows into or out of reservoir B depends
on the elevation of reservoirs B and C and the properties 1length, diameter, roughness2 of the
three pipes. In general, the flow direction is not obvious, and the solution process must include
the determination of this direction. This is illustrated in Example 8.14.

hL2
� hL3

.
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F I G U R E  8.37
A three-reservoir system.
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GIVEN Three reservoirs are connected by three pipes as are
shown in Fig. E8.14. For simplicity we assume that the diame-
ter of each pipe is 1 ft, the friction factor for each is 0.02, and
because of the large length-to-diameter ratio, minor losses are
negligible.

FIND Determine the flowrate into or out of each reservoir.

Three-Reservoir, Multiple-Pipe SystemE XAMPLE 8.14

SOLUTION

By using the fact that this becomes

For the given conditions of this problem we obtain

100 ft �
0.02

2132.2 ft�s22  
1

11 ft 2  3 11000 ft 2V 2
1 � 1400 ft 2V 2

3 4

zA � f1 
/1

D1

 
V 2

1

2g
� f3 

/3

D3

 
V 2

3

2g

pA � pC � VA � VC � zC � 0,

It is not obvious which direction the fluid flows in pipe 122.
However, we assume that it flows out of reservoir B, write the
governing equations for this case, and check our assumption.
The continuity equation requires that which,
since the diameters are the same for each pipe, becomes simply

(1)

The energy equation for the fluid that flows from A to C in pipes
112 and 132 can be written as

pA

g
�

V 2
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F I G U R E  E8.14
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�3 = 400 ft
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For some pipe sys-
tems, the direction
of flow is not
known a priori.



The ultimate in multiple pipe systems is a network of pipes such as that shown in Fig. 8.38.
Networks like these often occur in city water distribution systems and other systems that may have
multiple “inlets” and “outlets.” The direction of flow in the various pipes is by no means obvi-
ous—in fact, it may vary in time, depending on how the system is used from time to time.

The solution for pipe network problems is often carried out by use of node and loop equations
similar in many ways to that done in electrical circuits. For example, the continuity equation requires
that for each node 1the junction of two or more pipes2 the net flowrate is zero. What flows into a node
must flow out at the same rate. In addition, the net pressure difference completely around a loop
1starting at one location in a pipe and returning to that location2 must be zero. By combining these
ideas with the usual head loss and pipe flow equations, the flow throughout the entire network can
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or

(2)

where and are in ftZs. Similarly the energy equation for
fluid flowing from B and C is

or

For the given conditions this can be written as

(3)

Equations 1, 2, and 3 1in terms of the three unknowns and 
2 are the governing equations for this flow, provided the fluid flows

from reservoir B. It turns out, however, that there is no solution for
these equations with positive, real values of the velocities. Although
these equations do not appear to be complicated, there is no simple
way to solve them directly. Thus, a trial-and-error solution is sug-
gested. This can be accomplished as follows. Assume a value of

calculate from Eq. 2, and then from Eq. 3. It is found
that the resulting trio does not satisfy Eq. 1 for any value of

assumed. There is no solution to Eqs. 1, 2, and 3 with real, positive
values of and Thus, our original assumption of flow out of
reservoir B must be incorrect.

To obtain the solution, assume the fluid flows into reser-
voirs B and C and out of A. For this case the continuity equation
becomes

or

(4)

Application of the energy equation between points A and B and A
and C gives

and
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which, with the given data, become

(5)

and

(6)

Equations 4, 5, and 6 can be solved as follows. By subtracting
Eq. 5 from 6 we obtain

Thus, Eq. 5 can be written as

or

(7)

which, upon squaring both sides, can be written as

By using the quadratic formula we can solve for to obtain 
either Thus, either 

The value is not a root of the orig-
inal equations. It is an extra root introduced by squaring Eq. 7, which
with becomes Thus,
and from Eq. 5, The corresponding flowrates are

(Ans)

(Ans)

and

(Ans)

Note the slight differences in the governing equations depending
on the direction of the flow in pipe 122—compare Eqs. 1, 2, and 3
with Eqs. 4, 5, and 6.

COMMENT If the friction factors were not given, a trial-and-
error procedure similar to that needed for Type II problems 1see
Section 8.5.12 would be required.
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Pipe network prob-
lems can be solved
using node and
loop concepts.



be obtained. Of course, trial-and-error solutions are usually required because the direction of flow
and the friction factors may not be known. Such a solution procedure using matrix techniques is ide-
ally suited for computer use 1Refs. 21, 222.
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F I G U R E  8.38 A general
pipe network.

8.6 Pipe Flowrate Measurement

It is often necessary to determine experimentally the flowrate in a pipe. In Chapter 3 we introduced
various types of flow-measuring devices 1Venturi meter, nozzle meter, orifice meter, etc.2 and dis-
cussed their operation under the assumption that viscous effects were not important. In this section
we will indicate how to account for the ever-present viscous effects in these flow meters. We will
also indicate other types of commonly used flow meters.

8.6.1 Pipe Flowrate Meters

Three of the most common devices used to measure the instantaneous flowrate in pipes are the ori-
fice meter, the nozzle meter, and the Venturi meter. As was discussed in Section 3.6.3, each of these
meters operates on the principle that a decrease in flow area in a pipe causes an increase in veloc-
ity that is accompanied by a decrease in pressure. Correlation of the pressure difference with the
velocity provides a means of measuring the flowrate. In the absence of viscous effects and under
the assumption of a horizontal pipe, application of the Bernoulli equation 1Eq. 3.72 between points
112 and 122 shown in Fig. 8.39 gave

(8.37)

where Based on the results of the previous sections of this chapter, we anticipate that
there is a head loss between 112 and 122 so that the governing equations become

and

The ideal situation has and results in Eq. 8.37. The difficulty in including the head loss is
that there is no accurate expression for it. The net result is that empirical coefficients are used in
the flowrate equations to account for the complex real-world effects brought on by the nonzero
viscosity. The coefficients are discussed in this section.
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F I G U R E  8.39 Typical
pipe flow meter geometry.
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A typical orifice meter is constructed by inserting between two flanges of a pipe a flat plate
with a hole, as shown in Fig. 8.40. The pressure at point 122 within the vena contracta is less than
that at point 112. Nonideal effects occur for two reasons. First, the vena contracta area, is less than
the area of the hole, by an unknown amount. Thus, where is the contraction co-
efficient Second, the swirling flow and turbulent motion near the orifice plate introduce a
head loss that cannot be calculated theoretically. Thus, an orifice discharge coefficient, is used to
take these effects into account. That is,

(8.38)

where is the area of the hole in the orifice plate. The value of is a function of
and the Reynolds number where Typical values of are given

in Fig. 8.41. As shown by Eq. 8.38 and the figure in the margin, for a given value of , the
flowrate is proportional to the square root of the pressure difference. Note that the value of 
depends on the specific construction of the orifice meter 1i.e., the placement of the pressure taps,
whether the orifice plate edge is square or beveled, etc.2. Very precise conditions governing the
construction of standard orifice meters have been established to provide the greatest accuracy pos-
sible 1Refs. 23, 242.

Another type of pipe flow meter that is based on the same principles used in the orifice me-
ter is the nozzle meter, three variations of which are shown in Fig. 8.42. This device uses a con-
toured nozzle 1typically placed between flanges of pipe sections2 rather than a simple 1and less 
expensive2 plate with a hole as in an orifice meter. The resulting flow pattern for the nozzle meter
is closer to ideal than the orifice meter flow. There is only a slight vena contracta and the secondary

Co

Co

CoV � Q�A1.Re � rVD�m,b � d�D
CoAo � pd 2�4

Q � CoQideal � Co Ao B
21 p1 � p22
r11 � b42

Co,
1Cc 6 12.

