

CHAPTER OPENING PHOTO: Floating iceberg: An iceberg is a large piece of fresh water ice that originated as snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh water ice is lighter than the salt water in the ocean, the difference in densities is relatively small. Hence, only about one ninth of the volume of an iceberg protrudes above the ocean's surface, so that what we see floating is literally "just the tip of the iceberg." (Photograph courtesy of Corbis Digital Stock/Corbis Images)

Learning Objectives

After completing this chapter, you should be able to:

- determine the pressure at various locations in a fluid at rest.
- explain the concept of manometers and apply appropriate equations to determine pressures.
- calculate the hydrostatic pressure force on a plane or curved submerged surface.
- calculate the buoyant force and discuss the stability of floating or submerged objects.

In this chapter we will consider an important class of problems in which the fluid is either at rest or moving in such a manner that there is no relative motion between adjacent particles. In both instances there will be no shearing stresses in the fluid, and the only forces that develop on the surfaces of the particles will be due to the pressure. Thus, our principal concern is to investigate pressure and its variation throughout a fluid and the effect of pressure on submerged surfaces. The absence of shearing stresses greatly simplifies the analysis and, as we will see, allows us to obtain relatively simple solutions to many important practical problems.

2.1 Pressure at a Point

As we briefly discussed in Chapter 1, the term pressure is used to indicate the normal force per unit area at a given point acting on a given plane within the fluid mass of interest. A question that immediately arises is how the pressure at a point varies with the orientation of the plane passing

through the point. To answer this question, consider the free-body diagram, illustrated in Fig. 2.1, that was obtained by removing a small triangular wedge of fluid from some arbitrary location within a fluid mass. Since we are considering the situation in which there are no shearing stresses, the only external forces acting on the wedge are due to the pressure and the weight. For simplicity the forces in the x direction are not shown, and the z axis is taken as the vertical axis so the weight acts in the negative z direction. Although we are primarily interested in fluids at rest, to make the analysis as general as possible, we will allow the fluid element to have accelerated motion. The assumption of zero shearing stresses will still be valid so long as the fluid element moves as a rigid body; that is, there is no relative motion between adjacent elements.

The equations of motion (Newton's second law, $\mathbf{F} = m\mathbf{a}$) in the y and z directions are, respectively,

$$\sum F_y = p_y \,\delta x \,\delta z - p_s \,\delta x \,\delta s \sin \theta = \rho \,\frac{\delta x \,\delta y \,\delta z}{2} \,a_y$$
$$\sum F_z = p_z \,\delta x \,\delta y - p_s \,\delta x \,\delta s \cos \theta - \gamma \,\frac{\delta x \,\delta y \,\delta z}{2} = \rho \,\frac{\delta x \,\delta y \,\delta z}{2} \,a_z$$

where p_s , p_y , and p_z are the average pressures on the faces, γ and ρ are the fluid specific weight and density, respectively, and a_y , a_z the accelerations. Note that a pressure must be multiplied by an appropriate area to obtain the force generated by the pressure. It follows from the geometry that

$$\delta y = \delta s \cos \theta \qquad \delta z = \delta s \sin \theta$$

so that the equations of motion can be rewritten as

The pressure at a point in a fluid at rest is independent of direction.

$$p_{y} - p_{s} = \rho a_{y} \frac{\delta y}{2}$$
$$p_{z} - p_{s} = (\rho a_{z} + \gamma) \frac{\delta z}{2}$$

Since we are really interested in what is happening at a point, we take the limit as δx , δy , and δz approach zero (while maintaining the angle θ), and it follows that

$$p_y = p_s \qquad p_z = p_s$$

or $p_s = p_y = p_z$. The angle θ was arbitrarily chosen so we can conclude that *the pressure at a point* in a fluid at rest, or in motion, is independent of direction as long as there are no shearing stresses present. This important result is known as **Pascal's law**, named in honor of Blaise Pascal (1623– 1662), a French mathematician who made important contributions in the field of hydrostatics. Thus, as shown by the photograph in the margin, at the junction of the side and bottom of the beaker, the pressure is the same on the side as it is on the bottom. In Chapter 6 it will be shown that for moving fluids in which there is relative motion between particles (so that shearing stresses develop), the normal stress at a point, which corresponds to pressure in fluids at rest, is not necessarily the same in all directions. In such cases the pressure is defined as the *average* of any three mutually perpendicular normal stresses at the point.

2.2 Basic Equation for Pressure Field

Although we have answered the question of how the pressure at a point varies with direction, we are now faced with an equally important question—how does the pressure in a fluid in which there are no shearing stresses vary from point to point? To answer this question consider a small rectangular element of fluid removed from some arbitrary position within the mass of fluid of interest as illustrated in Fig. 2.2. There are two types of forces acting on this element: *surface forces* due to the pressure, and a *body force* equal to the weight of the element. Other possible types of body forces, such as those due to magnetic fields, will not be considered in this text.

The pressure may vary across a fluid particle.

If we let the pressure at the center of the element be designated as p, then the average pressure on the various faces can be expressed in terms of p and its derivatives, as shown in Fig. 2.2. We are actually using a Taylor series expansion of the pressure at the element center to approximate the pressures a short distance away and neglecting higher order terms that will vanish as we let δx , δy , and δz approach zero. This is illustrated by the figure in the margin. For simplicity the surface forces in the x direction are not shown. The resultant surface force in the y direction is

$$\delta F_{y} = \left(p - \frac{\partial p}{\partial y}\frac{\delta y}{2}\right)\delta x \,\delta z - \left(p + \frac{\partial p}{\partial y}\frac{\delta y}{2}\right)\delta x \,\delta z$$

$$\delta F_y = -\frac{\partial p}{\partial y} \, \delta x \, \delta y \, \delta z$$

Similarly, for the x and z directions the resultant surface forces are

$$\delta F_x = -\frac{\partial p}{\partial x} \, \delta x \, \delta y \, \delta z \qquad \delta F_z = -\frac{\partial p}{\partial z} \, \delta x \, \delta y \, \delta z$$

The resultant surface force acting on the element can be expressed in vector form as

$$\delta \mathbf{F}_s = \delta F_x \mathbf{\hat{i}} + \delta F_y \mathbf{\hat{j}} + \delta F_z \mathbf{\hat{k}}$$

The resultant surface force acting on a small fluid element depends only on the pressure gradient if there are no shearing stresses present.

$$\delta \mathbf{F}_{s} = -\left(\frac{\partial p}{\partial x}\,\mathbf{\hat{i}} + \frac{\partial p}{\partial y}\,\mathbf{\hat{j}} + \frac{\partial p}{\partial z}\,\mathbf{\hat{k}}\right)\delta x\,\,\delta y\,\,\delta z \tag{2.1}$$

where $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit vectors along the coordinate axes shown in Fig. 2.2. The group of terms in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can be written as

$$\frac{\partial p}{\partial x}\,\mathbf{\hat{i}} + \frac{\partial p}{\partial y}\,\mathbf{\hat{j}} + \frac{\partial p}{\partial z}\,\mathbf{\hat{k}} = \nabla p$$

where

or

$$\nabla(\) = \frac{\partial(\)}{\partial x}\,\mathbf{\hat{i}} + \frac{\partial(\)}{\partial y}\,\mathbf{\hat{j}} + \frac{\partial(\)}{\partial z}\,\mathbf{\hat{k}}$$

and the symbol ∇ is the gradient or "del" vector operator. Thus, the resultant surface force per unit volume can be expressed as

$$\frac{\delta \mathbf{F}_s}{\delta x \, \delta y \, \delta z} = -\nabla p$$

Since the z axis is vertical, the weight of the element is

$$-\delta W \hat{\mathbf{k}} = -\gamma \, \delta x \, \delta y \, \delta z \, \hat{\mathbf{k}}$$

where the negative sign indicates that the force due to the weight is downward (in the negative z direction). Newton's second law, applied to the fluid element, can be expressed as

$$\sum \delta \mathbf{F} = \delta m \mathbf{a}$$

where $\Sigma \delta F$ represents the resultant force acting on the element, **a** is the acceleration of the element, and δm is the element mass, which can be written as $\rho \, \delta x \, \delta y \, \delta z$. It follows that

$$\sum \delta \mathbf{F} = \delta \mathbf{F}_s - \delta^{\circ} \mathcal{W} \hat{\mathbf{k}} = \delta m \mathbf{a}$$

or

$$-\nabla p \, \delta x \, \delta y \, \delta z - \gamma \, \delta x \, \delta y \, \delta z \, \hat{\mathbf{k}} = \rho \, \delta x \, \delta y \, \delta z \, \mathbf{a}$$

and, therefore,

$$-\nabla p - \gamma \hat{\mathbf{k}} = \rho \mathbf{a} \tag{2.2}$$

Equation 2.2 is the general equation of motion for a fluid in which there are no shearing stresses. We will use this equation in Section 2.12 when we consider the pressure distribution in a moving fluid. For the present, however, we will restrict our attention to the special case of a fluid at rest.

Pressure Variation in a Fluid at Rest 2.3

For a fluid at rest $\mathbf{a} = 0$ and Eq. 2.2 reduces to

$$\nabla p + \gamma \hat{\mathbf{k}} = 0$$

or in component form

$$\frac{\partial p}{\partial x} = 0$$
 $\frac{\partial p}{\partial y} = 0$ $\frac{\partial p}{\partial z} = -\gamma$ (2.3)

These equations show that the pressure does not depend on x or y. Thus, as we move from point to point in a horizontal plane (any plane parallel to the x-y plane), the pressure does not For liquids or gases at rest, the pressure gradient in the vertical direction at any point in a fluid depends only on the specific weight of the fluid at that point.

change. Since p depends only on z, the last of Eqs. 2.3 can be written as the ordinary differential equation

$$\frac{dp}{dz} = -\gamma \tag{2.4}$$

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine how pressure changes with elevation. This equation and the figure in the margin indicate that the pressure gradient in the vertical direction is negative; that is, the pressure decreases as we move upward in a fluid at rest. There is no requirement that γ be a constant. Thus, it is valid for fluids with constant specific weight, such as liquids, as well as fluids whose specific weight may vary with elevation, such as air or other gases. However, to proceed with the integration of Eq. 2.4 it is necessary to stipulate how the specific weight varies with *z*.

If the fluid is flowing (i.e., not at rest with $\mathbf{a} = 0$), then the pressure variation is much more complex than that given by Eq. 2.4. For example, the pressure distribution on your car as it is driven along the road varies in a complex manner with x, y, and z. This idea is covered in detail in Chapters 3, 6, and 9.

2.3.1 Incompressible Fluid

to yield

or

or

Since the specific weight is equal to the product of fluid density and acceleration of gravity $(\gamma = \rho g)$, changes in γ are caused either by a change in ρ or g. For most engineering applications the variation in g is negligible, so our main concern is with the possible variation in the fluid density. In general, a fluid with constant density is called an *incompressible fluid*. For liquids the variation in density is usually negligible, even over large vertical distances, so that the assumption of constant specific weight when dealing with liquids is a good one. For this instance, Eq. 2.4 can be directly integrated

$$\int_{p_1}^{p_2} dp = -\gamma \int_{z_1}^{z_2} dz$$

$$p_2 - p_1 = -\gamma(z_2 - z_1)$$

$$p_1 - p_2 = \gamma(z_2 - z_1) \tag{2.5}$$

where p_1 and p_2 are pressures at the vertical elevations z_1 and z_2 , as is illustrated in Fig. 2.3. Equation 2.5 can be written in the compact form

$$p_1 - p_2 = \gamma h \tag{2.6}$$

$$p_1 = \gamma h + p_2 \tag{2.7}$$

where h is the distance, $z_2 - z_1$, which is the depth of fluid measured downward from the location of p_2 . This type of pressure distribution is commonly called a *hydrostatic distribution*, and Eq. 2.7

FIGURE 2.3 Notation for pressure variation in a fluid at rest with a free surface.

shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure must increase with depth to "hold up" the fluid above it.

It can also be observed from Eq. 2.6 that the pressure difference between two points can be specified by the distance h since

$$h = \frac{p_1 - p_2}{\gamma}$$

In this case h is called the *pressure head* and is interpreted as the height of a column of fluid of specific weight γ required to give a pressure difference $p_1 - p_2$. For example, a pressure difference of 10 psi can be specified in terms of pressure head as 23.1 ft of water ($\gamma = 62.4 \text{ lb/ft}^3$), or 518 mm of Hg ($\gamma = 133 \text{ kN/m}^3$). As illustrated by the figure in the margin, a 23.1-ft-tall column of water with a cross-sectional area of 1 in.² weighs 10 lb.

h

е

t

Giraffe's blood pressure A giraffe's long neck allows it to graze up to 6 m above the ground. It can also lower its head to drink at ground level. Thus, in the circulatory system there is a significant *hydrostatic pressure* effect due to this elevation change. To maintain blood to its head throughout this change in elevation, the giraffe must maintain a relatively high blood pressure at heart level—approximately two and a half times that in humans. To prevent rupture of blood vessels in the high-pressure lower leg re-

d

S

H

gions, giraffes have a tight sheath of thick skin over their lower limbs which acts like an elastic bandage in exactly the same way as do the g-suits of fighter pilots. In addition, valves in the upper neck prevent backflow into the head when the giraffe lowers its head to ground level. It is also thought that blood vessels in the giraffe's kidney have a special mechanism to prevent large changes in filtration rate when blood pressure increases or decreases with its head movement. (See Problem 2.14.)

Ν

е

W

S

When one works with liquids there is often a free surface, as is illustrated in Fig. 2.3, and it is convenient to use this surface as a reference plane. The reference pressure p_0 would correspond to the pressure acting on the free surface (which would frequently be atmospheric pressure), and thus if we let $p_2 = p_0$ in Eq. 2.7 it follows that the pressure p at any depth h below the free surface is given by the equation:

$$p = \gamma h + p_0 \tag{2.8}$$

As is demonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible fluid at rest depends on the depth of the fluid relative to some reference plane, and it is *not* influenced by the *size* or *shape* of the tank or container in which the fluid is held. Thus, in Fig. 2.4

F

n

Specific weight y

FIGURE 2.4 Fluid pressure in containers of arbitrary shape.

the pressure is the same at all points along the line AB even though the containers may have the very irregular shapes shown in the figure. The actual value of the pressure along AB depends only on the depth, h, the surface pressure, p_0 , and the specific weight, γ , of the liquid in the container.

EXAMPLE 2.1 Pressure-Depth Relationship

GIVEN Because of a leak in a buried gasoline storage tank, water has seeped in to the depth shown in Fig. E2.1. The specific gravity of the gasoline is SG = 0.68.

FIND Determine the pressure at the gasoline–water interface and at the bottom of the tank. Express the pressure in units of lb/ft^2 , $lb/in.^2$, and as a pressure head in feet of water.

SOLUTION .

Since we are dealing with liquids at rest, the pressure distribution will be hydrostatic, and therefore the pressure variation can be found from the equation:

$$p = \gamma h + p_0$$

With p_0 corresponding to the pressure at the free surface of the gasoline, then the pressure at the interface is

$$p_1 = SG\gamma_{\text{H}_2\text{O}}h + p_0$$

= (0.68)(62.4 lb/ft³)(17 ft) + p_0
= 721 + p_0 (lb/ft²)

If we measure the pressure relative to atmospheric pressure (gage pressure), it follows that $p_0 = 0$, and therefore

$$p_1 = 721 \text{ lb/ft}^2 \tag{Ans}$$

$$p_1 = \frac{721 \text{ lb/ft}^2}{144 \text{ in.}^2/\text{ft}^2} = 5.01 \text{ lb/in.}^2$$
 (Ans)

$$\frac{p_1}{\gamma_{\rm H,0}} = \frac{721 \text{ lb/ft}^2}{62.4 \text{ lb/ft}^3} = 11.6 \text{ ft}$$
 (Ans)

It is noted that a rectangular column of water 11.6 ft tall and 1 ft² in cross section weighs 721 lb. A similar column with a 1-in.² cross section weighs 5.01 lb.

We can now apply the same relationship to determine the pressure at the tank bottom; that is,

$$p_2 = \gamma_{H_2O} h_{H_2O} + p_1$$

= (62.4 lb/ft³)(3 ft) + 721 lb/ft² (Ans)
= 908 lb/ft²

$$p_2 = \frac{908 \text{ lb/ft}^2}{144 \text{ in.}^2/\text{ft}^2} = 6.31 \text{ lb/in.}^2$$
 (Ans)

$$\frac{p_2}{\gamma_{\rm H,O}} = \frac{908 \text{ lb/ft}^2}{62.4 \text{ lb/ft}^3} = 14.6 \text{ ft}$$
 (Ans)

COMMENT Observe that if we wish to express these pressures in terms of *absolute* pressure, we would have to add the local atmospheric pressure (in appropriate units) to the previous results. A further discussion of gage and absolute pressure is given in Section 2.5.

The transmission of pressure throughout a stationary fluid is the principle upon which many hydraulic devices are based. The required equality of pressures at equal elevations throughout a system is important for the operation of hydraulic jacks (see Fig. 2.5*a*), lifts, and presses, as well as hydraulic controls on aircraft and other types of heavy machinery. The fundamental idea behind such devices and systems is demonstrated in Fig. 2.5*b*. A piston located at one end of a closed system filled with a liquid, such as oil, can be used to change the pressure throughout the system, and thus transmit an applied force F_1 to a second piston where the resulting force is F_2 . Since the pressure *p* acting on the faces of both pistons is the same (the effect of elevation changes is usually negligible for this type of hydraulic device), it follows that $F_2 = (A_2/A_1)F_1$. The piston area A_2 can be made much larger than A_1 and therefore a large mechanical advantage can be developed; that is, a small force applied at the smaller piston can be used to develop a large force at the larger piston. The applied force could be created manually through some type of mechanical device, such as a hydraulic jack, or through compressed air acting directly on the surface of the liquid, as is done in hydraulic lifts commonly found in service stations.

2.3.2 Compressible Fluid

and by separating variables

We normally think of gases such as air, oxygen, and nitrogen as being **compressible fluids** since the density of the gas can change significantly with changes in pressure and temperature. Thus, although Eq. 2.4 applies at a point in a gas, it is necessary to consider the possible variation in γ before the equation can be integrated. However, as was discussed in Chapter 1, the specific weights of common gases are small when compared with those of liquids. For example, the specific weight of air at sea level and 60 °F is 0.0763 lb/ft³, whereas the specific weight of water under the same conditions is 62.4 lb/ft³. Since the specific weights of gases are comparatively small, it follows from Eq. 2.4 that the pressure gradient in the vertical direction is correspondingly small, and even over distances of several hundred feet the pressure will remain essentially constant for a gas. This means we can neglect the effect of elevation changes on the pressure in gases in tanks, pipes, and so forth in which the distances involved are small.

For those situations in which the variations in heights are large, on the order of thousands of feet, attention must be given to the variation in the specific weight. As is described in Chapter 1, the equation of state for an ideal (or perfect) gas is

$$\rho = \frac{p}{RT}$$

If the specific weight of a fluid varies significantly as we move from point to point, the pressure will no longer vary linearly with depth.

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature. This relationship can be combined with Eq. 2.4 to give

$$\frac{dp}{dz} = -\frac{gp}{RT}$$

$$\int_{-\infty}^{p_2} dp = p = \sigma \int_{-\infty}^{z_2} dr$$

$$\sum_{p_1}^{p_2} \frac{dp}{p} = \ln \frac{p_2}{p_1} = -\frac{g}{R} \int_{z_1}^{z_2} \frac{dz}{T}$$
(2.9)

where g and R are assumed to be constant over the elevation change from z_1 to z_2 . Although the acceleration of gravity, g, does vary with elevation, the variation is very small (see Tables C.1 and C.2 in Appendix C), and g is usually assumed constant at some average value for the range of elevation involved.

Before completing the integration, one must specify the nature of the variation of temperature with elevation. For example, if we assume that the temperature has a constant value T_0 over the range z_1 to z_2 (*isothermal* conditions), it then follows from Eq. 2.9 that

$$p_2 = p_1 \exp\left[-\frac{g(z_2 - z_1)}{RT_0}\right]$$
(2.10)

This equation provides the desired pressure–elevation relationship for an isothermal layer. As shown in the margin figure, even for a 10,000-ft altitude change the difference between the constant temperature (isothermal) and the constant density (incompressible) results are relatively minor. For nonisothermal conditions a similar procedure can be followed if the temperature–elevation relationship is known, as is discussed in the following section.

EXAMPLE 2.2 Incompressible and Isothermal Pressure-Depth Variations

GIVEN In 2007 the Burj Dubai skyscraper being built in the United Arab Emirates reached the stage in its construction where it became the world's tallest building. When completed it is expected to be at least 2275 ft tall, although its final height remains a secret.

FIND (a) Estimate the ratio of the pressure at the projected 2275ft top of the building to the pressure at its base, assuming the air to be at a common temperature of 59 °F. (b) Compare the pressure calculated in part (a) with that obtained by assuming the air to be incompressible with $\gamma = 0.0765 \text{ lb/ft}^3$ at 14.7 psi (abs) (values for air at standard sea level conditions).

SOLUTION

For the assumed isothermal conditions, and treating air as a compressible fluid, Eq. 2.10 can be applied to yield

$$\frac{p_2}{p_1} = \exp\left[-\frac{g(z_2 - z_1)}{RT_0}\right]$$

= $\exp\left\{-\frac{(32.2 \text{ ft/s}^2)(2275 \text{ ft})}{(1716 \text{ ft} \cdot \text{lb/slug} \cdot ^\circ\text{R})[(59 + 460)^\circ\text{R}]}\right\}$
= 0.921 (Ans

If the air is treated as an incompressible fluid we can apply Eq. 2.5. In this case

$$p_2 = p_1 - \gamma(z_2 - z_1)$$

or

$$\frac{p_2}{p_1} = 1 - \frac{\gamma(z_2 - z_1)}{p_1}$$

= 1 - $\frac{(0.0765 \text{ lb/ft}^3)(2275 \text{ ft})}{(14.7 \text{ lb/in.}^2)(144 \text{ in.}^2/\text{ft}^2)} = 0.918$ (Ans)

COMMENTS Note that there is little difference between the two results. Since the pressure difference between the bottom and top of the building is small, it follows that the variation in fluid density is small and, therefore, the compressible

FIGURE E2.2 (Figure courtesy of Emaar Properties, Dubai, UAE.)

fluid and incompressible fluid analyses yield essentially the same result.

We see that for both calculations the pressure decreases by approximately 8% as we go from ground level to the top of this tallest building. It does not require a very large pressure difference to support a 2275-ft-tall column of fluid as light as air. This result supports the earlier statement that the changes in pressures in air and other gases due to elevation changes are very small, even for distances of hundreds of feet. Thus, the pressure differences between the top and bottom of a horizontal pipe carrying a gas, or in a gas storage tank, are negligible since the distances involved are very small.

2.4 Standard Atmosphere

The standard atmosphere is an idealized representation of mean conditions in the earth's atmosphere.

An important application of Eq. 2.9 relates to the variation in pressure in the earth's atmosphere. Ideally, we would like to have measurements of pressure versus altitude over the specific range for the specific conditions (temperature, reference pressure) for which the pressure is to be determined. However, this type of information is usually not available. Thus, a "standard atmosphere" has been determined that can be used in the design of aircraft, missiles, and spacecraft, and in comparing their performance under standard conditions. The concept of a standard atmosphere was first developed in the 1920s, and since that time many national and international committees and organizations have pursued the development of such a standard. The currently accepted standard atmosphere is based on a report published in 1962 and updated in 1976 (see Refs. 1 and 2), defining the so-called U.S. standard atmosphere, which is an idealized representation of middle-latitude, yearround mean conditions of the earth's atmosphere. Several important properties for standard atmospheric conditions at sea level are listed in Table 2.1, and Fig. 2.6 shows the temperature profile for the U.S. standard atmosphere. As is shown in this figure the temperature decreases with altitude in the region nearest the earth's surface (troposphere), then becomes essentially constant in the next layer (*stratosphere*), and subsequently starts to increase in the next layer. Typical events that occur in the atmosphere are shown in the figure in the margin.

Since the temperature variation is represented by a series of linear segments, it is possible to integrate Eq. 2.9 to obtain the corresponding pressure variation. For example, in the troposphere, which extends to an altitude of about 11 km (\sim 36,000 ft), the temperature variation is of the form

$$T = T_a - \beta z \tag{2.11}$$

TABLE 2.1 Properties of U.S. Standard Atmosphere at Sea Level^a

Property	SI Units	BG Units
Temperature, T	288.15 K (15 °C)	518.67 °R (59.00 °F)
Pressure, p	101.33 kPa (abs)	2116.2 lb/ft ² (abs) [14.696 lb/in. ² (abs)]
Density, ρ	1.225 kg/m^3	0.002377 slugs/ft3
Specific weight, γ	12.014 N/m ³	0.07647 lb/ft3
Viscosity, μ	$1.789\times 10^{-5}\mathrm{N\cdot s/m^2}$	$3.737 \times 10^{-7} \mathrm{lb} \cdot \mathrm{s/ft}^2$

^aAcceleration of gravity at sea level = $9.807 \text{ m/s}^2 = 32.174 \text{ ft/s}^2$.

■ FIGURE 2.6 Variation of temperature with altitude in the U.S. standard atmosphere.

where T_a is the temperature at sea level (z = 0) and β is the *lapse rate* (the rate of change of temperature with elevation). For the standard atmosphere in the troposphere, $\beta = 0.00650$ K/m or 0.00357 °R/ft.

Equation 2.11 used with Eq. 2.9 yields

$$p = p_a \left(1 - \frac{\beta z}{T_a}\right)^{g/R\beta}$$
(2.12)

where p_a is the absolute pressure at z = 0. With p_a , T_a , and g obtained from Table 2.1, and with the gas constant $R = 286.9 \text{ J/kg} \cdot \text{K}$ or 1716 ft $\cdot \text{lb/slug} \cdot ^{\circ}\text{R}$, the pressure variation throughout the troposphere can be determined from Eq. 2.12. This calculation shows that at the outer edge of the troposphere, where the temperature is $-56.5 \,^{\circ}\text{C}$, the absolute pressure is about 23 kPa (3.3 psia). It is to be noted that modern jetliners cruise at approximately this altitude. Pressures at other altitudes are shown in Fig. 2.6, and tabulated values for temperature, acceleration of gravity, pressure, density, and viscosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in Appendix C.

2.5 Measurement of Pressure

Pressure is designated as either absolute pressure or gage pressure. Since pressure is a very important characteristic of a fluid field, it is not surprising that numerous devices and techniques are used in its measurement. As is noted briefly in Chapter 1, the pressure at a point within a fluid mass will be designated as either an *absolute* pressure or a *gage* pressure. Absolute pressure is measured relative to a perfect vacuum (absolute zero pressure), whereas gage pressure is measured relative to the local atmospheric pressure. Thus, a gage pressure of zero corresponds to a pressure that is equal to the local atmospheric pressure. Absolute pressures are always positive, but gage pressures can be either positive or negative depending on whether the pressure is above atmospheric pressure (a positive value) or below atmospheric pressure. For example, 10 psi (abs) could be expressed as -4.7 psi (gage), if the local atmospheric pressure is 14.7 psi, or alternatively 4.7 psi suction or 4.7 psi vacuum. The concept of gage and absolute pressure is illustrated graphically in Fig. 2.7 for two typical pressures located at points 1 and 2.

In addition to the reference used for the pressure measurement, the *units* used to express the value are obviously of importance. As is described in Section 1.5, pressure is a force per unit area, and the units in the BG system are lb/ft^2 or $lb/in.^2$, commonly abbreviated psf or psi, respectively. In the SI system the units are N/m²; this combination is called the pascal and written as Pa (1 N/m² = 1 Pa). As noted earlier, pressure can also be expressed as the height of a column of liquid. Then, the units will refer to the height of the column (in., ft, mm, m, etc.), and in addition, the liquid in the column must be specified (H₂O, Hg, etc.). For example, standard atmospheric pressure can be expressed as 760 mm Hg (abs). *In this text, pressures will be assumed to be gage pressures unless specifically designated absolute.* For example, 10 psi or 100 kPa would be gage pressures, whereas 10 psia or 100 kPa (abs) would refer to absolute pressures. It is to be

FIGURE 2.7 Graphical representation of gage and absolute pressure.

Absolute zero reference

noted that *pressure differences* are independent of the reference, so that no special notation is required in this case.

The measurement of atmospheric pressure is usually accomplished with a mercury *barometer*, which in its simplest form consists of a glass tube closed at one end with the open end immersed in a container of mercury as shown in Fig. 2.8. The tube is initially filled with mercury (inverted with its open end up) and then turned upside down (open end down), with the open end in the container of mercury. The column of mercury will come to an equilibrium position where its weight plus the force due to the vapor pressure (which develops in the space above the column) balances the force due to the atmospheric pressure. Thus,

$$p_{\rm atm} = \gamma h + p_{\rm vapor} \tag{2.13}$$

where γ is the specific weight of mercury. For most practical purposes the contribution of the vapor pressure can be neglected since it is very small [for mercury, $p_{vapor} = 0.000023$ lb/in.² (abs) at a temperature of 68 °F], so that $p_{atm} \approx \gamma h$. It is conventional to specify atmospheric pressure in terms of the height, h, in millimeters or inches of mercury. Note that if water were used instead of mercury, the height of the column would have to be approximately 34 ft rather than 29.9 in. of mercury for an atmospheric pressure of 14.7 psia! This is shown to scale in the figure in the margin. The concept of the mercury barometer is an old one, with the invention of this device attributed to Evangelista Torricelli in about 1644.

EXAMPLE 2.3 Barometric Pressure

GIVEN A mountain lake has an average temperature of 10 °C and a maximum depth of 40 m. The barometric pressure is 598 mm Hg.

FIND Determine the absolute pressure (in pascals) at the deepest part of the lake.

SOLUTION

The pressure in the lake at any depth, h, is given by the equation

$$p = \gamma h + p_0$$

where p_0 is the pressure at the surface. Since we want the absolute pressure, p_0 will be the local barometric pressure expressed in a consistent system of units; that is

$$\frac{p_{\text{barometric}}}{\gamma_{\text{Hg}}} = 598 \text{ mm} = 0.598 \text{ m}$$

and for $\gamma_{\text{Hg}} = 133 \text{ kN/m}^3$ $p_0 = (0.598 \text{ m})(133 \text{ kN/m}^3) = 79.5 \text{ kN/m}^2$

From Table B.2,
$$\gamma_{\rm H,O} = 9.804 \text{ kN/m}^3$$
 at 10 °C and therefore

$$p = (9.804 \text{ kN/m}^3)(40 \text{ m}) + 79.5 \text{ kN/m}^2$$

= 392 kN/m² + 79.5 kN/m²
= 472 kPa (abs) (Ans)

COMMENT This simple example illustrates the need for close attention to the units used in the calculation of pressure; that is, be sure to use a *consistent* unit system, and be careful not to add a pressure head (m) to a pressure (Pa).

Water

Fluids in the News

Weather, barometers, and bars One of the most important indicators of weather conditions is *atmospheric pressure*. In general, a falling or low pressure indicates bad weather; rising or high pressure, good weather. During the evening TV weather report in the United States, atmospheric pressure is given as so many inches (commonly around 30 in.). This value is actually the height of the mercury column in a mercury *barometer* adjusted to sea level. To determine the true atmospheric pressure at a particular location, the elevation relative to sea level must be known. Another unit used by meteorologists to indicate atmospheric pressure is the *bar*, first used in weather reporting in 1914, and defined as 10^5 N/m^2 . The definition of a bar is probably related to the fact that standard sealevel pressure is $1.0133 \times 10^5 \text{ N/m}^2$, that is, only slightly larger than one bar. For typical weather patterns, "sea-level equivalent" atmospheric pressure remains close to one bar. However, for extreme weather conditions associated with tornadoes, hurricanes, or typhoons, dramatic changes can occur. The lowest atmospheric sea-level pressure ever recorded was associated with a typhoon, Typhoon Tip, in the Pacific Ocean on October 12, 1979. The value was 0.870 bars (25.8 in. Hg). (See Problem 2.19.)

2.6 Manometry

Manometers use vertical or inclined liquid columns to measure pressure. A standard technique for measuring pressure involves the use of liquid columns in vertical or inclined tubes. Pressure measuring devices based on this technique are called *manometers*. The mercury barometer is an example of one type of manometer, but there are many other configurations possible, depending on the particular application. Three common types of manometers include the piezometer tube, the U-tube manometer, and the inclined-tube manometer.

2.6.1 Piezometer Tube

The simplest type of manometer consists of a vertical tube, open at the top, and attached to the container in which the pressure is desired, as illustrated in Fig. 2.9. The figure in the margin shows an important device whose operation is based upon this principle. It is a sphygmomanometer, the traditional instrument used to measure blood pressure.

Since manometers involve columns of fluids at rest, the fundamental equation describing their use is Eq. 2.8

$$p = \gamma h + p_0$$

which gives the pressure at any elevation within a homogeneous fluid in terms of a reference pressure p_0 and the vertical distance *h* between *p* and p_0 . Remember that in a fluid at rest pressure will *increase* as we move *downward* and will decrease as we move *upward*. Application of this equation to the piezometer tube of Fig. 2.9 indicates that the pressure p_A can be determined by a measurement of h_1 through the relationship

$$p_A = \gamma_1 h_1$$

where γ_1 is the specific weight of the liquid in the container. Note that since the tube is open at the top, the pressure p_0 can be set equal to zero (we are now using gage pressure), with the height

 h_1 measured from the meniscus at the upper surface to point (1). Since point (1) and point A within the container are at the same elevation, $p_A = p_1$.

Although the piezometer tube is a very simple and accurate pressure measuring device, it has several disadvantages. It is only suitable if the pressure in the container is greater than atmospheric pressure (otherwise air would be sucked into the system), and the pressure to be measured must be relatively small so the required height of the column is reasonable. Also, the fluid in the container in which the pressure is to be measured must be a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer which is widely used consists of a tube formed into the shape of a U, as is shown in Fig. 2.10. The fluid in the manometer is called the *gage fluid*. To find the pressure p_A in terms of the various column heights, we start at one end of the system and work our way around to the other end, simply utilizing Eq. 2.8. Thus, for the U-tube manometer shown in Fig. 2.10, we will start at point A and work around to the open end. The pressure at points A and (1) are the same, and as we move from point (1) to (2) the pressure will increase by $\gamma_1 h_1$. The pressure at point (2) is equal to the pressure at point (3), since the pressures at equal elevations in a continuous mass of fluid at rest must be the same. Note that we could not simply "jump across" from point (1) to a point at the same elevation in the right-hand tube since these would not be points within the same continuous mass of fluid. With the pressure at point (3) specified, we now move to the open end where the pressure is zero. As we move vertically upward the pressure decreases by an amount $\gamma_2 h_2$. In equation form these various steps can be expressed as

$$p_A + \gamma_1 h_1 - \gamma_2 h_2 = 0$$

and, therefore, the pressure p_A can be written in terms of the column heights as

$$p_A = \gamma_2 h_2 - \gamma_1 h_1 \tag{2.14}$$

A major advantage of the U-tube manometer lies in the fact that the gage fluid can be different from the fluid in the container in which the pressure is to be determined. For example, the fluid in A in Fig. 2.10 can be either a liquid or a gas. If A does contain a gas, the contribution of the gas column, $\gamma_1 h_1$, is almost always negligible so that $p_A \approx p_2$, and in this instance Eq. 2.14 becomes

$$p_A = \gamma_2 h_2$$

Thus, for a given pressure the height, h_2 , is governed by the specific weight, γ_2 , of the gage fluid used in the manometer. If the pressure p_A is large, then a heavy gage fluid, such as mercury, can be used and a reasonable column height (not too long) can still be maintained. Alternatively, if the pressure p_A is small, a lighter gage fluid, such as water, can be used so that a relatively large column height (which is easily read) can be achieved.