CcA2 � Cc Ao,Ao,
A2,
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An orifice discharge
coefficient is used
to account for non-
ideal effects.
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F I G U R E  8.40
Typical orifice meter construction.
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flow separation is less severe, but there still are viscous effects. These are accounted for by use of
the nozzle discharge coefficient, where

(8.39)

with As with the orifice meter, the value of is a function of the diameter ratio,
and the Reynolds number, Typical values obtained from experiments are

shown in Fig. 8.43. Again, precise values of depend on the specific details of the nozzle de-
sign. Accepted standards have been adopted 1Ref. 242. Note that the nozzle meter is more
efficient 1less energy dissipated2 than the orifice meter.

The most precise and most expensive of the three obstruction-type flow meters is the Venturi
meter shown in Fig. 8.44 [G. B. Venturi (1746–1822)]. Although the operating principle for this de-
vice is the same as for the orifice or nozzle meters, the geometry of the Venturi meter is designed to
reduce head losses to a minimum. This is accomplished by providing a relatively streamlined con-
traction 1which eliminates separation ahead of the throat2 and a very gradual expansion downstream
of the throat 1which eliminates separation in this decelerating portion of the device2. Most of the head
loss that occurs in a well-designed Venturi meter is due to friction losses along the walls rather than
losses associated with separated flows and the inefficient mixing motion that accompanies such flow.

Cn 7 Co;
Cn

Re � rVD�m.b � d�D,
CnAn � pd 2�4.

Q � CnQideal � CnAn B
21p1 � p22
r11 � b42

Cn,
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F I G U R E  8.42 Typical nozzle meter construction.
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the orifice meter.
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F I G U R E  8.43 Nozzle 
meter discharge coefficient (Ref. 24).
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Thus, the flowrate through a Venturi meter is given by

(8.40)

where is the throat area. The range of values of , the Venturi discharge coefficient,
is given in Fig. 8.45. The throat-to-pipe diameter ratio the Reynolds number, and the
shape of the converging and diverging sections of the meter are among the parameters that affect
the value of 

Again, the precise values of and depend on the specific geometry of the devices
used. Considerable information concerning the design, use, and installation of standard flow meters
can be found in various books 1Refs. 23, 24, 25, 26, 312.

CvCn, Co,
Cv.

1b � d�D2,
CvAT � pd 2�4

Q � CvQideal � CAT B
21p1 � p22
r11 � b42
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The Venturi dis-
charge coefficient
is a function of the
specific geometry
of the meter.

F I G U R E  8.45 Venturi
meter discharge coefficient (Ref. 23).
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GIVEN Ethyl alcohol flows through a pipe of diameter
in a refinery. The pressure drop across the nozzle

meter used to measure the flowrate is to be when
the flowrate is Q � 0.003 m3�s.

¢p � 4.0 kPa
D � 60 mm

Nozzle Flow MeterEXAMPLE 8.15

SOLUTION

As a first approximation we assume that the flow is ideal, or
so that Eq. 1 becomes

(2)

In addition, for many cases so that an approximate
value of d can be obtained from Eq. 2 as

Hence, with an initial guess of or 
we obtain from Fig. 8.43 1using 

2 a value of Clearly this does not agree with
our initial assumption of Thus, we do not have the so-
lution to Eq. 1 and Fig. 8.43. Next we assume and

and solve for d from Eq. 1 to obtain

or With the new value of 
and we obtain 1from Fig. 8.432 inCn � 0.972Re � 42,200,0.568

b � 0.0341�0.060 �d � 0.0341 m.

d � a1.20 � 10�3

0.972
 21 � 0.5774b

1�2

Cn � 0.972
b � 0.577

Cn � 1.0.
Cn � 0.972.42,200

Re �0.0346�0.06 � 0.577,
b � d�D �d � 0.0346 m

d � 11.20 � 10�321�2 � 0.0346 m

1 � b4 � 1,

d � 11.20 � 10�3 21 � b421�2
Cn � 1.0,

From Table 1.6 the properties of ethyl alcohol are 
and Thus,

From Eq. 8.39 the flowrate through the nozzle is

or

(1)

where d is in meters. Note that Equation 1
and Fig. 8.43 represent two equations for the two unknowns d and

that must be solved by trial and error.Cn

b � d�D � d�0.06.
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2

21 � b4

Q � 0.003 m3�s � Cn 
p
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 d2 
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789 kg�m311 � b42

 �
41789 kg�m32 10.003 m3�s2

p10.06 m2 11.19 � 10�3 N # s�m22 � 42,200

Re �
rVD

m
�

4rQ

pDm

10�3 N # s�m2.m � 1.19 �
r�789 kg�m3

FIND Determine the diameter, d, of the nozzle.



Numerous other devices are used to measure the flowrate in pipes. Many of these devices
use principles other than the high-speed/low-pressure concept of the orifice, nozzle, and Venturi
meters.

A quite common, accurate, and relatively inexpensive flow meter is the rotameter, or vari-
able area meter as is shown in Fig. 8.46. In this device a float is contained within a tapered, trans-
parent metering tube that is attached vertically to the pipeline. As fluid flows through the meter
1entering at the bottom2, the float will rise within the tapered tube and reach an equilibrium height
that is a function of the flowrate. This height corresponds to an equilibrium condition for which
the net force on the float 1buoyancy, float weight, fluid drag2 is zero. A calibration scale in the tube
provides the relationship between the float position and the flowrate.
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agreement with the assumed value. Thus,

(Ans)

COMMENTS If numerous cases are to be investigated, it may
be much easier to replace the discharge coefficient data of Fig.
8.43 by the equivalent equation, and use a com-
puter to iterate for the answer. Such equations are available in the
literature 1Ref. 242. This would be similar to using the Colebrook
equation rather than the Moody chart for pipe friction problems.

By repeating the calculations, the nozzle diameters, d, needed
for the same flowrate and pressure drop but with different fluids
are shown in Fig. E8.15. The diameter is a function of the fluid
viscosity because the nozzle coefficient, Cn, is a function of the
Reynolds number (see Fig. 8.43). In addition, the diameter is a
function of the density because of this Reynolds number effect
and, perhaps more importantly, because the density is involved di-
rectly in the flowrate equation, Eq. 8.39. These factors all com-
bine to produce the results shown in the figure.
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F I G U R E  8.46
Rotameter-type flow meter.
(Courtesy of Fischer & 
Porter Co.)

V8.13 Rotameter



Another useful pipe flowrate meter is a turbine meter as is shown in Fig. 8.47. A small, freely
rotating propeller or turbine within the turbine meter rotates with an angular velocity that is a func-
tion of 1nearly proportional to2 the average fluid velocity in the pipe. This angular velocity is picked
up magnetically and calibrated to provide a very accurate measure of the flowrate through the meter.

8.6.2 Volume Flow Meters

In many instances it is necessary to know the amount 1volume or mass2 of fluid that has passed
through a pipe during a given time period, rather than the instantaneous flowrate. For example,
we are interested in how many gallons of gasoline are pumped into the tank in our car rather than
the rate at which it flows into the tank. There are numerous quantity-measuring devices that pro-
vide such information.

The nutating disk meter shown in Fig. 8.48 is widely used to measure the net amount of wa-
ter used in domestic and commercial water systems as well as the amount of gasoline delivered to
your gas tank. This meter contains only one essential moving part and is relatively inexpensive and
accurate. Its operating principle is very simple, but it may be difficult to understand its operation
without actually inspecting the device firsthand. The device consists of a metering chamber with
spherical sides and conical top and bottom. A disk passes through a central sphere and divides the
chamber into two portions. The disk is constrained to be at an angle not normal to the axis of sym-
metry of the chamber. A radial plate 1diaphragm2 divides the chamber so that the entering fluid
causes the disk to wobble 1nutate2, with fluid flowing alternately above or below the disk. The fluid
exits the chamber after the disk has completed one wobble, which corresponds to a specific volume
of fluid passing through the chamber. During each wobble of the disk, the pin attached to the tip
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F I G U R E  8.47
Turbine-type flow meter.
(Courtesy of E G & G Flow
Technology, Inc.)
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(Courtesy of Badger Meter,
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of the center sphere, normal to the disk, completes one circle. The volume of fluid that has passed
through the meter can be obtained by counting the number of revolutions completed.

Another quantity-measuring device that is used for gas flow measurements is the bellows me-
ter as shown in Fig. 8.49. It contains a set of bellows that alternately fill and empty as a result of the
pressure of the gas and the motion of a set of inlet and outlet valves. The common household nat-
ural gas meter is of this type. For each cycle [1a2 through 1d 2] a known volume of gas passes through
the meter.

The nutating disk meter 1water meter2 is an example of extreme simplicity—one cleverly designed
moving part. The bellows meter 1gas meter2, on the other hand, is relatively complex—it contains many
moving, interconnected parts. This difference is dictated by the application involved. One measures a
common, safe-to-handle, relatively high-pressure liquid, whereas the other measures a relatively dan-
gerous, low-pressure gas. Each device does its intended job very well.

There are numerous devices used to measure fluid flow, only a few of which have been dis-
cussed here. The reader is encouraged to review the literature to gain familiarity with other use-
ful, clever devices 1Refs. 25, 262.
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The nutating disk
meter has only one
moving part; the
bellows meter has a
complex set of
moving parts.

F I G U R E  8.49 Bellows-type flow meter. (Courtesy of BTR—Rockwell
Gas Products). (a) Back case emptying, back diaphragm filling. (b) Front diaphragm
filling, front case emptying. (c) Back case filling, back diaphragm emptying. (d) Front
diaphragm emptying, front case filling.

Inlet Outlet

Slider valves
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diaphragm

Back case

Back
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Front
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(a) (b)

(d)(c)

8.7 Chapter Summary and Study Guide

This chapter discussed the flow of a viscous fluid in a pipe. General characteristics of laminar, tur-
bulent, fully developed, and entrance flows are considered. Poiseuille’s equation is obtained to
describe the relationship among the various parameters for fully developed laminar flow.
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laminar flow
transitional flow
turbulent flow 
entrance length 
fully developed flow
wall shear stress
Poiseuille’s law 
friction factor 
turbulent shear stress
major loss 
minor loss 
relative roughness
Moody chart 
Colebrook formula 
loss coefficient 
hydraulic diameter
multiple pipe systems
orifice meter 
nozzle meter 
Venturi meter

Various characteristics of turbulent pipe flow are introduced and contrasted to laminar flow.
It is shown that the head loss for laminar or turbulent pipe flow can be written in terms of the
friction factor (for major losses) and the loss coefficients (for minor losses). In general, the fric-
tion factor is obtained from the Moody chart or the Colebrook formula and is a function of the
Reynolds number and the relative roughness. The minor loss coefficients are a function of the
flow geometry for each system component.

Analysis of noncircular conduits is carried out by use of the hydraulic diameter concept.
Various examples involving flow in single pipe systems and flow in multiple pipe systems are
presented. The inclusion of viscous effects and losses in the analysis of orifice, nozzle, and Ven-
turi flow meters is discussed.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

determine which of the following types of flow will occur: entrance flow, or fully devel-
oped flow; laminar flow, or turbulent flow.

use the Poiseuille equation in appropriate situations and understand its limitations.

explain the main properties of turbulent pipe flow and how they are different from or sim-
ilar to laminar pipe flow.

use the Moody chart and the Colebrook equation to determine major losses in pipe systems.

use minor loss coefficients to determine minor losses in pipe systems.

determine the head loss in noncircular conduits.

incorporate major and minor losses into the energy equation to solve a variety of pipe
flow problems, including Type I problems (determine the pressure drop or head loss),
Type II problems (determine the flow rate), and Type III problems (determine the pipe
diameter).

solve problems involving multiple pipe systems.

determine the flowrate through orifice, nozzle, and Venturi flowmeters as a function of the
pressure drop across the meter.

Some of the important equations in this chapter are given below.

Entrance length (8.1)

(8.2)

Pressure drop for fully 
developed laminar pipe flow (8.5)

Velocity profile for fully 
developed laminar pipe flow (8.7)

Volume flowrate for fully 
developed laminar pipe flow (8.9)

Friction factor for fully 
developed laminar pipe flow (8.19)

Pressure drop for a 
horizontal pipe (8.33)

Head loss due to major losses (8.34) hL major � f 
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Colebrook formula (8.35a)

Explicit alternative to 
Colebrook formula (8.35b)

Head loss due to minor losses (8.36)

Volume flowrate for orifice,
nozzle, or Venturi meter (8.38, 8.39, 8.40)
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Problems

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a 1 2 are “open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems and FlowLab problems
can also be accessed on this web site.

Section 8.1 General Characteristics of Pipe Flow (Also
see Lab Problem 8.130.)

8.1 Obtain a photograph/image of a piping system that would
likely contain “pipe flow” and not “open channel flow.” Print this
photo and write a brief paragraph that describes the situation in-
volved.

8.2 Water flows through a 50-ft pipe with a 0.5-in. diameter at
5 gal/min. What fraction of this pipe can be considered an entrance
region?

8.3 Rainwater runoff from a parking lot flows through a 3-ft-diam-
eter pipe, completely filling it. Whether flow in a pipe is laminar or
turbulent depends on the value of the Reynolds number. (See Video
V8.2.) Would you expect the flow to be laminar or turbulent? Sup-
port your answer with appropriate calculations.

8.4 Blue and yellow streams of paint at (each with a density
of 1.6 slugs and a viscosity 1000 times greater than water) enter
a pipe with an average velocity of as shown in Fig. P8.4.
Would you expect the paint to exit the pipe as green paint or sepa-
rate streams of blue and yellow paint? Explain. Repeat the problem
if the paint were “thinned” so that it is only 10 times more viscous
than water. Assume the density remains the same.

4 ft�s
�ft3

60 °F

†

calculated by assuming the flow is laminar. For tubes of diameter
0.5, 1.0, and 2.0 mm, determine the maximum flowrate allowed
(in cm3/s) if the fluid is (a) 20 °C water, or (b) standard air.

8.8 Carbon dioxide at and a pressure of 550 kPa (abs) flows
in a pipe at a rate of 0.04 N s. Determine the maximum diameter al-
lowed if the flow is to be turbulent.

8.9 The pressure distribution measured along a straight, horizontal
portion of a 50-mm-diameter pipe attached to a tank is shown in the
table below. Approximately how long is the entrance length? In the
fully developed portion of the flow, what is the value of the wall
shear stress?

x (m) (�0.01 m) p (mm H2O) (�5 mm)

0 (tank exit) 520
0.5 427
1.0 351
1.5 288
2.0 236
2.5 188
3.0 145
3.5 109
4.0 73
4.5 36
5.0 (pipe exit) 0

8.10 (See Fluids in the News article titled “Nanoscale flows,” Sec-
tion 8.1.1.) (a) Water flows in a tube that has a diameter of

Determine the Reynolds number if the average veloc-
ity is 10 diameters per second. (b) Repeat the calculations if the
tube is a nanoscale tube with a diameter of 

Section 8.2 Fully Developed Laminar Flow

8.11 Obtain a photograph/image of a piping system that contains
both entrance region flow and fully developed flow. Print this
photo and write a brief paragraph that describes the situation in-
volved.