The contribution of gas columns in manometers is usually negligible since the weight of the gas is so small.

EXAMPLE 2.4 Simple U-Tube Manometer

GIVEN A closed tank contains compressed air and oil $(SG_{oil} = 0.90)$ as is shown in Fig. E2.4. A U-tube manometer using mercury $(SG_{Hg} = 13.6)$ is connected to the tank as shown. The column heights are $h_1 = 36$ in., $h_2 = 6$ in., and $h_3 = 9$ in.

FIND Determine the pressure reading (in psi) of the gage.

SOLUTION

Following the general procedure of starting at one end of the manometer system and working around to the other, we will start at the air–oil interface in the tank and proceed to the open end where the pressure is zero. The pressure at level (1) is

$$p_1 = p_{\rm air} + \gamma_{\rm oil}(h_1 + h_2)$$

This pressure is equal to the pressure at level (2), since these two points are at the same elevation in a homogeneous fluid at rest. As we move from level (2) to the open end, the pressure must decrease by $\gamma_{\rm Hg}h_3$, and at the open end the pressure is zero. Thus, the manometer equation can be expressed as

$$p_{\rm air} + \gamma_{\rm oil}(h_1 + h_2) - \gamma_{\rm Hg}h_3 =$$

0

or

$$p_{\rm air} + (SG_{\rm oil})(\gamma_{\rm H,O})(h_1 + h_2) - (SG_{\rm Hg})(\gamma_{\rm H,O})h_3 = 0$$

For the values given

$$p_{air} = -(0.9)(62.4 \text{ lb/ft}^3) \left(\frac{36+6}{12} \text{ ft}\right) + (13.6)(62.4 \text{ lb/ft}^3) \left(\frac{9}{12} \text{ ft}\right)$$

so that

$$p_{\rm air} = 440 \, \rm lb/ft^2$$

Since the specific weight of the air above the oil is much smaller than the specific weight of the oil, the gage should read the pressure we have calculated; that is,

$$p_{\text{gage}} = \frac{440 \text{ lb/ft}^2}{144 \text{ in.}^2/\text{ft}^2} = 3.06 \text{ psi}$$
 (Ans)

COMMENTS Note that the air pressure is a function of the height of the mercury in the manometer and the depth of the oil (both in the tank and in the tube). It is not just the mercury in the manometer that is important.

Assume that the gage pressure remains at 3.06 psi, but the manometer is altered so that it contains only oil. That is, the mercury is replaced by oil. A simple calculation shows that in this case the vertical oil-filled tube would need to be $h_3 = 11.3$ ft tall, rather than the original $h_3 = 9$ in. There is an obvious advantage of using a heavy fluid such as mercury in manometers.

Manometers are often used to measure the difference in pressure between two points. The U-tube manometer is also widely used to measure the *difference* in pressure between two containers or two points in a given system. Consider a manometer connected between containers A and B as is shown in Fig. 2.11. The difference in pressure between A and B can be found

by again starting at one end of the system and working around to the other end. For example, at A the pressure is p_A , which is equal to p_1 , and as we move to point (2) the pressure increases by $\gamma_1 h_1$. The pressure at p_2 is equal to p_3 , and as we move upward to point (4) the pressure decreases by $\gamma_2 h_2$. Similarly, as we continue to move upward from point (4) to (5) the pressure decreases by $\gamma_3 h_3$. Finally, $p_5 = p_B$, since they are at equal elevations. Thus,

$$p_A + \gamma_1 h_1 - \gamma_2 h_2 - \gamma_3 h_3 = p_B$$

Or, as indicated in the figure in the margin, we could start at B and work our way around to A to obtain the same result. In either case, the pressure difference is

$$p_A - p_B = \gamma_2 h_2 + \gamma_3 h_3 - \gamma_1 h_3$$

When the time comes to substitute in numbers, be sure to use a consistent system of units!

Capillarity due to surface tension at the various fluid interfaces in the manometer is usually not considered, since for a simple U-tube with a meniscus in each leg, the capillary effects cancel (assuming the surface tensions and tube diameters are the same at each meniscus), or we can make the capillary rise negligible by using relatively large bore tubes (with diameters of about 0.5 in. or larger; see Section 1.9). Two common gage fluids are water and mercury. Both give a well-defined meniscus (a very important characteristic for a gage fluid) and have wellknown properties. Of course, the gage fluid must be immiscible with respect to the other fluids in contact with it. For highly accurate measurements, special attention should be given to temperature since the various specific weights of the fluids in the manometer will vary with temperature.

EXAMPLE 2.5 U-Tube Manometer

GIVEN As will be discussed in Chapter 3, the volume rate of flow, Q, through a pipe can be determined by means of a flow nozzle located in the pipe as illustrated in Fig. E2.5*a*. The nozzle creates a pressure drop, $p_A - p_B$, along the pipe which is related to the flow through the equation $Q = K\sqrt{p_A - p_B}$, where *K* is a constant depending on the pipe and nozzle size. The pressure drop is frequently measured with a differential U-tube manometer of the type illustrated.

SOLUTION

(a) Although the fluid in the pipe is moving, the fluids in the columns of the manometer are at rest so that the pressure variation in the manometer tubes is hydrostatic. If we start at point *A* and move vertically upward to level (1), the pressure will decrease by $\gamma_1 h_1$ and will be equal to the pressure at (2) and at (3). We can now move from (3) to (4) where the pressure has been further reduced by $\gamma_2 h_2$. The pressures at levels (4) and (5) are equal, and as we move from (5) to *B* the pressure will increase by $\gamma_1(h_1 + h_2)$. Thus, in equation form

$$p_A - \gamma_1 h_1 - \gamma_2 h_2 + \gamma_1 (h_1 + h_2) = p_B$$

or

$$p_A - p_B = h_2(\gamma_2 - \gamma_1) \tag{Ans}$$

COMMENT It is to be noted that the only column height of importance is the differential reading, h_2 . The differential

FIND (a) Determine an equation for $p_A - p_B$ in terms of the specific weight of the flowing fluid, γ_1 , the specific weight of the gage fluid, γ_2 , and the various heights indicated. (b) For $\gamma_1 = 9.80 \text{ kN/m}^3$, $\gamma_2 = 15.6 \text{ kN/m}^3$, $h_1 = 1.0 \text{ m}$, and $h_2 = 0.5 \text{ m}$, what is the value of the pressure drop, $p_A - p_B$?

manometer could be placed 0.5 or 5.0 m above the pipe ($h_1 = 0.5$ m or $h_1 = 5.0$ m), and the value of h_2 would remain the same.

(b) The specific value of the pressure drop for the data given is

$$p_A - p_B = (0.5 \text{ m})(15.6 \text{ kN/m}^3 - 9.80 \text{ kN/m}^3)$$

= 2.90 kPa (Ans

COMMENT By repeating the calculations for manometer fluids with different specific weights, γ_2 , the results shown in Fig. E2.5*b* are obtained. Note that relatively small pressure

differences can be measured if the manometer fluid has nearly the same specific weight as the flowing fluid. It is the difference in the specific weights, $\gamma_2 - \gamma_1$, that is important.

Hence, by rewriting the answer as $h_2 = (p_A - p_B)/(\gamma_2 - \gamma_1)$ it is seen that even if the value of $p_A - p_B$ is small, the value of h_2 can be large enough to provide an accurate reading provided the value of $\gamma_2 - \gamma_1$ is also small.

2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.12 is frequently used. One leg of the manometer is inclined at an angle θ , and the differential reading ℓ_2 is measured along the inclined tube. The difference in pressure $p_A - p_B$ can be expressed as

$$p_A + \gamma_1 h_1 - \gamma_2 \ell_2 \sin \theta - \gamma_3 h_3 = p_B$$

or

or

$$p_A - p_B = \gamma_2 \ell_2 \sin \theta + \gamma_3 h_3 - \gamma_1 h_1 \tag{2.15}$$

Inclined-tube manometers can be used to measure small pressure differences accurately.

where it is to be noted the pressure difference between points (1) and (2) is due to the *vertical* dis-
ance between the points, which can be expressed as
$$\ell_2 \sin \theta$$
. Thus, for relatively small angles the
differential reading along the inclined tube can be made large even for small pressure differences.
The inclined-tube manometer is often used to measure small differences in gas pressures so that
f pipes A and B contain a gas then

 $p_A - p_B = \gamma_2 \ell_2 \sin \theta$

 $\ell_2 = \frac{p_A - p_B}{\gamma_2 \sin \theta}$ (2.16)

where the contributions of the gas columns h_1 and h_3 have been neglected. Equation 2.16 and the figure in the margin show that the differential reading ℓ_2 (for a given pressure difference) of the inclined-tube manometer can be increased over that obtained with a conventional U-tube manometer by the factor $1/\sin \theta$. Recall that $\sin \theta \rightarrow 0$ as $\theta \rightarrow 0$.

2.7 Mechanical and Electronic Pressure Measuring Devices

A Bourdon tube pressure gage uses a hollow, elastic, and curved tube to measure pressure.

Although manometers are widely used, they are not well suited for measuring very high pressures, or pressures that are changing rapidly with time. In addition, they require the measurement of one or more column heights, which, although not particularly difficult, can be time consuming. To overcome some of these problems numerous other types of pressure measuring instruments have been developed. Most of these make use of the idea that when a pressure acts on an elastic structure the structure will deform, and this deformation can be related to the magnitude of the pressure. Probably the most familiar device of this kind is the *Bourdon* pressure gage, which is shown in Fig. 2.13a. The essential mechanical element in this gage is the hollow, elastic curved tube (Bourdon tube) which is connected to the pressure source as shown in Fig. 2.13b. As the pressure within the tube increases the tube tends to straighten, and although the deformation is small, it can be translated into the motion of a pointer on a dial as illustrated. Since it is the difference in pressure between the outside of the tube (atmospheric pressure) and the inside of the tube that causes the movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be calibrated so that the dial reading can directly indicate the pressure in suitable units such as psi, psf, or pascals. A zero reading on the gage indicates that the measured pressure is equal to the local atmospheric pressure. This type of gage can be used to measure a negative gage pressure (vacuum) as well as positive pressures.

The *aneroid* barometer is another type of mechanical gage that is used for measuring atmospheric pressure. Since atmospheric pressure is specified as an absolute pressure, the conventional Bourdon gage is not suitable for this measurement. The common aneroid barometer contains a hollow, closed, elastic element which is evacuated so that the pressure inside the element is near absolute zero. As the external atmospheric pressure changes, the element deflects, and this motion can be translated into the movement of an attached dial. As with the Bourdon gage, the dial can be calibrated to give atmospheric pressure directly, with the usual units being millimeters or inches of mercury.

For many applications in which pressure measurements are required, the pressure must be measured with a device that converts the pressure into an electrical output. For example, it may be desirable to continuously monitor a pressure that is changing with time. This type of pressure measuring device is called a *pressure transducer*, and many different designs are used. One possible type of transducer is one in which a Bourdon tube is connected to a linear variable differential transformer (LVDT), as is illustrated in Fig. 2.14. The core of the LVDT is connected to the free end of the Bourdon tube so that as a pressure is applied the resulting motion of the end of the tube moves the core through the coil and an output voltage develops. This voltage is a linear function of the pressure and could be recorded on an oscillograph or digitized for storage or processing on a computer.

FIGURE 2.13 (a) Liquid-filled Bourdon pressure gages for various pressure ranges. (b) Internal elements of Bourdon gages. The "C-shaped" Bourdon tube is shown on the left, and the "coiled spring" Bourdon tube for high pressures of 1000 psi and above is shown on the right. (Photographs courtesy of Weiss Instruments, Inc.)

Fluids in the News

Tire pressure warning Proper tire inflation on vehicles is important for more than ensuring long tread life. It is critical in preventing accidents such as rollover accidents caused by underinflation of tires. The National Highway Traffic Safety Administration is developing a regulation regarding four-tire tire-pressure monitoring systems that can warn a driver when a tire is more than 25 percent underinflated. Some of these devices are currently in operation on select vehicles; it is expected that they will soon be required on all vehicles. A typical tire-pressure monitoring

system fits within the tire and contains a *pressure transducer* (usually either a piezo-resistive or a capacitive type transducer) and a transmitter that sends the information to an electronic control unit within the vehicle. Information about tire pressure and a warning when the tire is underinflated is displayed on the instrument panel. The environment (hot, cold, vibration) in which these devices must operate, their small size, and required low cost provide challenging constraints for the design engineer.

It is relatively complicated to make accurate pressure transducers for the measurement of pressures that vary rapidly with time. ment is that it is limited to the measurement of pressures that are static or only changing slowly (quasistatic). Because of the relatively large mass of the Bourdon tube, it cannot respond to rapid changes in pressure. To overcome this difficulty, a different type of transducer is used in which the sensing element is a thin, elastic diaphragm which is in contact with the fluid. As the pressure changes, the diaphragm deflects, and this deflection can be sensed and converted into an electrical voltage. One way to accomplish this is to locate strain gages either on the surface of the diaphragm not in contact with the fluid, or on an element attached to the diaphragm. These gages can accurately sense the small strains induced in the diaphragm and provide an output voltage proportional to pressure. This type of transducer is capable of measuring accurately both small and large pressures, as well as both static and dynamic pressures. For example, strain-gage pressure transducers of the type shown in Fig. 2.15 are used to measure arterial blood pressure, which is a relatively small pressure that varies periodically with a fundamental frequency of about 1 Hz. The transducer is usually connected to the blood vessel by means of a liquid-filled, small diameter tube called a pressure catheter. Although the strain-gage type of transducers can be designed to have very good frequency response (up to approximately 10 kHz), they become less sensitive at the higher frequencies since the diaphragm must be made stiffer to achieve the higher frequency response. As an alternative, the diaphragm can be constructed of a piezoelectric crystal to be used as both the elastic element and the sensor. When a pressure is applied to the crystal, a voltage develops because of the deformation of the crystal. This voltage is directly related to the applied pressure. Depending on the design, this type of transducer can be used to measure both very low and high pressures (up to approximately 100,000 psi) at high frequencies. Additional information on pressure transducers can be found in Refs. 3, 4, and 5.

One disadvantage of a pressure transducer using a Bourdon tube as the elastic sensing ele-

■ FIGURE 2.15 (a) Two different sized strain-gage pressure transducers (Spectramed Models P10EZ and P23XL) commonly used to measure physiological pressures. Plastic domes are filled with fluid and connected to blood vessels through a needle or catheter. (Photograph courtesy of Spectramed, Inc.) (b) Schematic diagram of the P23XL transducer with the dome removed. Deflection of the diaphragm due to pressure is measured with a silicon beam on which strain gages and an associated bridge circuit have been deposited.

2.8 Hydrostatic Force on a Plane Surface

When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The determination of these forces is important in the design of storage tanks, ships, dams, and other hydraulic structures. For fluids at rest we know that the force must be *perpendicular* to the surface since there are no shearing stresses present. We also know that the pressure will vary linearly with depth as shown in Fig. 2.16 if the fluid is incompressible. For a horizontal surface, such as the bottom of a liquid-filled tank (Fig. 2.16*a*), the magnitude of the resultant force is simply $F_R = pA$, where *p* is the uniform pressure on the bottom and *A* is the area of the bottom. For the open tank shown, $p = \gamma h$. Note that if atmospheric pressure acts on both sides of the bottom, as is illustrated, the *resultant* force on the bottom is simply due to the liquid in the tank. Since the pressure is constant and uniformly distributed over the bottom, the resultant force acts through the centroid of the area as shown in Fig. 2.16*a*. As shown in Fig. 2.16*b*, the pressure on the ends of the tank is not uniformly distributed. Determination of the resultant force for situations such as this is presented below.

FIGURE 2.16 (a) Pressure distribution and resultant hydrostatic force on the bottom of an open tank. (b) Pressure distribution on the ends of an open tank.

The resultant force of a static fluid on a plane surface is due to the hydrostatic pressure distribution on the surface. For the more general case in which a submerged plane surface is inclined, as is illustrated in Fig. 2.17, the determination of the resultant force acting on the surface is more involved. For the present we will assume that the fluid surface is open to the atmosphere. Let the plane in which the surface lies intersect the free surface at 0 and make an angle θ with this surface as in Fig. 2.17. The *x*-*y* coordinate system is defined so that 0 is the origin and *y* = 0 (i.e., the *x*-axis) is directed along the surface as shown. The area can have an arbitrary shape as shown. We wish to determine the direction, location, and magnitude of the resultant force acting on one side of this area due to the liquid in contact with the area. At any given depth, *h*, the force acting on *dA* (the differential area of Fig. 2.17) is $dF = \gamma h dA$ and is perpendicular to the surface. Thus, the magnitude of the resultant force can be found by summing these differential forces over the entire surface. In equation form

$$F_R = \int_A \gamma h \, dA = \int_A \gamma y \sin \theta \, dA$$

where $h = y \sin \theta$. For constant γ and θ

$$F_R = \gamma \sin \theta \int_A y \, dA \tag{2.17}$$

The integral appearing in Eq. 2.17 is the *first moment of the area* with respect to the x axis, so we can write

 $\int_{A} y \, dA = y_c A$

where y_c is the y coordinate of the centroid of area A measured from the x axis which passes through 0. Equation 2.17 can thus be written as

$$F_R = \gamma A y_c \sin \theta$$

or more simply as

$$F_R = \gamma h_c A \tag{2.18}$$

where h_c is the vertical distance from the fluid surface to the centroid of the area. Note that the magnitude of the force is independent of the angle θ . As indicated by the figure in the margin, it depends only on the specific weight of the fluid, the total area, and the depth of the centroid of the area below the surface. In effect, Eq. 2.18 indicates that the magnitude of the resultant force is equal to the pressure at the centroid of the area multiplied by the total area. Since all the differential forces that were summed to obtain F_R are perpendicular to the surface, the resultant F_R must also be perpendicular to the surface.