8.12 For fully developed laminar pipe flow in a circular pipe, the
velocity profile is given by u(r) � 2 (1 � r2 R2) in m/s, where R
is the inner radius of the pipe. Assuming that the pipe diameter is
4 cm, find the maximum and average velocities in the pipe as well
as the volume flow rate.

8.13 The wall shear stress in a fully developed flow portion of a
12-in.-diameter pipe carrying water is Determine the
pressure gradient, where x is in the flow direction, if the
pipe is (a) horizontal, (b) vertical with flow up, or (c) vertical with
flow down.

8.14 The pressure drop needed to force water through a horizon-
tal 1-in.-diameter pipe is 0.60 psi for every 12-ft length of pipe. De-
termine the shear stress on the pipe wall. Determine the shear stress
at distances 0.3 and 0.5 in. away from the pipe wall.

0p�0x,
1.85 lb�ft2.

�

D � 100 nm.

D � 0.1 m.

�
20 °C

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

F I G U R E  P8.4

25 ft

2 in.
Green?

Blue

Yellow

Splitter

8.5 Air at 200 °F flows at standard atmospheric pressure in a pipe
at a rate of 0.08 lb/s. Determine the minimum diameter allowed if
the flow is to be laminar.

8.6 To cool a given room it is necessary to supply 4 ft3/s of air
through an 8-in.-diameter pipe. Approximately how long is the en-
trance length in this pipe?

8.7 A long small-diameter tube is to be used as a viscometer by
measuring the flowrate through the tube as a function of the pres-
sure drop along the tube. The calibration constant, isK � Q�¢p,



8.15 Repeat Problem 8.14 if the pipe is on a hill. Is the flow
up or down the hill? Explain.

8.16 Water flows in a constant diameter pipe with the following
conditions measured: At section 1a2 and 
at section 1b2 and Is the flow from 1a2 to
1b2 or from 1b2 to 1a2? Explain.

*8.17 Some fluids behave as a non-Newtonian power-law fluid
characterized by where and so on,
and C is a constant. 1If the fluid is the customary New-
tonian fluid.2 (a) For flow in a round pipe of a diameter D,
integrate the force balance equation 1Eq. 8.32 to obtain the veloc-
ity profile

(b) Plot the dimensionless velocity profile where is the
centerline velocity 1at 2, as a function of the dimensionless
radial coordinate where D is the pipe diameter. Consider
values of and 7.

8.18 For laminar flow in a round pipe of diameter D, at what dis-
tance from the centerline is the actual velocity equal to the aver-
age velocity?

8.19 Water at flows through a horizontal 1-mm-diameter
tube to which are attached two pressure taps a distance 1 m apart.
(a) What is the maximum pressure drop allowed if the flow is to
be laminar? (b) Assume the manufacturing tolerance on the tube
diameter is Given this uncertainty in the tube
diameter, what is the maximum pressure drop allowed if it must
be assured that the flow is laminar?

8.20 Glycerin at flows upward in a vertical 75-mm-diameter
pipe with a centerline velocity of 1.0 m s. Determine the head loss
and pressure drop in a 10-m length of the pipe.

8.21 Determine the magnitude of the velocity gradient at points
10, 20, and 30 mm from the pipe wall for the flow in Problem
8.20.

8.22 A large artery in a person’s body can be approximated by a
tube of diameter 9 mm and length 0.35 m. Also assume that blood
has a viscosity of approximately a specific grav-
ity of 1.0, and that the pressure at the beginning of the artery is equiv-
alent to 120 mm Hg. If the flow were steady (it is not) with 

determine the pressure at the end of the artery if it is ori-
ented (a) vertically up (flow up) or (b) horizontal.

8.23 At time the level of water in tank A shown in Fig. P8.23
is 2 ft above that in tank B. Plot the elevation of the water in tank A
as a function of time until the free surfaces in both tanks are at the
same elevation. Assume quasisteady conditions—that is, the steady
pipe flow equations are assumed valid at any time, even though the
flowrate does change (slowly) in time. Neglect minor losses. Note:
Verify and use the fact that the flow is laminar.

t � 0

0.2 m�s,
V �

4 � 10�3 N # s�m2,

�
20 °C

D � 1.0 � 0.1 mm.

20 °C

n � 1, 3, 5,
r� 1D�22,

r � 0
Vcu�Vc,

u1r2 � �n

1n � 12  a
¢p

2/C
b

1�n

 c r 1n�12�n � aD

2
b
1n�12�n

d

n � 1,
n � 1, 3, 5,t � �C1du�dr2n,

zb � 68.2 ft.pb � 29.7 psi
za � 56.8 ft;pa � 32.4 psi

20°
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8.24 A fluid flows through a horizontal 0.1-in.-diameter pipe.
When the Reynolds number is 1500, the head loss over a 20-ft
length of the pipe is 6.4 ft. Determine the fluid velocity.

8.25 A viscous fluid flows in a 0.10-m-diameter pipe such that its
velocity measured 0.012 m away from the pipe wall is 
0.8 mZs. If the flow is laminar, determine the centerline velocity
and the flowrate.

8.26 Oil flows through the horizontal pipe shown in Fig. P8.26
under laminar conditions. All sections are the same diameter ex-
cept one. Which section of the pipe (A, B, C, D, or E) is slightly
smaller in diameter than the others? Explain.

8.27 Asphalt at 120 , considered to be a Newtonian fluid with
a viscosity 80,000 times that of water and a specific gravity of 1.09,
flows through a pipe of diameter 2.0 in. If the pressure gradient is
1.6 psi/ft determine the flowrate assuming the pipe is (a) horizon-
tal; (b) vertical with flow up.

8.28 Oil of and a kinematic viscosity 
flows through the vertical pipe shown in Fig. P8.28 at a rate

of Determine the manometer reading, h.4 � 10�4 m3�s.
m2�s

2.2 � 10�4n �SG � 0.87

°F

F I G U R E  P8.23

3 ft 3 ft

25 ft

2 ft at t = 0

0.1-in. diameter, galvanized iron

B A
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Q

15 ft

60 in. 56 in.

5 ft 10 ft 6 ft 15 ft

46
in.

39
in.

26
in.

EDCBA

20-foot
sections

F I G U R E  P8.28

Q

SG = 0.87

4 m

20 mm

h

SG = 1.3

8.29 Determine the manometer reading, h, for Problem 8.28 if the
flow is up rather than down the pipe. Note: The manometer read-
ing will be reversed.

8.30 A liquid with and va-
por pressure is drawn into the syringe
as is indicated in Fig. P8.30. What is the maximum flowrate if cav-
itation is not to occur in the syringe?

pv � 1.2 � 104 N�m21abs 2
m � 9.2 � 10�4 N # s�m2,SG � 0.96,



Section 8.3 Fully Developed Turbulent Flow

8.31 Obtain a photograph/image of a “turbulator.” (See Fluids in
the News article titled “Smaller heat exchangers” in Section 8.3.1.)
Print this photo and write a brief paragraph that describes its use.

8.32 For oil ( ) flow of 
through a round pipe with diameter of 500 mm, determine the
Reynolds number. Is the flow laminar or turbulent?

8.33 For air at a pressure of 200 kPa (abs) and temperature of
determine the maximum laminar volume flowrate for flow

through a 2.0-cm-diameter tube.

8.34 Show that the power-law approximation for the velocity pro-
file in turbulent pipe flow (Eq. 8.31) cannot be accurate at the cen-
terline or at the pipe wall because the velocity gradients at these
locations are not correct. Explain.

8.35 As shown in Video V8.9 and Fig. P8.35, the velocity profile
for laminar flow in a pipe is quite different from that for turbulent
flow. With laminar flow the velocity profile is parabolic; with tur-
bulent flow at the velocity profile can be approxi-
mated by the power-law profile shown in the figure. (a) For lami-
nar flow, determine at what radial location you would place a Pitot

Re � 10,000

15 °C,

0.3 m3�sSG � 0.86, m � 0.025 Ns�m2
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tube if it is to measure the average velocity in the pipe. (b) Repeat
part (a) for turbulent flow with 

8.36 The kinetic energy coefficient, is defined in Eq. 5.86. Show
that its value for a power-law turbulent velocity profile (Eq. 8.31) is
given by .

8.37 When soup is stirred in a bowl, there is considerable tur-
bulence in the resulting motion (see Video V8.7). From a very
simplistic standpoint, this turbulence consists of numerous inter-
twined swirls, each involving a characteristic diameter and ve-
locity. As time goes by, the smaller swirls (the fine scale struc-
ture) die out relatively quickly, leaving the large swirls that
continue for quite some time. Explain why this is to be expected.

8.38 Determine the thickness of the viscous sublayer in a smooth
8-in.-diameter pipe if the Reynolds number is 25,000.

8.39 Water at flows through a 6-in.-diameter pipe with an
average velocity of 15 ft s. Approximately what is the height of
the largest roughness element allowed if this pipe is to be classi-
fied as smooth?

Section 8.4.1 Major Losses (Also see Lab Problem 8.126.)

8.40 Obtain photographs/images for round pipes of different mate-
rials. Print these photos and write a brief paragraph that describes the
different pipes.

8.41 A person with no experience in fluid mechanics wants to esti-
mate the friction factor for 1-in.-diameter galvanized iron pipe at a
Reynolds number of 8,000. They stumble across the simple equation
of f � 64/Re and use this to calculate the friction factor. Explain the
problem with this approach and estimate their error.

8.42 Water flows through a horizontal plastic pipe with a diameter
of 0.2 m at a velocity of 10 cm/s. Determine the pressure drop per
meter of pipe using the Moody chart.

8.43 For Problem 8.42, calculate the power lost to the friction per
meter of pipe.

8.44 Oil (SG� 0.9), with a kinematic viscosity of 0.007 ft2/s, flows
in a 3-in.-diameter pipe at 0.01 ft3/s. Determine the head loss per unit
length of this flow.

8.45 Water flows through a 6-in.-diameter horizontal pipe at a rate
of 2.0 cfs and a pressure drop of 4.2 psi per 100 ft of pipe. Deter-
mine the friction factor.

8.46 Water flows downward through a vertical 10-mm-diameter
galvanized iron pipe with an average velocity of and exits
as a free jet. There is a small hole in the pipe 4 m above the outlet.
Will water leak out of the pipe through this hole, or will air enter
into the pipe through the hole? Repeat the problem if the average
velocity is 

8.47 Air at standard conditions flows through an 8-in.-diameter,
14.6-ft-long, straight duct with the velocity versus pressure drop
data indicated in the following table. Determine the average fric-
tion factor over this range of data.

V (ft�min) %p (in. water)

3950 0.35
3730 0.32
3610 0.30
3430 0.27
3280 0.24
3000 0.20
2700 0.16

0.5 m�s.

5.0 m�s

�
60 °F

a � 1n � 12312n � 123� 34n41n � 32 12n � 32 4
a,

Re � 10,000.

F I G U R E  P8.30

10-mm-diameter

0.25-mm-diameter
0.10-m-long needle

0.12 m

patm = 101 kPa (abs)

F I G U R E  P8.35

1.0

0.5

0 0.5 1.0

r__
R

r__
R

u__
Vc

u__
Vc

Laminar with Re < 2100

= 1 – 2( )

r__
R

u__
Vc

Turbulent with Re = 10,000

=  1 – 1/5[ ]

R r

u

Vc



8.48 Water flows through a horizontal 60-mm-diameter galvanized
iron pipe at a rate of . If the pressure drop is 135 kPa per
10 m of pipe, do you think this pipe is (a) a new pipe, (b) an old
pipe with a somewhat increased roughness due to aging, or (c) a
very old pipe that is partially clogged by deposits? Justify your an-
swer.

8.49 Water flows at a rate of 10 gallons per minute in a new hor-
izontal 0.75-in.-diameter galvanized iron pipe. Determine the pres-
sure gradient, along the pipe.

8.50 Two equal length, horizontal pipes, one with a diameter of
1 in., the other with a diameter of 2 in., are made of the same ma-
terial and carry the same fluid at the same flow rate. Which pipe
produces the larger head loss? Justify your answer.

8.51 A 6-inch-diameter water main in your town has become
very rough due to rust and corrosion. It has been suggested that
the flowrate through this pipe can be increased by inserting a
smooth plastic liner into the pipe. Although the new diameter
will be smaller, the pipe will be smoother. Will such a procedure
produce a greater flowrate? List all assumptions and show all
calculations.

8.52 Blood (assume , SG � 1.0) flows
through an artery in the neck of a giraffe from its heart to its head
at a rate of . Assume the length is 10 ft and the di-
ameter is 0.20 in. If the pressure at the beginning of the artery (out-
let of the heart) is equivalent to 0.70 ft Hg, determine the pressure
at the end of the artery when the head is (a) 8 ft above the heart,
or (b) 6 ft below the heart. Assume steady flow. How much of this
pressure difference is due to elevation effects, and how much is
due to frictional effects?

8.53 A 40-m-long, 12-mm-diameter pipe with a friction factor of
0.020 is used to siphon 30 °C water from a tank as shown in Fig.
P8.53. Determine the maximum value of h allowed if there is to be
no cavitation within the hose. Neglect minor losses.

2.5 � 10�4 ft3�s

m � 4.5 � 10�5 lb # s�ft2

†

¢p�/,

0.02 m3�s
8.55 A 3-ft-diameter duct is used to carry ventilating air into a ve-
hicular tunnel at a rate of Tests show that the pres-
sure drop is 1.5 in. of water per 1500 ft of duct. What is the value
of the friction factor for this duct and the approximate size of the
equivalent roughness of the surface of the duct?

Section 8.4.2 Minor Losses (Also see Lab 
Problem 8.131.)

8.56 Obtain photographs/images of various pipe components that
would cause minor losses in the system. Print these photos and
write a brief paragraph that discusses these components.

8.57 An optional method of stating minor losses from pipe com-
ponents is to express the loss in terms of equivalent length; the
head loss from the component is quoted as the length of straight pipe
with the same diameter that would generate an equivalent loss. De-
velop an equation for the equivalent length, .

8.58 Given 90° threaded elbows used in conjunction with copper
pipe (drawn tubing) of 0.75-in. diameter, convert the loss for a sin-
gle elbow to equivalent length of copper pipe for wholly turbulent
flow.

8.59 Based on Problem 8.57, develop a graph to predict equiva-
lent length, , as a function of pipe diameter for a 45° threaded
elbow connecting copper piping (drawn tubing) for wholly turbu-
lent flow.

8.60 A regular threaded elbow is used to connect two
straight portions of 4-in.-diameter galvanized iron pipe. (a) If
the flow is assumed to be wholly turbulent, determine the equiv-
alent length of straight pipe for this elbow. (b) Does a pipe fit-
ting such as this elbow have a significant or negligible effect on
the flow? Explain.

8.61 To conserve water and energy, a “flow reducer” is installed
in the shower head as shown in Fig. P8.61. If the pressure at
point 112 remains constant and all losses except for that in the
“flow reducer” are neglected, determine the value of the loss co-
efficient 1based on the velocity in the pipe2 of the “flow reducer”
if its presence is to reduce the flowrate by a factor of 2. Neglect
gravity.