Although our intuition might suggest that the resultant force should pass through the centroid of the area, this is not actually the case. The y coordinate, y_R , of the resultant force can be determined by summation of moments around the x axis. That is, the moment of the resultant force must equal the moment of the distributed pressure force, or

$$F_R y_R = \int_A y \, dF = \int_A \gamma \sin \theta \, y^2 \, dA$$

and, therefore, since $F_R = \gamma A y_c \sin \theta$

$$y_R = \frac{\int_A y^2 \, dA}{y_c A}$$

The integral in the numerator is the second moment of the area (moment of inertia), I_x , with respect to an axis formed by the intersection of the plane containing the surface and the free surface (x axis). Thus, we can write

$$y_R = \frac{I_x}{y_c A}$$

Use can now be made of the parallel axis theorem to express I_x as

$$I_x = I_{xc} + Ay_c^2$$

where I_{xc} is the second moment of the area with respect to an axis passing through its *centroid* and parallel to the x axis. Thus,

$$y_R = \frac{I_{xc}}{y_c A} + y_c \tag{2.19}$$

As shown by Eq. 2.19 and the figure in the margin, the resultant force does not pass through the centroid but for nonhorizontal surfaces is always *below* it, since $I_{xc}/y_c A > 0$.

The x coordinate, x_R , for the resultant force can be determined in a similar manner by summing moments about the y axis. Thus,

$$F_R x_R = \int_A \gamma \sin \theta \, xy \, dA$$

The magnitude of

area multiplied by

the total area.

The resultant fluid force does not pass through the centroid of the area. and, therefore,

$$x_R = \frac{\int_A xy \, dA}{y_c A} = \frac{I_{xy}}{y_c A}$$

where I_{xy} is the product of inertia with respect to the x and y axes. Again, using the parallel axis theorem,¹ we can write

$$x_R = \frac{I_{xyc}}{y_c A} + x_c \tag{2.20}$$

where I_{xyc} is the product of inertia with respect to an orthogonal coordinate system passing through the *centroid* of the area and formed by a translation of the x-y coordinate system. If the submerged area is symmetrical with respect to an axis passing through the centroid and parallel to either the x or y axes, the resultant force must lie along the line $x = x_c$, since I_{xyc} is identically zero in this case. The point through which the resultant force acts is called the *center of pressure*. It is to be noted from Eqs. 2.19 and 2.20 that as y_c increases the center of pressure moves closer to the centroid of the area. Since $y_c = h_c/\sin \theta$, the distance y_c will increase if the depth of submergence, h_c , increases, or, for a given depth, the area is rotated so that the angle, θ , decreases. Thus, the hydrostatic force on the right-hand side of the gate shown in the margin figure acts closer to the centroid of the gate than the force on the left-hand side. Centroidal coordinates and moments of inertia for some common areas are given in Fig. 2.18.

¹Recall that the parallel axis theorem for the product of inertia of an area states that the product of inertia with respect to an orthogonal set of axes (*x*-*y* coordinate system) is equal to the product of inertia with respect to an orthogonal set of axes parallel to the original set and passing through the centroid of the area, plus the product of the area and the *x* and *y* coordinates of the centroid of the area. Thus, $I_{xy} = I_{yyc} + Ax_cy_c$.

Fluids in the News	uids in the	News
--------------------	-------------	------

The Three Gorges Dam The Three Gorges Dam being constructed on China's Yangtze River will contain the world's largest hydroelectric power plant when in full operation. The dam is of the concrete gravity type, having a length of 2309 meters with a height of 185 meters. The main elements of the project include the dam, two power plants, and navigation facilities consisting of a ship lock and lift. The power plants will contain 26 Francis type turbines, each with a capacity of 700 megawatts. The spillway section, which is the center section of the dam, is 483 meters long with 23 bottom outlets and 22 surface sluice gates. The maximum discharge capacity is 102,500 cubic meters per second. After more than 10 years of construction, the dam gates were finally closed, and on June 10, 2003, the reservoir had been filled to its interim level of 135 meters. Due to the large depth of water at the dam and the huge extent of the storage pool, *hydrostatic pressure forces* have been a major factor considered by engineers. When filled to its normal pool level of 175 meters, the total reservoir storage capacity is 39.3 billion cubic meters. The project is scheduled for completion in 2009. (See Problem 2.79.)

EXAMPLE 2.6 Hydrostatic Force on a Plane Circular Surface

GIVEN The 4-m-diameter circular gate of Fig. E2.6*a* is located in the inclined wall of a large reservoir containing water ($\gamma = 9.80 \text{ kN/m}^3$). The gate is mounted on a shaft along its horizontal diameter, and the water depth is 10 m above the shaft.

FIND Determine

(a) the magnitude and location of the resultant force exerted on the gate by the water and

(b) the moment that would have to be applied to the shaft to open the gate.

SOLUTION

(a) To find the magnitude of the force of the water we can apply Eq. 2.18,

$$F_R = \gamma h_c A$$

and since the vertical distance from the fluid surface to the centroid of the area is 10 m, it follows that

$$F_R = (9.80 \times 10^3 \text{ N/m}^3)(10 \text{ m})(4\pi \text{ m}^2)$$

= 1230 × 10³ N = 1.23 MN (Ans)

To locate the point (center of pressure) through which F_R acts, we use Eqs. 2.19 and 2.20,

$$x_R = \frac{I_{xyc}}{y_c A} + x_c \qquad y_R = \frac{I_{xc}}{y_c A} + y_c$$

For the coordinate system shown, $x_R = 0$ since the area is symmetrical, and the center of pressure must lie along the diameter *A*-*A*. To obtain y_R , we have from Fig. 2.18

$$I_{xc} = \frac{\pi R^4}{4}$$

and y_c is shown in Fig. E2.6*b*. Thus,

$$y_R = \frac{(\pi/4)(2 \text{ m})^4}{(10 \text{ m/sin } 60^\circ)(4\pi \text{ m}^2)} + \frac{10 \text{ m}}{\sin 60^\circ}$$
$$= 0.0866 \text{ m} + 11.55 \text{ m} = 11.6 \text{ m}$$

and the distance (along the gate) below the shaft to the center of pressure is

$$y_R - y_c = 0.0866 \,\mathrm{m}$$
 (Ans)

We can conclude from this analysis that the force on the gate due to the water has a magnitude of 1.23 MN and acts through a point along its diameter A-A at a distance of 0.0866 m (along the gate) below the shaft. The force is perpendicular to the gate surface as shown in Fig. E2.6b.

COMMENT By repeating the calculations for various values of the depth to the centroid, h_c , the results shown in Fig. E2.6*d* are obtained. Note that as the depth increases, the distance between the center of pressure and the centroid decreases.

(b) The moment required to open the gate can be obtained with the aid of the free-body diagram of Fig. E2.6c. In this diagram \mathcal{W}

is the weight of the gate and O_x and O_y are the horizontal and vertical reactions of the shaft on the gate. We can now sum moments about the shaft

$$\sum M_c = 0$$

and, therefore,

$$\begin{aligned} \mathcal{A} &= F_R (y_R - y_c) \\ &= (1230 \times 10^3 \text{ N})(0.0866 \text{ m}) \\ &= 1.07 \times 10^5 \text{ N} \cdot \text{m} \end{aligned}$$
(Ans

EXAMPLE 2.7 Hydrostatic Pressure Force on a Plane Triangular Surface

GIVEN An aquarium contains seawater ($\gamma = 64.0 \text{ lb/ft}^3$) to a depth of 1 ft as shown in Fig. E2.7*a*. To repair some damage to one corner of the tank, a triangular section is replaced with a new section as illustrated in Fig. E2.7*b*.

FIND Determine

(a) the magnitude of the force of the seawater on this triangular area, and

(b) the location of this force.

SOLUTION

(a) The various distances needed to solve this problem are shown in Fig. E2.7*c*. Since the surface of interest lies in a vertical plane, $y_c = h_c = 0.9$ ft, and from Eq. 2.18 the magnitude of the force is

$$F_R = \gamma h_c A$$

= (64.0 lb/ft³)(0.9 ft)[(0.3 ft)²/2] = 2.59 lb (Ans)

COMMENT Note that this force is independent of the tank length. The result is the same if the tank is 0.25 ft, 25 ft, or 25 miles long.

(b) The *y* coordinate of the center of pressure (CP) is found from Eq. 2.19,

$$y_R = \frac{I_{xc}}{y_c A} + y_c$$

and from Fig. 2.18

FIGURE E2.7*a* (Photograph courtesy of Tenecor Tanks, Inc.)

$$I_{xc} = \frac{(0.3 \text{ ft})(0.3 \text{ ft})^3}{36} = \frac{0.0081}{36} \text{ ft}^4$$

so that

ar

$$y_R = \frac{0.0081/36 \text{ ft}^4}{(0.9 \text{ ft})(0.09/2 \text{ ft}^2)} + 0.9 \text{ ft}$$
$$= 0.00556 \text{ ft} + 0.9 \text{ ft} = 0.906 \text{ ft}$$

Similarly, from Eq. 2.20

$$x_R = \frac{I_{xyc}}{y_c A} + x_c$$
 ad from Fig. 2.18

$$I_{xyc} = \frac{(0.3 \text{ ft})(0.3 \text{ ft})^2}{72} (0.3 \text{ ft}) = \frac{0.0081}{72} \text{ ft}^4$$

so that

(Ans)

$$x_R = \frac{0.0081/72 \text{ ft}^4}{(0.9 \text{ ft})(0.09/2 \text{ ft}^2)} + 0 = 0.00278 \text{ ft}$$
 (Ans)

COMMENT Thus, we conclude that the center of pressure is 0.00278 ft to the right of and 0.00556 ft below the centroid of the area. If this point is plotted, we find that it lies on the median line for the area as illustrated in Fig. E2.7*d*. Since we can think of the total area as consisting of a number of small rectangular strips of area δA (and the fluid force on each of these small areas acts through its center), it follows that the resultant of all these parallel forces must lie along the median.

2.9 Pressure Prism

An informative and useful graphical interpretation can be made for the force developed by a fluid acting on a plane rectangular area. Consider the pressure distribution along a vertical wall of a tank of constant width b, which contains a liquid having a specific weight γ . Since the pressure must vary linearly with depth, we can represent the variation as is shown in Fig. 2.19*a*, where the pressure is equal to zero at the upper surface and equal to γh at the bottom. It is apparent from this diagram that the average pressure occurs at the depth h/2, and therefore the resultant force acting on the rectangular area A = bh is

$$F_R = p_{\rm av} A = \gamma \left(\frac{h}{2}\right) A$$

which is the same result as obtained from Eq. 2.18. The pressure distribution shown in Fig. 2.19*a* applies across the vertical surface so we can draw the three-dimensional representation of the pressure distribution as shown in Fig. 2.19*b*. The base of this "volume" in pressure-area space is the plane surface of interest, and its altitude at each point is the pressure. This volume is called the *pressure prism*, and it is clear that the magnitude of the resultant force acting on the rectangular surface is equal to the volume of the pressure prism. Thus, for the prism of Fig. 2.19*b* the fluid force is

The magnitude of
the resultant fluid
force is equal to the
volume of the pres-
sure prism and
passes through its

centroid.

$$F_R$$
 = volume = $\frac{1}{2} (\gamma h)(bh) = \gamma \left(\frac{h}{2}\right) A$

where bh is the area of the rectangular surface, A.

The resultant force must pass through the *centroid* of the pressure prism. For the volume under consideration the centroid is located along the vertical axis of symmetry of the surface, and at a distance of h/3 above the base (since the centroid of a triangle is located at h/3 above its base). This result can readily be shown to be consistent with that obtained from Eqs. 2.19 and 2.20.

FIGURE 2.19 Pressure prism for vertical rectangular area.

This same graphical approach can be used for plane rectangular surfaces that do not extend up to the fluid surface, as illustrated in Fig. 2.20*a*. In this instance, the cross section of the pressure prism is trapezoidal. However, the resultant force is still equal in magnitude to the volume of the pressure prism, and it passes through the centroid of the volume. Specific values can be obtained by decomposing the pressure prism into two parts, *ABDE* and *BCD*, as shown in Fig. 2.20*b*. Thus,

$$F_R = F_1 + F_2$$

where the components can readily be determined by inspection for rectangular surfaces. The location of F_R can be determined by summing moments about some convenient axis, such as one passing through A. In this instance

$$F_{R}y_{A} = F_{1}y_{1} + F_{2}y_{2}$$

and y_1 and y_2 can be determined by inspection.

For inclined plane rectangular surfaces the pressure prism can still be developed, and the cross section of the prism will generally be trapezoidal, as is shown in Fig. 2.21. Although it is usually convenient to measure distances along the inclined surface, the pressures developed depend on the vertical distances as illustrated.

The use of pressure prisms for determining the force on submerged plane areas is convenient if the area is rectangular so the volume and centroid can be easily determined. However, for other nonrectangular shapes, integration would generally be needed to determine the volume and centroid. In these circumstances it is more convenient to use the equations developed in the previous section, in which the necessary integrations have been made and the results presented in a convenient and compact form that is applicable to submerged plane areas of any shape.

The effect of atmospheric pressure on a submerged area has not yet been considered, and we may ask how this pressure will influence the resultant force. If we again consider the pressure distribution on a plane vertical wall, as is shown in Fig. 2.22*a*, the pressure varies from zero at the surface to γh at the bottom. Since we are setting the surface pressure equal to zero, we are using

FIGURE 2.21 Pressure variation along an inclined plane area.

The use of the pressure prism concept to determine the force on a submerged area is best suited for plane rectangular surfaces.

FIGURE 2.22 Effect of atmospheric pressure on the resultant force acting on a plane vertical wall.

atmospheric pressure as our datum, and thus the pressure used in the determination of the fluid force is gage pressure. If we wish to include atmospheric pressure, the pressure distribution will be as is shown in Fig. 2.22*b*. We note that in this case the force on one side of the wall now consists of F_R as a result of the hydrostatic pressure distribution, plus the contribution of the atmospheric pressure, $p_{atm}A$, where *A* is the area of the surface. However, if we are going to include the effect of atmospheric pressure on one side of the wall, we must realize that this same pressure acts on the outside surface (assuming it is exposed to the atmosphere), so that an equal and opposite force will be developed as illustrated in the figure. Thus, we conclude that the *resultant* fluid force on the surface is that due only to the gage pressure contribution of the liquid in contact with the surface the atmospheric pressure does not contribute to this resultant. Of course, if the surface pressure of the liquid is different from atmospheric pressure (such as might occur in a closed tank), the resultant force acting on a submerged area, *A*, will be changed in magnitude from that caused simply by hydrostatic pressure by an amount $p_s A$, where p_s is the gage pressure at the liquid surface (the outside surface is assumed to be exposed to atmospheric pressure).

The resultant fluid force acting on a submerged area is affected by the pressure at the free surface.

EXAMPLE 2.8 Use of the Pressure Prism Concept

GIVEN A pressurized tank contains oil (SG = 0.90) and has a square, 0.6-m by 0.6-m plate bolted to its side, as is illustrated in Fig. E2.8*a*. The pressure gage on the top of the tank reads 50 kPa, and the outside of the tank is at atmospheric pressure.

FIND What is the magnitude and location of the resultant force on the attached plate?

SOLUTION

The pressure distribution acting on the inside surface of the plate is shown in Fig. E2.8*b*. The pressure at a given point on the plate is due to the air pressure, p_s , at the oil surface, and the pressure due to the oil, which varies linearly with depth as is shown in the figure. The resultant force on the plate (having an area *A*) is due to the components, F_1 and F_2 , where F_1 and F_2 are due to the rectangular and triangular portions of the pressure distribution, respectively. Thus,

$$F_1 = (p_s + \gamma h_1)A$$

= [50 × 10³ N/m²
+ (0.90)(9.81 × 10³ N/m³)(2 m)](0.36 m²)
= 24.4 × 10³ N

and

$$F_2 = \gamma \left(\frac{h_2 - h_1}{2}\right) A$$

= (0.90)(9.81 × 10³ N/m³) $\left(\frac{0.6 \text{ m}}{2}\right)$ (0.36 m²)
= 0.954 × 10³ N

The magnitude of the resultant force, F_R , is therefore

$$F_R = F_1 + F_2 = 25.4 \times 10^3 \,\mathrm{N} = 25.4 \,\mathrm{kN}$$
 (Ans)

The vertical location of F_R can be obtained by summing moments around an axis through point O so that

$$F_R y_O = F_1(0.3 \text{ m}) + F_2(0.2 \text{ m})$$

or

$$y_{0} = \frac{(24.4 \times 10^{3} \,\mathrm{N})(0.3 \,\mathrm{m}) + (0.954 \times 10^{3} \,\mathrm{N})(0.2 \,\mathrm{m})}{25.4 \times 10^{3} \,\mathrm{N}}$$

= 0.296 m (Ans)

Thus, the force acts at a distance of 0.296 m above the bottom of the plate along the vertical axis of symmetry.