90°

/eq

/eq

9000 ft3�min.
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7 m
10 m

30 m

h

3 m

F I G U R E  P8.53

Q

1__
2

in.

(1)

Flow reducer washer

50 holes of
diameter 0.05 in.

F I G U R E  P8.61

8.54 Gasoline flows in a smooth pipe of 40-mm diameter at a rate
of If it were possible to prevent turbulence from oc-
curring, what would be the ratio of the head loss for the actual tur-
bulent flow compared to that if it were laminar flow?

0.001 m3�s.

8.62 Water flows at a rate of in a 0.12-m-diameter pipe
that contains a sudden contraction to a 0.06-m-diameter pipe. De-
termine the pressure drop across the contraction section. How much
of this pressure difference is due to losses and how much is due to
kinetic energy changes?

8.63 A sign like the one shown in Fig. P8.63 is often attached to
the side of a jet engine as a warning to airport workers. Based on
Video V8.10 or Figs. 8.22 and 8.25, explain why the danger areas
(indicated in color) are the shape they are.

0.040 m3�s



8.64 (See Fluids in the News article titled “New hi-tech foun-
tains,” Section 8.5.) The fountain shown in Fig. P8.64 is de-
signed to provide a stream of water that rises to

above the nozzle exit in a periodic fashion. To do this
the water from the pool enters a pump, passes through a pres-
sure regulator that maintains a constant pressure ahead of the
flow control valve. The valve is electronically adjusted to pro-
vide the desired water height. With the loss coefficient
for the valve is Determine the valve loss coefficient
needed for All losses except for the flow control valve
are negligible. The area of the pipe is 5 times the area of the exit
nozzle.

h � 20 ft.
KL � 50.

h � 10 ft

h � 20 ft
h � 10 ft

*8.65 Water flows from a large open tank through a sharp-edged
entrance and into a galvanized iron pipe of length 100 m and di-
ameter 10 mm. The water exits the pipe as a free jet at a distance
h below the free surface of the tank. Plot a log–log graph of the
flowrate, Q, as a function of h for 

8.66 Air flows through the mitered bend shown in Fig. P8.66 at
a rate of 5.0 cfs. To help straighten the flow after the bend, a set
of 0.25-in.-diameter drinking straws is placed in the pipe as shown.

0.1 � h � 10 m.

Estimate the extra pressure drop between points (1) and (2) caused
by these straws.

8.67 Repeat Problem 8.66 if the straws are replaced by a piece of
porous foam rubber that has a loss coefficient equal to 5.4.

8.68 As shown in Fig. P8.68, water flows from one tank to an-
other through a short pipe whose length is n times the pipe diam-
eter. Head losses occur in the pipe and at the entrance and exit.
(See Video V8.10.) Determine the maximum value of n if the ma-
jor loss is to be no more than 10% of the minor loss and the fric-
tion factor is 0.02.

8.69 Air flows through the fine mesh gauze shown in Fig. P8.69
with an average velocity of 1.50 m/s in the pipe. Determine the
loss coefficient for the gauze.

8.70 Water flows steadily through the 0.75-in-diameter galva-
nized iron pipe system shown in Video V8.14 and Fig. P8.70 at
a rate of 0.020 cfs. Your boss suggests that friction losses in the
straight pipe sections are negligible compared to losses in the
threaded elbows and fittings of the system. Do you agree or dis-
agree with your boss? Support your answer with appropriate cal-
culations.
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Section 8.4.3 Noncircular Conduits

8.71 Obtain a photograph/image of a noncircular duct. Print this
photo and write a brief paragraph that describes the situation involved.

8.72 Given two rectangular ducts with equal cross-sectional area,
but different aspect ratios (width/height) of 2 and 4, which will
have the greater frictional losses? Explain your answer.

8.73 Air at standard temperature and pressure flows at a rate of
7.0 cfs through a horizontal, galvanized iron duct that has a rec-
tangular cross-sectional shape of 12 in. by 6 in. Estimate the pres-
sure drop per 200 ft of duct.

8.74 Air flows through a rectangular galvanized iron duct of size
0.30 m by 0.15 m at a rate of Determine the head loss
in 12 m of this duct.

8.75 Air at standard conditions flows through a horizontal 1 ft by
1.5 ft rectangular wooden duct at a rate of Determine
the head loss, pressure drop, and power supplied by the fan to over-
come the flow resistance in 500 ft of the duct.

Section 8.5.1 Single Pipes—Determine Pressure Drop

8.76 Assume a car’s exhaust system can be approximated as 14 ft
of 0.125-ft-diameter cast-iron pipe with the equivalent of six 
flanged elbows and a muffler. (See Video V8.12.) The muffler acts
as a resistor with a loss coefficient of Determine the
pressure at the beginning of the exhaust system if the flowrate is
0.10 cfs, the temperature is and the exhaust has the same
properties as air.

8.77 The pressure at section 122 shown in Fig. P8.77 is not to fall
below 60 psi when the flowrate from the tank varies from 0 to 1.0 cfs

250 °F,

KL � 8.5.

90°

5000 ft3�min.

0.068 m3�s.

and the branch line is shut off. Determine the minimum height, h,
of the water tank under the assumption that (a) minor losses are neg-
ligible, (b) minor losses are not negligible.

8.78 Repeat Problem 8.77 with the assumption that the branch
line is open so that half of the flow from the tank goes into the
branch, and half continues in the main line.

8.79 The exhaust from your car’s engine flows through a complex
pipe system as shown in Fig. P8.79 and Video V8.12. Assume that
the pressure drop through this system is when the engine is
idling at 1000 rpm at a stop sign. Estimate the pressure drop (in
terms of ) with the engine at 3000 rpm when you are driving
on the highway. List all the assumptions that you made to arrive
at your answer.

¢p1

¢p1

8.80 According to fire regulations in a town, the pressure drop in
a commercial steel horizontal pipe must not exceed 1.0 psi per
150 ft of pipe for flowrates up to If the water tem-
perature is above can a 6-in-diameter pipe be used?

8.81 As shown in Video V8.14 and Fig. P8.81, water “bubbles up”
3 in. above the exit of the vertical pipe attached to three horizon-
tal pipe segments. The total length of the 0.75-in.-diameter galva-
nized iron pipe between point (1) and the exit is 21 in. Determine
the pressure needed at point (1) to produce this flow.

50° F,
500 gal�min.

8.82 Water at is pumped from a lake as shown in
Fig. P8.82. If the flowrate is , what is the maximum
length inlet pipe, that can be used without cavitation
occurring?

/,
0.011 m3�s

10 °C

8.83 Water flows through the pipe system shown  in Fig. P8.83
at a rate of 0.30 ft3/s. The pipe diameter is 2 in., and its roughness
is 0.002 in. The loss coefficient for each of the five filters is 6.0,
and all other minor losses are negligible. Determine the power
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added to the water by the pump if the pressure immediately before
the pump is to be the same as that immediately after the last filter.
The length of the pipe between these two locations is 80 ft.

8.84 Water at 40 °F flows through the coils of the heat exchanger
as shown in Fig. P8.84 at a rate of 0.9 galZmin. Determine the
pressure drop between the inlet and outlet of the horizontal
device.

8.85 For the flow in Problem 8.84, ethylene glycol is added to the
water for freeze protection if the temperature drops below the freez-
ing point. The density is unchanged, and all flow conditions are
the same except that the viscosity of the mixture has changed to
0.01 Ns/m2 at the given temperature. Recalculate the pressure drop
between inlet and outlet. Discuss how this loss will change if the
fluid temperature does drop below freezing.