COMMENT Note that the air pressure used in the calculation of the force was gage pressure. Atmospheric pressure does not affect the resultant force (magnitude or location), since it acts on both sides of the plate, thereby canceling its effect.

2.10 Hydrostatic Force on a Curved Surface

The equations developed in Section 2.8 for the magnitude and location of the resultant force acting on a submerged surface only apply to plane surfaces. However, many surfaces of interest (such as those associated with dams, pipes, and tanks) are nonplanar. The domed bottom of the beverage bottle shown in the figure in the margin shows a typical curved surface example. Although the resultant fluid force can be determined by integration, as was done for the plane surfaces, this is generally a rather tedious process and no simple, general formulas can be developed. As an alternative approach we will consider the equilibrium of the fluid volume enclosed by the curved surface of interest and the horizontal and vertical projections of this surface.

For example, consider a curved portion of the swimming pool shown in Fig. 2.23*a*. We wish to find the resultant fluid force acting on section *BC* (which has a unit length perpendicular to the plane of the paper) shown in Fig. 2.23*b*. We first isolate a volume of fluid that is bounded by the surface of interest, in this instance section *BC*, the horizontal plane surface *AB*, and the vertical plane surface *AC*. The free-body diagram for this volume is shown in Fig. 2.23*c*. The magnitude and location of forces F_1 and F_2 can be determined from the relationships for planar surfaces. The weight, \mathcal{W} , is simply the specific weight of the fluid times the enclosed volume and acts through the center of gravity (CG) of the mass of fluid contained within the volume. The forces F_H and F_V represent the components of the force that the tank *exerts on the fluid*.

In order for this force system to be in equilibrium, the horizontal component F_H must be equal in magnitude and collinear with F_2 , and the vertical component F_V equal in magnitude and collinear with the resultant of the vertical forces F_1 and W. This follows since the three forces acting on the fluid mass (F_2 , the resultant of F_1 and W, and the resultant force that the tank exerts on the mass) must form a *concurrent* force system. That is, from the principles of statics, it is known that when a body is held in equilibrium by three nonparallel forces, they must be concurrent (their lines of action intersect at a common point), and coplanar. Thus,

$$\begin{split} F_H &= F_2 \\ F_V &= F_1 + \ \mathrm{W} \end{split}$$

and the magnitude of the resultant is obtained from the equation

$$F_R = \sqrt{(F_H)^2 + (F_V)^2}$$

The resultant F_R passes through the point *O*, which can be located by summing moments about an appropriate axis. The resultant force of the fluid acting *on the curved surface BC* is equal and opposite in direction to that obtained from the free-body diagram of Fig. 2.23*c*. The desired fluid force is shown in Fig. 2.23*d*.

EXAMPLE 2.9 Hydrostatic Pressure Force on a Curved Surface

GIVEN A 6-ft-diameter drainage conduit of the type shown in Fig. E2.9*a* is half full of water at rest, as shown in Fig. E2.9*b*.

FIND Determine the magnitude and line of action of the resultant force that the water exerts on a 1-ft length of the curved section *BC* of the conduit wall.

SOLUTION

We first isolate a volume of fluid bounded by the curved section *BC*, the horizontal surface *AB*, and the vertical surface *AC*, as shown in Fig. E2.9*c*. The volume has a length of 1 ft. The forces acting on the volume are the horizontal force, F_1 , which acts on the vertical surface *AC*, the weight, W, of the fluid contained within the volume, and the horizontal and vertical components of the force of the conduit wall on the fluid, F_H and F_V , respectively.

The magnitude of F_1 is found from the equation

$$F_1 = \gamma h_c A = (62.4 \text{ lb/ft}^3)(\frac{3}{2} \text{ ft})(3 \text{ ft}^2) = 281 \text{ lb}$$

and this force acts 1 ft above C as shown. The weight $W = \gamma \mathcal{H}$, where \mathcal{H} is the fluid volume, is

$$W = \gamma \mathcal{H} = (62.4 \text{ lb/ft}^3)(9\pi/4 \text{ ft}^2)(1 \text{ ft}) = 441 \text{ lb}$$

and acts through the center of gravity of the mass of fluid, which according to Fig. 2.18 is located 1.27 ft to the right of AC as shown. Therefore, to satisfy equilibrium

$$F_H = F_1 = 281 \text{ lb}$$
 $F_V = \mathcal{W} = 441 \text{ lb}$

and the magnitude of the resultant force is

$$F_R = \sqrt{(F_H)^2 + (F_V)^2}$$

= $\sqrt{(281 \text{ lb})^2 + (441 \text{ lb})^2} = 523 \text{ lb}$ (Ans)

The force the water exerts *on* the conduit wall is equal, but *opposite in direction*, to the forces F_H and F_V shown in Fig. E2.9*c*. Thus, the resultant force *on the conduit wall* is shown in Fig. E2.9*d*. This force acts through the point *O* at the angle shown.

COMMENT An inspection of this result will show that the line of action of the resultant force passes through the center of the conduit. In retrospect, this is not a surprising result since at each point on the curved surface of the conduit the elemental force due to the

pressure is normal to the surface, and each line of action must pass through the center of the conduit. It therefore follows that the resultant of this concurrent force system must also pass through the center of concurrence of the elemental forces that make up the system.

This same general approach can also be used for determining the force on curved surfaces of pressurized, closed tanks. If these tanks contain a gas, the weight of the gas is usually negligible in comparison with the forces developed by the pressure. Thus, the forces (such as F_1 and F_2 in Fig. 2.23c) on horizontal and vertical projections of the curved surface of interest can simply be expressed as the internal pressure times the appropriate projected area.

FIUIDS IN LNE NEWS	F	l u	i d	S	in	t h	е	News	
--------------------	---	-----	-----	---	----	-----	---	------	--

Miniature, exploding pressure vessels Our daily lives are safer because of the effort put forth by engineers to design safe, lightweight pressure vessels such as boilers, propane tanks, and pop bottles. Without proper design, the large *hydrostatic pressure forces on the curved surfaces* of such containers could cause the vessel to explode with disastrous consequences. On the other hand, the world is a more friendly place because of miniature pressure vessels that are designed to explode under the proper conditions—popcorn kernels. Each grain of popcorn contains a small amount of water within the special, impervious hull (pressure vessel) which, when heated to a proper temperature, turns to steam, causing the kernel to explode and turn itself inside out. Not all popcorn kernels have the proper properties to make them pop well. First, the kernel must be quite close to 13.5% water. With too little moisture, not enough steam will build up to pop the kernel; too much moisture causes the kernel to pop into a dense sphere rather than the light fluffy delicacy expected. Second, to allow the pressure to build up, the kernels must not be cracked or damaged.

2.11 Buoyancy, Flotation, and Stability

(Photograph courtesy of Cameron Balloons.)

2.11.1 Archimedes' Principle

When a stationary body is completely submerged in a fluid (such as the hot air balloon shown in the figure in the margin), or floating so that it is only partially submerged, the resultant fluid force acting on the body is called the *buoyant force*. A net upward vertical force results because pressure increases with depth and the pressure forces acting from below are larger than the pressure forces acting from above. This force can be determined through an approach similar to that used in the previous section for forces on curved surfaces. Consider a body of arbitrary shape, having a volume V, that is immersed in a fluid as illustrated in Fig. 2.24*a*. We enclose the body in a parallelepiped and draw a free-body diagram of the parallelepiped with the body removed as shown in Fig. 2.24*b*. Note that the forces F_1, F_2, F_3 , and F_4 are simply the forces exerted on the plane surfaces of the parallelepiped (for simplicity the forces in the *x* direction are not shown), W is the weight of the shaded fluid volume (parallelepiped minus body), and F_B is the force the body is exerting *on the fluid*. The forces on the vertical surfaces, such as F_3 and F_4 , are all equal and cancel, so the equilibrium equation of interest is in the *z* direction and can be expressed as

$$F_B = F_2 - F_1 - \mathscr{W} \tag{2.21}$$

V2.6 Atmospheric buoyancy

where A is the horizontal area of the upper (or lower) surface of the parallelepiped, and Eq. 2.21 can be written as

 $F_2 - F_1 = \gamma (h_2 - h_1)A$

$$F_B = \gamma (h_2 - h_1)A - \gamma [(h_2 - h_1)A - \mathcal{V}]$$

Simplifying, we arrive at the desired expression for the buoyant force

If the specific weight of the fluid is constant, then

1

$$F_B = \gamma \mathcal{F}$$
(2.22)

Archimedes' principle states that the buoyant force has a magnitude equal to the weight of the fluid displaced by the body and is directed vertically upward. **FIGURE 2.24** Buoyant force on submerged and floating bodies.

where γ is the specific weight of the fluid and $\not\vdash$ is the volume of the body. The direction of the buoyant force, which is the force of the fluid *on the body*, is opposite to that shown on the freebody diagram. Therefore, the buoyant force has a magnitude equal to the weight of the fluid displaced by the body and is directed vertically upward. This result is commonly referred to as *Archimedes' principle* in honor of Archimedes (287–212 B.C.), a Greek mechanician and mathematician who first enunciated the basic ideas associated with hydrostatics.

The location of the line of action of the buoyant force can be determined by summing moments of the forces shown on the free-body diagram in Fig. 2.24*b* with respect to some convenient axis. For example, summing moments about an axis perpendicular to the paper through point D we have

$$F_B y_c = F_2 y_1 - F_1 y_1 - \mathcal{W} y_2$$

and on substitution for the various forces

$$\Psi_{y_c} = \Psi_{T} y_1 - (\Psi_T - \Psi) y_2$$
(2.23)

where \mathcal{V}_T is the total volume $(h_2 - h_1)A$. The right-hand side of Eq. 2.23 is the first moment of the displaced volume \mathcal{V} with respect to the *x*-*z* plane so that y_c is equal to the *y* coordinate of the centroid of the volume \mathcal{V} . In a similar fashion it can be shown that the *x* coordinate of the buoyant force coincides with the *x* coordinate of the centroid. Thus, we conclude that the *buoyant force passes through the centroid of the displaced volume* as shown in Fig. 2.24*c*. The point through which the buoyant force acts is called the *center of buoyancy*.

Concrete canoes A solid block of concrete thrown into a pond or lake will obviously sink. But, if the concrete is formed into the shape of a canoe it can be made to float. Of course the reason the canoe floats is the development of the *buoyant force* due to the displaced volume of water. With the proper design, this vertical force can be made to balance the weight of the canoe plus passengers—the canoe floats. Each year since 1988 there is a National Concrete Canoe Competition for university teams. It's jointly sponsored by the American Society of Civil Engineers and Master Builders Inc. The canoes must be 90% concrete and are typically designed with the aid of a computer by civil engineering students. Final scoring depends on four components: a design report, an oral presentation, the final product, and racing. For the 2007 competition the University of Wisconsin's team won for its fifth consecutive national championship with a 179-lb, 19.11-ft canoe. (See Problem 2.107.)

These same results apply to floating bodies which are only partially submerged, as illustrated in Fig. 2.24*d*, if the specific weight of the fluid above the liquid surface is very small compared with the liquid in which the body floats. Since the fluid above the surface is usually air, for practical purposes this condition is satisfied.

In the derivations presented above, the fluid is assumed to have a constant specific weight, γ . If a body is immersed in a fluid in which γ varies with depth, such as in a layered fluid, the magnitude of the buoyant force remains equal to the weight of the displaced fluid. However, the buoyant force does not pass through the centroid of the displaced volume, but rather, it passes through the center of gravity of the displaced volume.

EXAMPLE 2.10 Buoyant Force on a Submerged Object

GIVEN The 0.4-lb lead fish sinker shown in Fig. E2.10*a* is attached to a fishing line as shown in Fig. E2.10*b*. The specific gravity of the sinker is $SG_{sinker} = 11.3$.

FIND Determine the difference between the tension in the line above and below the sinker.

SOLUTION

A free body diagram of the sinker is shown in Fig. E.10*b*, where W is the weight of the sinker, F_B is the buoyant force acting on the sinker, and T_A and T_B are the tensions in the line above and below the sinker, respectively. For equilibrium it follows that

$$T_A - T_B = \mathcal{W} - F_B \tag{1}$$

Also,

$$\mathscr{W} = \gamma_{\text{sinker}} \mathscr{V} = \gamma S G_{\text{sinker}} \mathscr{V}$$
⁽²⁾

where γ is the specific weight of water and $\not\vdash$ is the volume of the sinker. From Eq. 2.22,

$$F_B = \gamma \mathcal{V} \tag{3}$$

By combining Eqs. 2 and 3 we obtain

$$F_B = \mathcal{W}/SG_{\text{sinker}} \tag{4}$$

Hence, from Eqs. 1 and 4 the difference in the tensions is

$$T_A - T_B = \mathcal{W} - \mathcal{W}/SG_{\text{sinker}} = \mathcal{W}[1 - (1/SG_{\text{sinker}})]$$
(5)
= 0.4 lb [1 - (1/11.3)] = 0.365 lb (Ans)

COMMENTS Note that if the sinker were raised out of the water, the difference in tension would equal the entire weight of the sinker $(T_A - T_B = 0.4 \text{ lb})$ rather than the 0.365 lb when it is in the water. Thus, since the sinker material is significantly heavier than water, the buoyant force is relatively unimportant. As seen from Eq. 5, as SG_{sinker} becomes very large, the buoyant force becomes insignificant, and the tension difference becomes nearly equal to the weight of the sinker. On the other hand, if $SG_{\text{sinker}} = 1$, then $T_A - T_B = 0$ and the sinker is no longer a "sinker." It is neutrally buoyant and no external force from the line is required to hold it in place.

In this example we replaced the hydrostatic pressure force on the body by the buoyant force, F_B . Another correct free-body diagram of the sinker is shown in Fig. E2.20*c*. The net effect of the pressure forces on the surface of the sinker is equal to the upward force of magnitude F_B (the buoyant force). Do not include both the buoyant force and the hydrostatic pressure effects in your calculations—use one or the other.

Fluids in the Ne	w	S
------------------	---	---

Explosive Lake In 1986 a tremendous explosion of carbon dioxide (CO₂) from Lake Nyos, west of Cameroon, killed more than 1700 people and livestock. The explosion resulted from a build up of CO₂ that seeped into the high pressure water at the bottom of the lake from warm springs of CO₂-bearing water. The CO₂-rich water is heavier than pure water and can hold a volume of CO₂ more than five times the water volume. As long as the gas remains dissolved in the water, the stratified lake (i.e., pure water on top, CO₂ water on the bottom) is stable. But if some mechanism causes the gas bubbles to nucleate, they rise, grow, and cause other bubbles to form, feeding a chain reaction. A related phenomenon often occurs when a pop bottle is shaken and then opened. The pop shoots from the container rather violently. When this set of events occurred in Lake Nyos, the entire lake overturned through a column of rising and expanding *buoyant* bubbles. The heavier-than-air CO_2 then flowed through the long, deep valleys surrounding the lake and asphyxiated human and animal life caught in the gas cloud. One victim was 27 km downstream from the lake.

The stability of a body can be determined by considering what happens when it is displaced from its equilibrium position.

2.11.2 Stability

Another interesting and important problem associated with submerged or floating bodies is concerned with the stability of the bodies. As illustrated by the figure in the margin, a body is said to be in a stable equilibrium position if, when displaced, it returns to its equilibrium position. Conversely, it is in an *unstable equilibrium* position if, when displaced (even slightly), it moves to a new equilibrium position. Stability considerations are particularly important for submerged or floating bodies since the centers of buoyancy and gravity do not necessarily coincide. A small rotation can result in either a restoring or overturning couple. For example, for the *completely* submerged body shown in Fig. 2.25, which has a center of gravity below the center of buoyancy, a rotation from its equilibrium position will create a restoring couple formed by the weight, W, and the buoyant force, F_B , which causes the body to rotate back to its original position. Thus, for this configuration the body is stable. It is to be noted that as long as the center of gravity falls below the center of buoyancy, this will always be true; that is, the body is in a *stable equilibrium* position with respect to small rotations. However, as is illustrated in Fig. 2.26, if the center of gravity of the completely submerged body is above the center of buoyancy, the resulting couple formed by the weight and the buoyant force will cause the body to overturn and move to a new equilibrium position. Thus, a completely submerged body with its center of gravity *above* its center of buoyancy is in an *unstable equilibrium* position.

For *floating* bodies the stability problem is more complicated, since as the body rotates the location of the center of buoyancy (which passes through the centroid of the displaced volume) may

Very stable

Even though a fluid

may be in motion, if it moves as a rigid

body there will be

stresses present.

no shearing

change. As is shown in Fig. 2.27, a floating body such as a barge that rides low in the water can be stable even though the center of gravity lies above the center of buoyancy. This is true since as the body rotates the buoyant force, F_{B} , shifts to pass through the centroid of the newly formed displaced volume and, as illustrated, combines with the weight, \mathcal{W} , to form a couple which will cause the body to return to its original equilibrium position. However, for the relatively tall, slender body shown in Fig. 2.28, a small rotational displacement can cause the buoyant force and the weight to form an overturning couple as illustrated.

It is clear from these simple examples that the determination of the stability of submerged or floating bodies can be difficult since the analysis depends in a complicated fashion on the particular geometry and weight distribution of the body. Thus, although both the relatively narrow kayak and the wide houseboat shown in the figures in the margin are stable, the kayak will overturn much more easily than the houseboat. The problem can be further complicated by the necessary inclusion of other types of external forces such as those induced by wind gusts or currents. Stability considerations are obviously of great importance in the design of ships, submarines, bathyscaphes, and so forth, and such considerations play a significant role in the work of naval architects (see, for example, Ref. 6).

2.12 Pressure Variation in a Fluid with Rigid-Body Motion

Although in this chapter we have been primarily concerned with fluids at rest, the general equation of motion (Eq. 2.2)

$$-\nabla p - \gamma \hat{\mathbf{k}} = \rho \mathbf{a}$$

was developed for both fluids at rest and fluids in motion, with the only stipulation being that there were no shearing stresses present. Equation 2.2 in component form, based on rectangular coordinates with the positive z axis being vertically upward, can be expressed as

> $-\frac{\partial p}{\partial x} = \rho a_x \qquad -\frac{\partial p}{\partial y} = \rho a_y \qquad -\frac{\partial p}{\partial z} = \gamma + \rho a_z$ (2.24)

A general class of problems involving fluid motion in which there are no shearing stresses occurs when a mass of fluid undergoes rigid-body motion. For example, if a container of fluid accelerates along a straight path, the fluid will move as a rigid mass (after the initial sloshing motion has died out) with each particle having the same acceleration. Since there is no deformation,

There is no shear stress in fluids that move with rigidbody motion or with rigid-body rotation. there will be no shearing stresses and, therefore, Eq. 2.2 applies. Similarly, if a fluid is contained in a tank that rotates about a fixed axis, the fluid will simply rotate with the tank as a rigid body, and again Eq. 2.2 can be applied to obtain the pressure distribution throughout the moving fluid. Specific results for these two cases (rigid-body uniform motion and rigid-body rotation) are developed in the following two sections. Although problems relating to fluids having rigid-body motion are not, strictly speaking, "fluid statics" problems, they are included in this chapter because, as we will see, the analysis and resulting pressure relationships are similar to those for fluids at rest.

2.12.1 Linear Motion

We first consider an open container of a liquid that is translating along a straight path with a constant acceleration **a** as illustrated in Fig. 2.29. Since $a_x = 0$, it follows from the first of Eqs. 2.24 that the pressure gradient in the x direction is zero $(\partial p/\partial x = 0)$. In the y and z directions

$$\frac{\partial p}{\partial y} = -\rho a_y \tag{2.25}$$

$$\frac{\partial p}{\partial z} = -\rho(g + a_z) \tag{2.26}$$

The change in pressure between two closely spaced points located at y, z, and y + dy, z + dz can be expressed as

$$dp = \frac{\partial p}{\partial y} \, dy + \frac{\partial p}{\partial z} \, dz$$

or in terms of the results from Eqs. 2.25 and 2.26

$$dp = -\rho a_{v} dy - \rho(g + a_{z}) dz$$
(2.27)

Along a line of *constant* pressure, dp = 0, and therefore from Eq. 2.27 it follows that the slope of this line is given by the relationship

$$\frac{dz}{dy} = -\frac{a_y}{g+a_z}$$
(2.28)

This relationship is illustrated by the figure in the margin. Along a free surface the pressure is constant, so that for the accelerating mass shown in Fig. 2.29 the free surface will be inclined if $a_y \neq 0$. In addition, all lines of constant pressure will be parallel to the free surface as illustrated.

FIGURE 2.29 Linear acceleration of a liquid with a free surface.

The pressure distribution in a fluid mass that is accelerating along a straight path is not hydrostatic. For the special circumstance in which $a_y = 0$, $a_z \neq 0$, which corresponds to the mass of fluid accelerating in the vertical direction, Eq. 2.28 indicates that the fluid surface will be horizontal. However, from Eq. 2.26 we see that the pressure distribution is not hydrostatic, but is given by the equation

$$\frac{dp}{dz} = -\rho(g + a_z)$$

For fluids of constant density this equation shows that the pressure will vary linearly with depth, but the variation is due to the combined effects of gravity and the externally induced acceleration, $\rho(g + a_z)$, rather than simply the specific weight ρg . Thus, for example, the pressure along the bottom of a liquid-filled tank which is resting on the floor of an elevator that is accelerating upward will be increased over that which exists when the tank is at rest (or moving with a constant velocity). It is to be noted that for a *freely falling* fluid mass $(a_z = -g)$, the pressure gradients in all three coordinate directions are zero, which means that if the pressure surrounding the mass is zero, the pressure throughout will be zero. The pressure throughout a "blob" of orange juice floating in an orbiting space shuttle (a form of free fall) is zero. The only force holding the liquid together is surface tension (see Section 1.9).

EXAMPLE 2.11 Pressure Variation in an Accelerating Tank

GIVEN The cross section for the fuel tank of an experimental vehicle is shown in Fig. E2.11. The rectangular tank is vented to the atmosphere and the specific gravity of the fuel is SG = 0.65. A pressure transducer is located in its side as illustrated. During testing of the vehicle, the tank is subjected to a constant linear acceleration, a_y .

FIND (a) Determine an expression that relates a_y and the pressure (in lb/ft²) at the transducer. (b) What is the maximum acceleration that can occur before the fuel level drops below the transducer?

SOLUTION

(a) For a constant horizontal acceleration the fuel will move as a rigid body, and from Eq. 2.28 the slope of the fuel surface can be expressed as

$$\frac{dz}{dy} = -\frac{a_y}{g}$$

since $a_z = 0$. Thus, for some arbitrary a_y , the change in depth, z_1 , of liquid on the right side of the tank can be found from the equation

$$-\frac{z_1}{0.75 \text{ ft}} = -\frac{a_y}{g}$$

or

$$z_1 = (0.75 \text{ ft}) \left(\frac{a_y}{g}\right)$$

Since there is no acceleration in the vertical, z, direction, the pressure along the wall varies hydrostatically as shown by Eq. 2.26. Thus, the pressure at the transducer is given by the relationship

$$p = \gamma h$$

where h is the depth of fuel above the transducer, and therefore

$$p = (0.65)(62.4 \text{ lb/ft}^3)[0.5 \text{ ft} - (0.75 \text{ ft})(a_y/g)]$$
$$= 20.3 - 30.4 \frac{a_y}{g}$$
(Ans

for $z_1 \leq 0.5$ ft. As written, p would be given in lb/ft².

(b) The limiting value for $(a_y)_{max}$ (when the fuel level reaches the transducer) can be found from the equation

0.5 ft = (0.75 ft)
$$\left[\frac{(a_y)_{\max}}{g}\right]$$

$$(a_y)_{\max} = \frac{2g}{3}$$

and for standard acceleration of gravity

or

$$(a_y)_{\text{max}} = \frac{2}{3}(32.2 \text{ ft/s}^2) = 21.5 \text{ ft/s}^2$$
 (Ans)

COMMENT Note that the pressure in horizontal layers is not constant in this example since $\partial p/\partial y = -\rho a_y \neq 0$. Thus, for example, $p_1 \neq p_2$.

2.12.2 Rigid-Body Rotation

A fluid contained in a tank that is rotating with a constant angular velocity about an axis will rotate as a rigid body. After an initial "start-up" transient, a fluid contained in a tank that rotates with a constant angular velocity ω about an axis as is shown in Fig. 2.30 will rotate with the tank as a rigid body. It is known from elementary particle dynamics that the acceleration of a fluid particle located at a distance *r* from the axis of rotation is equal in magnitude to $r\omega^2$, and the direction of the acceleration is toward the axis of rotation, as is illustrated in the figure. Since the paths of the fluid particles are circular, it is convenient to use cylindrical polar coordinates *r*, θ , and *z*, defined in the insert in Fig. 2.30. It will be shown in Chapter 6 that in terms of cylindrical coordinates the pressure gradient ∇p can be expressed as

$$\nabla p = \frac{\partial p}{\partial r} \,\hat{\mathbf{e}}_r + \frac{1}{r} \frac{\partial p}{\partial \theta} \,\hat{\mathbf{e}}_\theta + \frac{\partial p}{\partial z} \,\hat{\mathbf{e}}_z \tag{2.29}$$

Thus, in terms of this coordinate system

$$\mathbf{a}_r = -r\omega^2 \, \mathbf{\hat{e}}_r \qquad \mathbf{a}_\theta = 0 \qquad \mathbf{a}_z = 0$$

and from Eq. 2.2

or

$$\frac{\partial p}{\partial r} = \rho r \omega^2 \qquad \frac{\partial p}{\partial \theta} = 0 \qquad \frac{\partial p}{\partial z} = -\gamma$$
 (2.30)

These results show that for this type of rigid-body rotation, the pressure is a function of two variables r and z, and therefore the differential pressure is

$$dp = \frac{\partial p}{\partial r}dr + \frac{\partial p}{\partial z}dz$$

$$dp = \rho r \omega^2 \, dr - \gamma \, dz \tag{2.31}$$

On a horizontal plane (dz = 0), it follows from Eq. 2.31 that $dp/dr = \rho\omega^2 r$, which is greater than zero. Hence, as illustrated in the figure in the margin, because of centrifugal acceleration, the pressure increases in the radial direction.

Along a surface of constant pressure, such as the free surface, dp = 0, so that from Eq. 2.31 (using $\gamma = \rho g$)

$$\frac{dz}{dr} = \frac{r\omega^2}{g}$$

Integration of this result gives the equation for surfaces of constant pressure as

The free surface in a rotating liquid is curved rather than flat.

or

Integration of Eq. 2.31 yields

$$p = \frac{\rho \omega^2 r^2}{2} - \gamma z + \text{constant}$$
 (2.33)

where the constant of integration can be expressed in terms of a specified pressure at some arbitrary point r_0 , z_0 . This result shows that the pressure varies with the distance from the axis of rotation, but at a fixed radius, the pressure varies hydrostatically in the vertical direction as shown in Fig. 2.31.

This equation reveals that these surfaces of constant pressure are parabolic, as illustrated in Fig. 2.31.

 $\int dp = \rho \omega^2 \int r \, dr - \gamma \int dz$

EXAMPLE 2.12 Free Surface Shape of Liquid in a Rotating Tank

GIVEN It has been suggested that the angular velocity, ω , of a rotating body or shaft can be measured by attaching an open cylinder of liquid, as shown in Fig. E2.12*a*, and measuring with some type of depth gage the change in the fluid level, $H - h_0$, caused by the rotation of the fluid.

FIND Determine the relationship between this change in fluid level and the angular velocity.

SOLUTION

The height, h, of the free surface above the tank bottom can be determined from Eq. 2.32, and it follows that

$$h = \frac{\omega^2 r^2}{2g} + h_0$$

The initial volume of fluid in the tank, \mathcal{V}_i , is equal to

$$\Psi_i = \pi R^2 H$$

The volume of the fluid with the rotating tank can be found with the aid of the differential element shown in Fig. E2.12*b*. This

cylindrical shell is taken at some arbitrary radius, r, and its volume is

 $d\Psi = 2\pi rh dr$

The total volume is, therefore,

$$\Psi = 2\pi \int_0^R r \left(\frac{\omega^2 r^2}{2g} + h_0 \right) dr = \frac{\pi \omega^2 R^4}{4g} + \pi R^2 h_0$$

Since the volume of the fluid in the tank must remain constant (assuming that none spills over the top), it follows that

$$\pi R^2 H = \frac{\pi \omega^2 R^4}{4g} + \pi R^2 h_0$$

or

$$H - h_0 = \frac{\omega^2 R^2}{4g} \tag{Ans}$$

COMMENT This is the relationship we were looking for. It shows that the change in depth could indeed be used to determine the rotational speed, although the relationship between the change in depth and speed is not a linear one.

Fluids in the News

Rotating mercury mirror telescope A telescope mirror has the same shape as the parabolic free surface of a *liquid in a rotating tank*. The liquid mirror telescope (LMT) consists of a pan of liquid (normally mercury because of its excellent reflectivity) rotating to produce the required parabolic shape of the free surface mirror. With recent technological advances, it is possible to obtain the vibration-free rotation and the constant angular velocity necessary to produce a liquid mirror surface precise enough for astronomical use. Construction of the largest LMT, located at the University of British

Columbia, has recently been completed. With a diameter of 6 ft and a rotation rate of 7 rpm, this mirror uses 30 liters of mercury for its 1-mm thick, parabolic-shaped mirror. One of the major benefits of a LMT (compared to a normal glass mirror telescope) is its low cost. Perhaps the main disadvantage is that a LMT can look only straight up, although there are many galaxies, supernova explosions, and pieces of space junk to view in any part of the sky. The next generation LMTs may have movable secondary mirrors to allow a larger portion of the sky to be viewed. (See Problem 2.121.)

2.13 Chapter Summary and Study Guide

In this chapter the pressure variation in a fluid at rest is considered, along with some important consequences of this type of pressure variation. It is shown that for incompressible fluids at rest the pressure varies linearly with depth. This type of variation is commonly referred to as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution will not generally be hydrostatic, but Eq. 2.4 remains valid and can be used to determine the pressure distribution if additional information about the variation of the specific weight is specified. The distinction between absolute and gage pressure is discussed along with a consideration of barometers for the measurement of atmospheric pressure.

Pressure measuring devices called manometers, which utilize static liquid columns, are analyzed in detail. A brief discussion of mechanical and electronic pressure gages is also included. Equations for determining the magnitude and location of the resultant fluid force acting on a plane surface in contact with a static fluid are developed. A general approach for determining the magnitude and location of the resultant fluid force acting on a curved surface in contact with a static fluid is described. For submerged or floating bodies the concept of the buoyant force and the use of Archimedes' principle are reviewed.

The following checklist provides a study guide for this chapter. When your study of the entire chapter and end-of-chapter exercises has been completed you should be able to

- write out meanings of the terms listed here in the margin and understand each of the related concepts. These terms are particularly important and are set in *italic, bold, and color* type in the text.
- calculate the pressure at various locations within an incompressible fluid at rest.
- calculate the pressure at various locations within a compressible fluid at rest using Eq. 2.4 if the variation in the specific weight is specified.
- use the concept of a hydrostatic pressure distribution to determine pressures from measurements using various types of manometers.
- determine the magnitude, direction, and location of the resultant hydrostatic force acting on a plane surface.

Pascal's law surface force body force incompressible fluid hydrostatic pressure distribution pressure head compressible fluid U.S. standard atmosphere absolute pressure gage pressure vacuum pressure barometer manometer **Bourdon pressure** gage center of pressure buoyant force Archimedes' principle center of buoyancy

- determine the magnitude, direction, and location of the resultant hydrostatic force acting on a curved surface.
- use Archimedes' principle to calculate the resultant hydrostatic force acting on floating or submerged bodies.
- analyze, based on Eq. 2.2, the motion of fluids moving with simple rigid-body linear motion or simple rigid-body rotation.

Some of the important equations in this chapter are:

Pressure gradient in a stationary fluid	$\frac{dp}{dz} = -\gamma$		(2.4)	
Pressure variation in a stationary incomp	pressible fluid	$p_1 = \gamma h +$	$- p_2$	(2.7)
Hydrostatic force on a plane surface		$F_R = \gamma h_c A$		(2.18)
Location of hydrostatic force on a plane	$y_R = \frac{I_{xc}}{y_c A}$	$+ y_c$	(2.19)	
		$x_R = \frac{I_{xyc}}{y_c A}$	$+ x_c$	(2.20)
Buoyant force		$F_B = \gamma F$		(2.22)
Pressure gradient in rigid-body motion	$-\frac{\partial p}{\partial x} = \rho a_x, -$	$-\frac{\partial p}{\partial y} = \rho a_y,$	$-\frac{\partial p}{\partial z} = \gamma + \rho a_z$	(2.24)
Pressure gradient in rigid-body rotation	$\frac{\partial p}{\partial r} = \rho r \omega$	$\partial^2, \frac{\partial p}{\partial \theta} = 0,$	$\frac{\partial p}{\partial z} = -\gamma$	(2.30)

References

- 1. The U.S. Standard Atmosphere, 1962, U.S. Government Printing Office, Washington, D.C., 1962.
- 2. The U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976.
- 3. Benedict, R. P., Fundamentals of Temperature, Pressure, and Flow Measurements, 3rd Ed., Wiley, New York, 1984.
- Dally, J. W., Riley, W. F., and McConnell, K. G., *Instrumentation for Engineering Measurements*, 2nd Ed., Wiley, New York, 1993.
- 5. Holman, J. P., Experimental Methods for Engineers, 4th Ed., McGraw-Hill, New York, 1983.
- Comstock, J. P., ed., *Principles of Naval Architecture*, Society of Naval Architects and Marine Engineers, New York, 1967.
- Hasler, A. F., Pierce, H., Morris, K. R., and Dodge, J., "Meteorological Data Fields 'In Perspective'," Bulletin of the American Meteorological Society, Vol. 66, No. 7, July 1985.

Review Problems

Go to Appendix G for a set of review problems with answers. Detailed solutions can be found in *Student Solution Manual and Study* *Guide for Fundamentals of Fluid Mechanics*, by Munson et al. (© 2009 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated, use the values of fluid properties found in the tables on the inside of the front cover. Problems designated with an (*) are intended to be solved with the aid of a programmable calculator or a computer. Problems designated with a (\dagger) are "open-ended" problems and require critical thinking in that to work them one must make various assumptions and provide the necessary data. There is not a unique answer to these problems.

Answers to the even-numbered problems are listed at the end of the book. Access to the videos that accompany problems can be obtained through the book's web site, www.wiley.com/ college/munson. The lab-type problems can also be accessed on this web site.

Section 2.3 Pressure Variation in a Fluid at Rest

2.1 Obtain a photograph/image of a situation in which the fact that in a static fluid the pressure increases with depth is important. Print this photo and write a brief paragraph that describes the situation involved.