8.86 Water flows through a 2-in.-diameter pipe with a velocity of
as shown in Fig. P8.86. The relative roughness of the pipe

is 0.004, and the loss coefficient for the exit is 1.0. Determine the
height, h, to which the water rises in the piezometer tube.

15 ft�s

8.89 As shown in Fig. P8.89, a standard household water meter is
incorporated into a lawn irrigation system to measure the volume
of water applied to the lawn. Note that these meters measure vol-
ume, not volume flowrate. (See Video V8.15.) With an upstream
pressure of p1 � 50 psi the meter registered that 120 ft3 of water
was delivered to the lawn during an “on” cycle. Estimate the up-
stream pressure, p1, needed if it is desired to have 150 ft3 delivered
during an “on” cycle. List any assumptions needed to arrive at
your answer.

8.90 A fan is to produce a constant air speed of through-
out the pipe loop shown in Fig. P8.90. The 3-m-diameter pipes are
smooth, and each of the four elbows has a loss coefficient of
0.30. Determine the power that the fan adds to the air.

90°

40 m�s
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h
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8.87 Water is pumped through a 60-m-long, 0.3-m-diameter pipe
from a lower reservoir to a higher reservoir whose surface is 10 m
above the lower one. The sum of the minor loss coefficients for
the system is . When the pump adds 40 kW to the wa-
ter the flowrate is . Determine the pipe roughness.

8.88 Estimate the pressure drop associated with the air flow from
the cold air register in your room to the furnace (see Figure P8.88).
List all assumptions and show all calculations.

†

0.20 m3�s
KL � 14.5

Duct

Cold air register

Furnace

Filter

(1)

Irrigation
system:
pipes, fittings,
nozzles, etc.

WATER
METER

Fan

V = 40 m/s

D = 3 m
10 m

20 m

Section 8.5.1 Single Pipes—Determine Flowrate (Also
see Lab Problems 8.128 and 8.129.)

8.91 The turbine shown in Fig. P8.91 develops 400 kW. Deter-
mine the flowrate if (a) head losses are negligible or (b) head loss
due to friction in the pipe is considered. Assume Note:
There may be more than one solution or there may be no solution
to this problem.

f � 0.02.



*8.92 In some locations with very “hard” water, a scale can build
up on the walls of pipes to such an extent that not only does the
roughness increases with time, but the diameter significantly de-
creases with time. Consider a case for which the roughness and di-
ameter vary as mm, D 50 (1 0.02t) mm,
where t is in years. Plot the flowrate as a function of time for t 0
to t 10 years if the pressure drop per 12 m of horizontal pipe re-
mains constant at .

8.93 Water flows from the nozzle attached to the spray tank shown
in Fig. P8.93. Determine the flowrate if the loss coefficient for the
nozzle (based on upstream conditions) is 0.75 and the friction fac-
tor for the rough hose is 0.11.

¢p � 1.3 kPa
�

�
��e � 0.02 � 0.01t

the flowrate passing between the tanks? Assume the friction fac-
tor to be equal to 0.02 and minor losses to be negligible.

8.96 Gasoline is unloaded from the tanker truck shown in
Fig. P8.96 through a 4-in.-diameter rough-surfaced hose. This is a
“gravity dump” with no pump to enhance the flowrate. It is claimed
that the 8800-gallon capacity truck can be unloaded in 28 minutes.
Do you agree with this claim? Support your answer with appropri-
ate calculations.

†

8.97 The pump shown in Fig. P8.97 delivers a head of 250 ft to
the water. Determine the power that the pump adds to the water.
The difference in elevation of the two ponds is 200 ft.

8.98 Water flows through two sections of the vertical pipe shown
in Fig. P8.98. The bellows connection cannot support any force in
the vertical direction. The 0.4-ft-diameter pipe weighs 0.2 lbZft, and
the friction factor is assumed to be 0.02. At what velocity will the
force, F, required to hold the pipe be zero?

8.99 Water is circulated from a large tank, through a filter, and back
to the tank as shown in Fig. P8.99. The power added to the water by
the pump is Determine the flowrate through the filter.200 ft # lb�s.

8.94 When the pump shown in Fig. P8.94 adds 0.2 horsepower to
the flowing water, the pressures indicated by the two gages are
equal. Determine the flowrate.

Length of pipe between gages � 60 ft
Pipe diameter � 0.1 ft
Pipe friction factor � 0.03
Filter loss coefficient � 12

8.95 Water is pumped between two large open tanks as shown in
Fig. P8.95. If the pump adds 50 kW of power to the fluid, what is
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Section 8.5.1 Single Pipes—Determine Diameter

8.100 A certain process requires 2.3 cfs of water to be delivered
at a pressure of 30 psi. This water comes from a large-diameter
supply main in which the pressure remains at 60 psi. If the galva-
nized iron pipe connecting the two locations is 200 ft long and con-
tains six threaded elbows, determine the pipe diameter. Eleva-
tion differences are negligible.

8.101 Water is pumped between two large open reservoirs through
1.5 km of smooth pipe. The water surfaces in the two reservoirs are
at the same elevation. When the pump adds 20 kW to the water the
flowrate is . If minor losses are negligible, determine the pipe
diameter.

8.102 Determine the diameter of a steel pipe that is to carry
of gasoline with a pressure drop of 5 psi per 100 ft of

horizontal pipe.

8.103 Water is to be moved from a large, closed tank in which the
air pressure is 20 psi into a large, open tank through 2000 ft of
smooth pipe at the rate of The fluid level in the open tank
is 150 ft below that in the closed tank. Determine the required di-
ameter of the pipe. Neglect minor losses.

8.104 Rainwater flows through the galvanized iron downspout
shown in Fig. P8.104 at a rate of Determine the size
of the downspout cross section if it is a rectangle with an aspect
ratio of 1.7 to 1 and it is completely filled with water. Neglect the
velocity of the water in the gutter at the free surface and the head
loss associated with the elbow.

0.006 m3�s.

3 ft3�s.

2000 gal�min

1 m3�s

90°

458 Chapter 8 ■ Viscous Flow in Pipes

PumpFilter

KL elbow = 1.5
KL exit = 1.0

KL ent = 0.8

KL valve = 6.0

KL filter = 12.0

200 ft. of 0.1-ft-diameter 
pipe with ε/D = 0.01

F I G U R E  P8.99

g

70 mm

4 m

3 m

F I G U R E  P8.104

*8.105 Repeat Problem 8.104 if the downspout is circular.

Section 8.5.2 Multiple Pipe Systems

8.106 Obtain a photograph/image of a multiple pipe system with
series of parallel flows. Print this photo and write a brief paragraph
that describes the situation involved.

8.107 Air, assumed incompressible, flows through the two pipes
shown in Fig. P8.107. Determine the flowrate if minor losses are
neglected and the friction factor in each pipe is 0.015. Determine
the flowrate if the 0.5-in.-diameter pipe were replaced by a 1-in.-
diameter pipe. Comment on the assumption of incompressibility.

*8.108 Repeat Problem 8.107 if the pipes are galvanized iron and
the friction factors are not known a priori.

†8.109 Estimate the power that the human heart must impart to
the blood to pump it through the two carotid arteries from the heart
to the brain. List all assumptions and show all calculations.

8.110 The flowrate between tank A and tank B shown in
Fig. P8.110 is to be increased by 30% (i.e., from Q to 1.30Q) by
the addition of a second pipe (indicated by the dotted lines) run-
ning from node C to tank B. If the elevation of the free surface in
tank A is 25 ft above that in tank B, determine the diameter, D, of
this new pipe. Neglect minor losses and assume that the friction
factor for each pipe is 0.02.

p = 0.5 psi
T = 150°F

20 ft 20 ft

1 in. 0.50 in.

F I G U R E  P8.107
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6-in. diameter;
600 ft long

6-in. diameter;
500 ft long

C

Diameter D, 500 ft long

A

B
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838 ft

Elevation =
850 ft

Elevation =
805 ft

D = 1.0 ft
� = 800 ft

D = 1.1 ft
� = 700 ft

D = 1.2 ft
� = 600 ft

A

B

C

8.111 The three tanks shown in Fig. P8.111 are connected by pipes
with friction factors of 0.03 for each pipe. Determine the water ve-
locity in each pipe. Neglect minor losses.

8.112 The three water-filled tanks shown in Fig. P8.112 are con-
nected by pipes as indicated. If minor losses are neglected, deter-
mine the flowrate in each pipe.



8.113 (See Fluids in the News article titled “Deepwater pipeline,”
Section 8.5.2.) Five oil fields, each producing an output of Q bar-
rels per day, are connected to the 28-in.-diameter “main line pipe”
(A– B–C) by 16-in.-diameter “lateral pipes” as shown in Fig.
P8.113. The friction factor is the same for each of the pipes and
elevation effects are negligible. (a) For section A– B determine the
ratio of the pressure drop per mile in the main line pipe to that in
the lateral pipes. (b) Repeat the calculations for section B–C.
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Water meter

Shower

Hot water heater

DishwasherHot

Cold

†8.114 As shown in Fig. P8.114, cold water (T� 50 �F) flows
from the water meter to either the shower or the hot water heater.
In the hot water heater it is heated to a temperature of 150 �F. Thus,
with equal amounts of hot and cold water, the shower is at a com-
fortable 100 �F. However, when the dishwasher is turned on, the
shower water becomes too cold. Indicate how you would predict
this new shower temperature (assume the shower faucet is not ad-
justed). State any assumptions needed in your analysis.

Section 8.6 Pipe Flowrate Measurement (Also see Lab
Problem 8.127.)

8.115 Obtain a photograph/image of a flowrate measurement de-
vice. Print this photo and write a brief paragraph that describes the
measurement range of the device.

8.116 A 2-in.-diameter orifice plate is inserted in a 3-in.-diameter
pipe. If the water flowrate through the pipe is 0.90 cfs, determine
the pressure difference indicated by a manometer attached to the
flow meter.

8.117 Air to ventilate an underground mine flows through a large
2-m-diameter pipe. A crude flowrate meter is constructed by placing
a sheet metal “washer” between two sections of the pipe. Estimate
the flowrate if the hole in the sheet metal has a diameter of 1.6 m and
the pressure difference across the sheet metal is 8.0 mm of water.

8.118 Water flows through a 40-mm-diameter nozzle meter in a
75-mm-diameter pipe at a rate of Determine the pres-
sure difference across the nozzle if the temperature is (a)
or (b)

8.119 Air at and 60 psia flows in a 4-in.-diameter pipe at
a rate of 0.52 lb s. Determine the pressure at the 2-in.-diameter
throat of a Venturi meter placed in the pipe.

8.120 A 2.5-in.-diameter flow nozzle is installed in a 3.8-in.-
diameter pipe that carries water at If the air–water
manometer used to measure the pressure difference across the me-
ter indicates a reading of 3.1 ft, determine the flowrate.

8.121 A 0.064-m-diameter nozzle meter is installed in a 0.097 m-
diameter pipe that carries water at If the inverted air –water
U-tube manometer used to measure the pressure difference across
the meter indicates a reading of 1 m, determine the flowrate.

8.122 Water flows through the Venturi meter shown in
Fig. P8.122. The specific gravity of the manometer fluid is 1.52.
Determine the flowrate.

60 °C.

160 °F.

�
200 °F

80 °C.
10 °C,

0.015 m3�s.

h

Q

d

2 in.
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3 in.6 in.

2 in.

SG = 1.52

Q
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8.123 Water flows through the orifice meter shown in Fig. P8.123
at a rate of 0.10 cfs. If ft, determine the value of h.d � 0.1

8.124 Water flows through the orifice meter shown in Fig. P8.123
such that ft with in. Determine the flowrate.

8.125 The scale reading on the rotameter shown in Fig. P8.125
and Video V8.14 (also see Fig. 8.46) is directly proportional to the
volumetric flowrate. With a scale reading of 2.6 the water bubbles
up approximately 3 in. How far will it bubble up if the scale read-
ing is 5.0?

d � 1.5h � 1.6



■ Lab Problems

8.126 This problem involves the determination of the friction fac-
tor in a pipe for laminar and transitional flow conditions. To pro-
ceed with this problem, go to Appendix H which is located on the
book’s web site, www.wiley.com/college/munson.

8.127 This problem involves the calibration of an orifice meter
and a Venturi meter. To proceed with this problem, go to Appen-
dix H which is located on the book’s web site, www.wiley.com/
college/munson.

8.128 This problem involves the flow of water from a tank and
through a pipe system. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.129 This problem involves the flow of water pumped from a tank
and through a pipe system. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.130 This problem involves the pressure distribution in the en-
trance region of a pipe. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.131 This problem involves the power loss due to friction in a
coiled pipe. To proceed with this problem, go to Appendix H which
is located on the book’s web site, www.wiley.com/college/munson.

■ Life Long Learning Problems

8.132 The field of bioengineering has undergone significant
growth in recent years. Some universities have undergraduate and
graduate programs in this field. Bioengineering applies engineer-
ing principles to help solve problems in the medical field for hu-
man health. Obtain information about bioengineering applications
in blood flow. Summarize your findings in a brief report.

8.133 Data used in the Moody diagram were first published in
1944. Since then, there have been many innovations in pipe mate-
rial, pipe design, and measurement techniques. Investigate whether
there have been any improvements or enhancements to the Moody
chart. Summarize your findings in a brief report.
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8.134 As discussed in Sec. 8.4.2, flow separation in pipes can lead
to losses (we will also see in Chapter 9 that external flow separation
is a significant problem). For external flows, there have been many
mechanisms devised to help mitigate and control flow separation
from the surface, e.g., from the wing of an airplane. Investigate ei-
ther passive or active flow control mechanisms that can reduce or
eliminate internal flow separation (e.g., flow separation in a diffuser).
Summarize your findings in a brief report.

■ FlowLab Problems

*8.135 This FlowLab problem involves simulating the flow in the
entrance region of a pipe and looking at basic concepts involved
with the flow regime. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/munson.

*8.136 This FlowLab problem involves investigation of the cen-
terline pressure distribution along a pipe. To proceed with this prob-
lem, go to the book’s web site, www.wiley.com/college/munson.

*8.137 This FlowLab problem involves conducting a parametric
study to see how Reynolds number affects the entrance length of
a pipe. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/munson.

*8.138 This FlowLab problem involves investigation of pressure
drop in the entrance region of a pipe as a function of Reynolds
number as well as comparing simulation results to analytic values.
To proceed with this problem, go to the book’s web site, www.
wiley.com/college/munson.

*8.139 This FlowLab problem involves the simulation of fully de-
veloped pipe flow and how the Reynolds number affects the wall
friction. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/munson.

*8.140 This FlowLab problem involves conducting a parametric
study on the effects of a sudden pipe expansion on the overall pres-
sure drop in a pipe. To proceed with this problem, go to the book’s
web site, www.wiley.com/college/munson.

*8.141 This FlowLab problem involves investigation of effects of
the pipe expansion ratio on flow separation. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/munson.

*8.142 This FlowLab problem involves investigation of geometric
effects of a diffuser on the resulting flow field. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/munson.

*8.143 This FlowLab problem involves investigating the effects
of the diameter ratio for a flat plate type orifice meter. To proceed
with this problem, go to the book’s web site, www.wiley.com/
college/munson.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley.
com/college/munson.
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