2.2 A closed, 5-m-tall tank is filled with water to a depth of 4 m. The top portion of the tank is filled with air which, as indicated by a pressure gage at the top of the tank, is at a pressure of 20 kPa. Determine the pressure that the water exerts on the bottom of the tank.

2.3 A closed tank is partially filled with glycerin. If the air pressure in the tank is 6 lb/in.² and the depth of glycerin is 10 ft, what is the pressure in lb/ft^2 at the bottom of the tank?

2.4 Blood pressure is usually given as a ratio of the maximum pressure (systolic pressure) to the minimum pressure (diastolic pressure). As shown in Video V2.2, such pressures are commonly measured with a mercury manometer. A typical value for this ratio for a human would be 120/70, where the pressures are in mm Hg. (a) What would these pressures be in pascals? (b) If your car tire was inflated to 120 mm Hg, would it be sufficient for normal driving?

2.5 An unknown immiscible liquid seeps into the bottom of an open oil tank. Some measurements indicate that the depth of the unknown liquid is 1.5 m and the depth of the oil (specific weight = 8.5 kN/m^3) floating on top is 5.0 m. A pressure gage connected to the bottom of the tank reads 65 kPa. What is the specific gravity of the unknown liquid?

2.6 Bathyscaphes are capable of submerging to great depths in the ocean. What is the pressure at a depth of 5 km, assuming that seawater has a constant specific weight of 10.1 kN/m^3 ? Express your answer in pascals and psi.

2.7 For the great depths that may be encountered in the ocean the compressibility of seawater may become an important consideration. (a) Assume that the bulk modulus for seawater is constant and derive a relationship between pressure and depth which takes into account the change in fluid density with depth. (b) Make use of part (a) to determine the pressure at a depth of 6 km assuming seawater has a bulk modulus of 2.3×10^9 Pa and a density of 1030 kg/m^3 at the surface. Compare this result with that obtained by assuming a constant density of 1030 kg/m^3 .

2.8 Sometimes when riding an elevator or driving up or down a hilly road a person's ears "pop" as the pressure difference between the inside and outside of the ear is equalized. Determine the pressure difference (in psi) associated with this phenomenon if it occurs during a 150 ft elevation change.

2.9 Develop an expression for the pressure variation in a liquid in which the specific weight increases with depth, *h*, as $\gamma = Kh + \gamma_0$, where *K* is a constant and γ_0 is the specific weight at the free surface.

*2.10 In a certain liquid at rest, measurements of the specific weight at various depths show the following variation:

<i>h</i> (ft)	γ (lb/ft ³)	
0	70	
10	76	
20	84	
30	91	
40	97	
50	102	
60	107	
70	110	
80	112	
90	114	
100	115	

The depth h = 0 corresponds to a free surface at atmospheric pressure. Determine, through numerical integration of Eq. 2.4, the corresponding variation in pressure and show the results on a plot of pressure (in psf) versus depth (in feet).

†2.11 Because of elevation differences, the water pressure in the second floor of your house is lower than it is in the first floor. For tall buildings this pressure difference can become unacceptable. Discuss possible ways to design the water distribution system in very tall buildings so that the hydrostatic pressure difference is within acceptable limits.

*2.12 Under normal conditions the temperature of the atmosphere decreases with increasing elevation. In some situations, however, a temperature inversion may exist so that the air temperature increases with elevation. A series of temperature probes on a mountain give the elevation–temperature data shown in the table below. If the barometric pressure at the base of the mountain is 12.1 psia, determine by means of numerical integration the pressure at the top of the mountain.

Elevation (ft)	Temperature (°F)		
5000	50.1 (base)		
5500	55.2		
6000	60.3		
6400	62.6		
7100	67.0		
7400	68.4		
8200	70.0		
8600	69.5		
9200	68.0		
9900	67.1 (top)		

†2.13 Although it is difficult to compress water, the density of water at the bottom of the ocean is greater than that at the surface because of the higher pressure at depth. Estimate how much higher the ocean's surface would be if the density of seawater were instantly changed to a uniform density equal to that at the surface.

2.14 (See Fluids in the News article titled "Giraffe's blood pressure," Section 2.3.1.) (a) Determine the change in hydrostatic pressure in a giraffe's head as it lowers its head from eating leaves 6 m above the ground to getting a drink of water at ground level as shown in Fig. P2.14. Assume the specific gravity of blood is SG = 1. (b) Compare the pressure change calculated in part (a) to the normal 120 mm of mercury pressure in a human's heart.

Section 2.4 Standard Atmosphere

2.15 Assume that a person skiing high in the mountains at an altitude of 15,000 ft takes in the same volume of air with each breath as she does while walking at sea level. Determine the ratio of the mass of oxygen inhaled for each breath at this high altitude compared to that at sea level.

2.16 Pikes Peak near Denver, Colorado, has an elevation of 14,110 ft. (a) Determine the pressure at this elevation, based on Eq. 2.12. (b) If the air is assumed to have a constant specific weight of 0.07647 lb/ft³, what would the pressure be at this altitude? (c) If the air is assumed to have a constant temperature of 59 °F, what would the pressure be at this elevation? For all three cases assume standard atmospheric conditions at sea level (see Table 2.1).

2.17 Equation 2.12 provides the relationship between pressure and elevation in the atmosphere for those regions in which the temperature varies linearly with elevation. Derive this equation and verify the value of the pressure given in Table C.2 in Appendix C for an elevation of 5 km.

2.18 As shown in Fig. 2.6 for the U.S. standard atmosphere, the troposphere extends to an altitude of 11 km where the pressure is 22.6 kPa (abs). In the next layer, called the stratosphere, the temperature remains constant at -56.5 °C. Determine the pressure and density in this layer at an altitude of 15 km. Assume g = 9.77 m/s² in your calculations. Compare your results with those given in Table C.2 in Appendix C.

2.19 (See Fluids in the News article titled **"Weather, barometers, and bars,"** Section 2.5.) The record low sea-level barometric pressure ever recorded is 25.8 in. of mercury. At what altitude in the standard atmosphere is the pressure equal to this value?

Section 2.5 Measurement of Pressure

2.20 On a given day, a barometer at the base of the Washington Monument reads 29.97 in. of mercury. What would the barometer reading be when you carry it up to the observation deck 500 ft above the base of the monument?

2.21 Bourdon gages (see Video V2.3 and Fig. 2.13) are commonly used to measure pressure. When such a gage is attached to the closed water tank of Fig. P2.21 the gage reads 5 psi. What is the absolute air pressure in the tank? Assume standard atmospheric pressure of 14.7 psi.

2.22 On the suction side of a pump a Bourdon pressure gage reads 40 kPa vacuum. What is the corresponding absolute pressure if the local atmospheric pressure is 100 kPa (abs)?

Section 2.6 Manometry

2.23 Obtain a photograph/image of a situation in which the use of a manometer is important. Print this photo and write a brief paragraph that describes the situation involved.

2.24 A water-filled U-tube manometer is used to measure the pressure inside a tank that contains air. The water level in the U-tube on the side that connects to the tank is 5 ft above the base of the tank. The water level in the other side of the U-tube (which is open to the atmosphere) is 2 ft above the base. Determine the pressure within the tank.

2.25 A barometric pressure of 29.4 in. Hg corresponds to what value of atmospheric pressure in psia, and in pascals?

2.26 For an atmospheric pressure of 101 kPa (abs) determine the heights of the fluid columns in barometers containing one of the following liquids: (a) mercury, (b) water, and (c) ethyl alcohol. Calculate the heights including the effect of vapor pressure, and compare the results with those obtained neglecting vapor pressure. Do these results support the widespread use of mercury for barometers? Why?

2.27 A mercury manometer is connected to a large reservoir of water as shown in Fig. P2.27. Determine the ratio, h_w/h_m , of the distances h_w and h_m indicated in the figure.

2.28 A U-tube manometer is connected to a closed tank containing air and water as shown in Fig. P2.28. At the closed end of the

manometer the air pressure is 16 psia. Determine the reading on the pressure gage for a differential reading of 4 ft on the manometer. Express your answer in psi (gage). Assume standard atmospheric pressure and neglect the weight of the air columns in the manometer.

2.29 A closed cylindrical tank filled with water has a hemispherical dome and is connected to an inverted piping system as shown in Fig. P2.29. The liquid in the top part of the piping system has a specific gravity of 0.8, and the remaining parts of the system are filled with water. If the pressure gage reading at A is 60 kPa, determine: (a) the pressure in pipe B, and (b) the pressure head, in millimeters of mercury, at the top of the dome (point C).

FIGURE P2.29

2.30 Two pipes are connected by a manometer as shown in Fig. P2.30. Determine the pressure difference, $p_A - p_B$, between the pipes.

2.31 A U-tube manometer is connected to a closed tank as shown in Fig. P2.31. The air pressure in the tank is 0.50 psi and the liquid in

the tank is oil ($\gamma = 54.0 \text{ lb/ft}^3$). The pressure at point A is 2.00 psi. Determine: (a) the depth of oil, z, and (b) the differential reading, h, on the manometer.

2.32 For the inclined-tube manometer of Fig. P2.32 the pressure in pipe A is 0.6 psi. The fluid in both pipes A and B is water, and the gage fluid in the manometer has a specific gravity of 2.6. What is the pressure in pipe B corresponding to the differential reading shown?

2.33 A flowrate measuring device is installed in a horizontal pipe through which water is flowing. A U-tube manometer is connected to the pipe through pressure taps located 3 in. on either side of the device. The gage fluid in the manometer has a specific weight of 112 lb/ft^3 . Determine the differential reading of the manometer corresponding to a pressure drop between the taps of 0.5 lb/in.².

2.34 Small differences in gas pressures are commonly measured with a *micromanometer* of the type illustrated in Fig. P2.34. This device consists of two large reservoirs each having a cross-sectional area A_r which are filled with a liquid having a specific weight γ_1 and connected by a U-tube of cross-sectional area A_t containing a liquid of specific weight γ_2 . When a differential gas pressure, $p_1 - p_2$, is applied, a differential reading, h, develops. It is desired to have this reading sufficiently large (so that it can be easily read) for small pressure differentials. Determine the relationship between h and $p_1 - p_2$ when the area ratio A_t/A_r is small, and show that the differential reading, h, can be magnified by making the difference in specific weights, $\gamma_2 - \gamma_1$, small. Assume that initially (with $p_1 = p_2$) the fluid levels in the two reservoirs are equal.

2.35 The cyclindrical tank with hemispherical ends shown in Fig. P2.35 contains a volatile liquid and its vapor. The liquid density is 800 kg/m³, and its vapor density is negligible. The pressure in the vapor is 120 kPa (abs), and the atmospheric pressure is 101 kPa (abs). Determine: (a) the gage pressure reading on the pressure gage; and (b) the height, h, of the mercury manometer.

2.36 Determine the elevation difference, Δh , between the water levels in the two open tanks shown in Fig. P2.36.

2.37 For the configuration shown in Fig. P2.37 what must be the value of the specific weight of the unknown fluid? Express your answer in lb/ft^3 .

FIGURE P2.37

FIGURE P2.38

*2.39 Both ends of the U-tube mercury manometer of Fig. P2.39 are initially open to the atmosphere and under standard atmospheric pressure. When the valve at the top of the right leg is open, the level of mercury below the valve is h_i . After the valve is closed, air pressure is applied to the left leg. Determine the relationship between the differential reading on the manometer and the applied gage pressure, p_g . Show on a plot how the differential reading varies with p_g for $h_i = 25$, 50, 75, and 100 mm over the range $0 \le p_g \le 300$ kPa. Assume that the temperature of the trapped air remains constant.

2.40 The inverted U-tube manometer of Fig. P2.40 contains oil (SG = 0.9) and water as shown. The pressure differential between pipes A and B, $p_A - p_B$, is -5 kPa. Determine the differential reading, h.

2.38 An air-filled, hemispherical shell is attached to the ocean floor at a depth of 10 m as shown in Fig. P2.38. A mercury barometer located inside the shell reads 765 mm Hg, and a mercury U-tube manometer designed to give the outside water pressure indicates a differential reading of 735 mm Hg as illustrated. Based on these data what is the atmospheric pressure at the ocean surface?

2.41 An inverted U-tube manometer containing oil (SG = 0.8) is located between two reservoirs as shown in Fig. P2.41. The

reservoir on the left, which contains carbon tetrachloride, is closed and pressurized to 8 psi. The reservoir on the right contains water and is open to the atmosphere. With the given data, determine the depth of water, h, in the right reservoir.

2.42 Determine the pressure of the water in pipe A shown in Fig. P2.42 if the gage pressure of the air in the tank is 2 psi.

2.43 In Fig. P2.43 pipe A contains gasoline (SG = 0.7), pipe B contains oil (SG = 0.9), and the manometer fluid is mercury. Determine the new differential reading if the pressure in pipe A is decreased 25 kPa, and the pressure in pipe B remains constant. The initial differential reading is 0.30 m as shown.

2.44 The inclined differential manometer of Fig. P2.44 contains carbon tetrachloride. Initially the pressure differential between pipes *A* and *B*, which contain a brine (SG = 1.1), is zero as illustrated in the figure. It is desired that the manometer give a differential reading of 12 in. (measured along the inclined tube) for a pressure differential of 0.1 psi. Determine the required angle of inclination, θ .

2.45 Determine the new differential reading along the inclined leg of the mercury manometer of Fig. P2.45, if the pressure in pipe A is decreased 10 kPa and the pressure in pipe B remains unchanged. The fluid in A has a specific gravity of 0.9 and the fluid in B is water.

2.46 Determine the change in the elevation of the mercury in the left leg of the manometer of Fig. P2.46 as a result of an increase in pressure of 5 psi in pipe A while the pressure in pipe B remains constant.

2.47 The U-shaped tube shown in Fig. P2.47 initially contains water only. A second liquid with specific weight, γ , less than water is placed on top of the water with no mixing occurring. Can the

height, h, of the second liquid be adjusted so that the left and right levels are at the same height? Provide proof of your answer.

*2.48 An inverted hollow cylinder is pushed into the water as is shown in Fig. P2.48. Determine the distance, ℓ , that the water rises in the cylinder as a function of the depth, *d*, of the lower edge of the cylinder. Plot the results for $0 \le d \le H$, when *H* is equal to 1 m. Assume the temperature of the air within the cylinder remains constant.

Section 2.8 Hydrostatic Force on a Plane Surface (Also see Lab Problems 2.122, 2.123, 2.124, and 2.125.)

2.49 Obtain a photograph/image of a situation in which the hydrostatic force on a plane surface is important. Print this photo and write a brief paragraph that describes the situation involved.

*2.50 A Bourdon gage (see Fig. 2.13 and Video V2.3) is often used to measure pressure. One way to calibrate this type of gage is to use the arrangement shown in Fig. P2.50*a*. The container is filled with a liquid and a weight, \mathcal{W} , placed on one side with the gage on the other side. The weight acting on the liquid through a 0.4-in.-diameter opening creates a pressure that is transmitted to the gage. This arrangement, with a series of weights, can be used to determine what a change in the dial movement, θ , in Fig. P2.50*b*, corresponds to in terms of a change in pressure. For a particular gage, some data are given below. Based on a plot of these data, determine the relationship between θ and the pressure, *p*, where *p* is measured in psi.

2.51 You partially fill a glass with water, place an index card on top of the glass, and then turn the glass upside down while holding the card in place. You can then remove your hand from the card and the card remains in place, holding the water in the glass. Explain how this works.

2.52 A piston having a cross-sectional area of 0.07 m^2 is located in a cylinder containing water as shown in Fig. P2.52. An open U-tube manometer is connected to the cylinder as shown. For $h_1 = 60 \text{ mm}$ and h = 100 mm, what is the value of the applied force, *P*, acting on the piston? The weight of the piston is negligible.

2.53 A 6-in.-diameter piston is located within a cylinder which is connected to a $\frac{1}{2}$ -in.-diameter inclined-tube manometer as shown in Fig. P2.53. The fluid in the cylinder and the manometer is oil (specific weight = 59 lb/ft³). When a weight, \mathcal{W} , is placed on the top of the cylinder, the fluid level in the manometer tube rises from point (1) to (2). How heavy is the weight? Assume that the change in position of the piston is negligible.

2.54 A circular 2-m-diameter gate is located on the sloping side of a swimming pool. The side of the pool is oriented 60° relative to the horizontal bottom, and the center of the gate is located 3 m below the water surface. Determine the magnitude of the water force acting on the gate and the point through which it acts.

2.55 A vertical rectangular gate is 8 ft wide and 10 ft long and weighs 6000 lb. The gate slides in vertical slots in the side of a reservoir containing water. The coefficient of friction between the slots and the gate is 0.03. Determine the minimum vertical force required to lift the gate when the water level is 4 ft above the top edge of the gate.

2.56 A horizontal 2-m-diameter conduit is half filled with a liquid (SG = 1.6) and is capped at both ends with plane vertical surfaces. The air pressure in the conduit above the liquid surface is 200 kPa. Determine the resultant force of the fluid acting on one of the end caps, and locate this force relative to the bottom of the conduit.

2.57 Forms used to make a concrete basement wall are shown in Fig. P2.57. Each 4-ft-long form is held together by four ties—two at the top and two at the bottom as indicated. Determine the tension in the upper and lower ties. Assume concrete acts as a fluid with a weight of 150 lb/ft³.

2.58 A structure is attached to the ocean floor as shown in Fig. P2.58. A 2-m-diameter hatch is located in an inclined wall and hinged on one edge. Determine the minimum air pressure, p_1 , within the container that will open the hatch. Neglect the weight of the hatch and friction in the hinge.

FIGURE P2.58

2.59 A long, vertical wall separates seawater from freshwater. If the seawater stands at a depth of 7 m, what depth of freshwater is required to give a zero resultant force on the wall? When the resultant force is zero will the moment due to the fluid forces be zero? Explain.

2.60 A pump supplies water under pressure to a large tank as shown in Fig. P2.60. The circular-plate valve fitted in the short discharge pipe on the tank pivots about its diameter A-A and is held shut against the water pressure by a latch at B. Show that the force on the latch is independent of the supply pressure, p, and the height of the tank, h.

in Fig. P2.61. Water acts against the gate which is hinged at point *A*. Friction in the hinge is negligible. Determine the tension in the cable.

†2.62 Sometimes it is difficult to open an exterior door of a building because the air distribution system maintains a pressure difference between the inside and outside of the building. Estimate how big this pressure difference can be if it is "not too difficult" for an average person to open the door.

2.63 An area in the form of an isosceles triangle with a base width of 6 ft and an altitude of 8 ft lies in the plane forming one wall of a tank which contains a liquid having a specific weight of 79.8 lb/ft³. The side slopes upward, making an angle of 60° with the horizontal. The base of the triangle is horizontal and the vertex is above the base. Determine the resultant force the fluid exerts on the area when the fluid depth is 20 ft above the base of the triangular area. Show, with the aid of a sketch, where the center of pressure is located.

2.64 Solve Problem 2.63 if the isosceles triangle is replaced with a right triangle having the same base width and altitude as the isosceles triangle.

2.65 A vertical plane area having the shape shown in Fig. P2.65 is immersed in an oil bath (specific weight = 8.75 kN/m^3). Determine the magnitude of the resultant force acting on one side of the area as a result of the oil.

2.66 A 3-m-wide, 8-m-high rectangular gate is located at the end of a rectangular passage that is connected to a large open tank filled with water as shown in Fig. P2.66. The gate is hinged at its bottom and held closed by a horizontal force, F_H , located at the center of the gate. The maximum value for F_H is 3500 kN. (a) Determine the maximum water depth, h, above the center of the gate that can exist without the gate opening. (b) Is the answer the same if the gate is hinged at the top? Explain your answer.

FIGURE P2.66

2.67 A gate having the cross section shown in Fig. P2.67 closes an opening 5 ft wide and 4 ft high in a water reservoir. The gate weighs 500 lb and its center of gravity is 1 ft to the left of AC and 2 ft above BC. Determine the horizontal reaction that is developed on the gate at C.

2.68 The massless, 4-ft-wide gate shown in Fig. P2.68 pivots about the frictionless hinge O. It is held in place by the 2000 lb counterweight, W. Determine the water depth, h.

*2.69 A 200-lb homogeneous gate of 10-ft width and 5-ft length is hinged at point A and held in place by a 12-ft-long brace as shown in Fig. P2.69. As the bottom of the brace is moved to the right, the water level remains at the top of the gate. The line of action of the force that the brace exerts on the gate is along the brace. (a) Plot the magnitude of the force exerted on the gate by the brace as a function of the angle of the gate, θ , for $0 \le \theta \le 90^{\circ}$. (b) Repeat the calculations for the case in which the weight of the gate is negligible. Comment on the results as $\theta \rightarrow 0$.

2.70 An open tank has a vertical partition and on one side contains gasoline with a density $\rho = 700 \text{ kg/m}^3$ at a depth of 4 m, as shown in Fig. P2.70. A rectangular gate that is 4 m high and 2 m wide and hinged at one end is located in the partition. Water is slowly added to the empty side of the tank. At what depth, *h*, will the gate start to open?

2.71 A 4-ft by 3-ft massless rectangular gate is used to close the end of the water tank shown in Fig. P2.71. A 200 lb weight attached to the arm of the gate at a distance ℓ from the frictionless hinge is just sufficient to keep the gate closed when the water depth is 2 ft, that is, when the water fills the semicircular lower portion of the tank. If the water were deeper the gate would open. Determine the distance ℓ .

2.72 A rectangular gate that is 2 m wide is located in the vertical wall of a tank containing water as shown in Fig. P2.72. It is desired to have the gate open automatically when the depth of water above the top of the gate reaches 10 m. (a) At what distance, d, should the

frictionless horizontal shaft be located? (b) What is the magnitude of the force on the gate when it opens?

2.73 A thin 4-ft-wide, right-angle gate with negligible mass is free to pivot about a frictionless hinge at point O, as shown in Fig. P2.73. The horizontal portion of the gate covers a 1-ft-diameter drain pipe which contains air at atmospheric pressure. Determine the minimum water depth, h, at which the gate will pivot to allow water to flow into the pipe.

_

2.74 An open rectangular tank is 2 m wide and 4 m long. The tank contains water to a depth of 2 m and oil (SG = 0.8) on top of the water to a depth of 1 m. Determine the magnitude and location of the resultant fluid force acting on one end of the tank.

*2.75 An open rectangular settling tank contains a liquid suspension that at a given time has a specific weight that varies approximately with depth according to the following data:

<i>h</i> (m)	γ (N/m ³)
0	10.0
0.4	10.1
0.8	10.2
1.2	10.6
1.6	11.3
2.0	12.3
2.4	12.7
2.8	12.9
3.2	13.0
3.6	13.1

The depth h = 0 corresponds to the free surface. Determine, by means of numerical integration, the magnitude and location of the resultant force that the liquid suspension exerts on a vertical wall of the tank that is 6 m wide. The depth of fluid in the tank is 3.6 m.

2.76 The closed vessel of Fig. P2.76 contains water with an air pressure of 10 psi at the water surface. One side of the vessel

contains a spout that is closed by a 6-in.-diameter circular gate that is hinged along one side as illustrated. The horizontal axis of the hinge is located 10 ft below the water surface. Determine the minimum torque that must be applied at the hinge to hold the gate shut. Neglect the weight of the gate and friction at the hinge.

2.77 A 4-ft-tall, 8-in.-wide concrete (150 lb/ft³) retaining wall is built as shown in Fig. P2.77. During a heavy rain, water fills the space between the wall and the earth behind it to a depth h. Determine the maximum depth of water possible without the wall tipping over. The wall simply rests on the ground without being anchored to it.

*2.78 Water backs up behind a concrete dam as shown in Fig. P2.78. Leakage under the foundation gives a pressure distribution under the dam as indicated. If the water depth, h, is too great, the dam will topple over about its toe (point A). For the dimensions given, determine the maximum water depth for the following widths of the dam: $\ell = 20, 30, 40, 50, \text{ and } 60 \text{ ft}$. Base your analysis on a unit length of the dam. The specific weight of the concrete is 150 lb/ft³.

2.79 (See Fluids in the News article titled **"The Three Gorges Dam,"** Section 2.8.) (a) Determine the horizontal hydrostatic force on the 2309-m-long Three Gorges Dam when the average depth of the water against it is 175 m. (b) If all of the 6.4 billion people on Earth were to push horizontally against the Three Gorges Dam, could they generate enough force to hold it in place? Support your answer with appropriate calculations.

Section 2.10 Hydrostatic Force on a Curved Surface

2.80 Obtain a photograph/image of a situation in which the hydrostatic force on a curved surface is important. Print this photo and write a brief paragraph that describes the situation involved.

2.81 A 2-ft-diameter hemispherical plexiglass "bubble" is to be used as a special window on the side of an above-ground swimming pool. The window is to be bolted onto the vertical wall of the pool and faces outward, covering a 2-ft-diameter opening in the wall. The center of the opening is 4 ft below the surface. Determine the horizontal and vertical components of the force of the water on the hemisphere.

2.82 Two round, open tanks containing the same type of fluid rest on a table top as shown in Fig. P2.82. They have the same bottom area, A, but different shapes. When the depth, h, of the liquid in the two tanks is the same, the pressure force of the liquids on the bottom of the two tanks is the same. However, the force that the table exerts on the two tanks is different because the weight in each of the tanks is different. How do you account for this apparent paradox?

2.83 Two hemispherical shells are bolted together as shown in Fig. P2.83. The resulting spherical container, which weighs 300 lb, is filled with mercury and supported by a cable as shown. The container is vented at the top. If eight bolts are symmetrically located around the circumference, what is the vertical force that each bolt must carry?

2.84 The 18-ft-long gate of Fig. P2.84 is a quarter circle and is hinged at H. Determine the horizontal force, P, required to hold the gate in place. Neglect friction at the hinge and the weight of the gate.

2.85 The air pressure in the top of the 2-liter pop bottle shown in **Video V2.5** and Fig. P2.85 is 40 psi, and the pop depth is 10 in. The bottom of the bottle has an irregular shape with a diameter of 4.3 in. (a) If the bottle cap has a diameter of 1 in. what is the magnitude of the axial force required to hold the cap in place? (b) Determine the force needed to secure the bottom 2 in. of the bottle to its cylindrical sides. For this calculation assume the effect of the weight of the pop is negligible. (c) By how much does the weight of the pop has the same specific weight as that of water.

2.87 A plug in the bottom of a pressurized tank is conical in shape, as shown in Fig. P2.87. The air pressure is 40 kPa and the liquid in

the tank has a specific weight of 27 kN/m^3 . Determine the magnitude, direction, and line of action of the force exerted on the curved surface of the cone within the tank due to the 40-kPa pressure and the liquid.

2.88 The homogeneous gate shown in Fig. P2.88 consists of one quarter of a circular cylinder and is used to maintain a water depth of 4 m. That is, when the water depth exceeds 4 m, the gate opens slightly and lets the water flow under it. Determine the weight of the gate per meter of length.

2.89 The concrete (specific weight = 150 lb/ft^3) seawall of Fig.

P2.89 has a curved surface and restrains seawater at a depth of 24 ft. The trace of the surface is a parabola as illustrated. Determine the moment of the fluid force (per unit length) with respect to an axis through the toe (point A).

2.90 A cylindrical tank with its axis horizontal has a diameter of 2.0 m and a length of 4.0 m. The ends of the tank are vertical planes. A vertical, 0.1-m-diameter pipe is connected to the top of the tank. The tank and the pipe are filled with ethyl alcohol to a level of 1.5 m above the top of the tank. Determine the resultant force of the alcohol on one end of the tank and show where it acts.

2.91 If the tank ends in Problem 2.90 are hemispherical, what is the magnitude of the resultant horizontal force of the alcohol on one of the curved ends?

2.92 An open tank containing water has a bulge in its vertical side that is semicircular in shape as shown in Fig. P2.92. Determine the horizontal and vertical components of the force that the water exerts on the bulge. Base your analysis on a 1-ft length of the bulge.

2.93 A closed tank is filled with water and has a 4-ft-diameter hemispherical dome as shown in Fig. P2.93. A U-tube manometer is connected to the tank. Determine the vertical force of the water on the dome if the differential manometer reading is 7 ft and the air pressure at the upper end of the manometer is 12.6 psi.

2.94 A 3-m-diameter open cylindrical tank contains water and has a hemispherical bottom as shown in Fig. P2.94. Determine the magnitude, line of action, and direction of the force of the water on the curved bottom.

2.95 Three gates of negligible weight are used to hold back water in a channel of width b as shown in Fig. P2.95 on the next page. The force of the gate against the block for gate (b) is R. Determine (in terms of R) the force against the blocks for the other two gates.

Section 2.11 Buoyancy, Flotation, and Stability

2.96 Obtain a photograph/image of a situation in which Archimedes' principle is important. Print this photo and write a brief paragraph that describes the situation involved.

2.97 A freshly cut log floats with one fourth of its volume protruding above the water surface. Determine the specific weight of the log.

2.98 A river barge, whose cross section is approximately rectangular, carries a load of grain. The barge is 28 ft wide and 90 ft long. When unloaded its draft (depth of submergence) is 5 ft, and with the load of grain the draft is 7 ft. Determine: (a) the unloaded weight of the barge, and (b) the weight of the grain.

2.99 A tank of cross-sectional area *A* is filled with a liquid of specific weight γ_1 as shown in Fig. P2.99*a*. Show that when a cylinder of specific weight γ_2 and volume *V* is floated in the liquid (see Fig. P2.99*b*), the liquid level rises by an amount $\Delta h = (\gamma_2 / \gamma_1) \frac{V}{A}$.

2.100 When the Tucurui Dam was constructed in northern Brazil, the lake that was created covered a large forest of valuable hardwood trees. It was found that even after 15 years underwater the trees were perfectly preserved and underwater logging was started. During the logging process a tree is selected, trimmed, and anchored with ropes to prevent it from shooting to the surface like a missile when cut. Assume that a typical large tree can be approximated as a truncated cone with a base diameter of 8 ft, a top diameter of 2 ft, and a height of 100 ft. Determine the resultant vertical force that the ropes must resist when the completely submerged tree is cut. The specific gravity of the wood is approximately 0.6.

†2.101 Estimate the minimum water depth needed to float a canoe carrying two people and their camping gear. List all assumptions and show all calculations.

2.102 An inverted test tube partially filled with air floats in a plastic water-filled soft drink bottle as shown in Video V2.7 and Fig. P2.102. The amount of air in the tube has been adjusted so that it just floats. The bottle cap is securely fastened. A slight squeezing of the plastic bottle will cause the test tube to sink to the bottom of the bottle. Explain this phenomenon.

2.103 An irregularly shaped piece of a solid material weighs 8.05 lb in air and 5.26 lb when completely submerged in water. Determine the density of the material.

2.104 A 1-m-diameter cylindrical mass, M, is connected to a 2m-wide rectangular gate as shown in Fig. P2.104. The gate is to open when the water level, h, drops below 2.5 m. Determine the required value for M. Neglect friction at the gate hinge and the pulley.

2.105 When a hydrometer (see Fig. P2.105 and Video V2.8) having a stem diameter of 0.30 in. is placed in water, the stem protrudes 3.15 in. above the water surface. If the water is replaced with a liquid having a specific gravity of 1.10, how much of the stem would protrude above the liquid surface? The hydrometer weighs 0.042 lb.

2.106 A 2-ft-thick block constructed of wood (SG = 0.6) is submerged in oil (SG = 0.8), and has a 2-ft-thick aluminum (specific weight = 168 lb/ft³) plate attached to the bottom as indicated in Fig. P2.106. Determine completely the force required to hold the block in the position shown. Locate the force with respect to point A.

2.107 (See Fluids in the News article titled "Concrete canoe," Section 2.11.1.) How much extra water does a 147-lb concrete canoe displace compared to an ultralightweight 38-lb Kevlar canoe of the same size carrying the same load?

2.108 An iceberg (specific gravity 0.917) floats in the ocean (specific gravity 1.025). What percent of the volume of the iceberg is under water?

Section 2.12 Pressure Variation in a Fluid with Rigid-Body Motion

2.109 Obtain a photograph/image of a situation in which the pressure variation in a fluid with rigid-body motion is involved. Print this photo and write a brief paragraph that describes the situation involved.

2.110 It is noted that while stopping, the water surface in a glass of water sitting in the cup holder of a car is slanted at an angle of 15° relative to the horizontal street. Determine the rate at which the car is decelerating.

2.111 An open container of oil rests on the flatbed of a truck that is traveling along a horizontal road at 55 mi/hr. As the truck slows uniformly to a complete stop in 5 s, what will be the slope of the oil surface during the period of constant deceleration?

2.112 A 5-gal, cylindrical open container with a bottom area of 120 in.² is filled with glycerin and rests on the floor of an elevator. (a) Determine the fluid pressure at the bottom of the container when the elevator has an upward acceleration of 3 ft/s². (b) What resultant force does the container exert on the floor of the elevator during this acceleration? The weight of the container is negligible. (Note: 1 gal = 231 in.³)

2.113 An open rectangular tank 1 m wide and 2 m long contains gasoline to a depth of 1 m. If the height of the tank sides is 1.5 m, what is the maximum horizontal acceleration (along the long axis of the tank) that can develop before the gasoline would begin to spill?

2.114 If the tank of Problem 2.113 slides down a frictionless plane that is inclined at 30° with the horizontal, determine the angle the free surface makes with the horizontal.

2.115 A closed cylindrical tank that is 8 ft in diameter and 24 ft long is completely filled with gasoline. The tank, with its long axis horizontal, is pulled by a truck along a horizontal surface. Determine the pressure difference between the ends (along the long axis of the tank) when the truck undergoes an acceleration of 5 ft/s^2 .

FIGURE P2.116

2.117 An open 1-m-diameter tank contains water at a depth of 0.7 m when at rest. As the tank is rotated about its vertical axis the center of the fluid surface is depressed. At what angular velocity will the bottom of the tank first be exposed? No water is spilled from the tank.

2.118 An open, 2-ft-diameter tank contains water to a depth of 3 ft when at rest. If the tank is rotated about its vertical axis with an angular velocity of 180 rev/min, what is the minimum height of the tank walls to prevent water from spilling over the sides?

2.119 A child riding in a car holds a string attached to a floating, helium-filled balloon. As the car decelerates to a stop, the balloon tilts backwards. As the car makes a right-hand turn, the balloon tilts to the right. On the other hand, the child tends to be forced forward as the car decelerates and to the left as the car makes a right-hand turn. Explain these observed effects on the balloon and child.

2.120 A closed, 0.4-m-diameter cylindrical tank is completely filled with oil (SG = 0.9) and rotates about its vertical longitudinal axis with an angular velocity of 40 rad/s. Determine the difference in pressure just under the vessel cover between a point on the circumference and a point on the axis.

2.121 (See Fluids in the News article titled **"Rotating mercury mirror telescope,"** Section 2.12.2.) The largest liquid mirror telescope uses a 6-ft-diameter tank of mercury rotating at 7 rpm to produce its parabolic-shaped mirror as shown in Fig. P2.121. Determine the difference in elevation of the mercury, Δh , between the edge and the center of the mirror.

Lab Problems

2.122 This problem involves the force needed to open a gate that covers an opening in the side of a water-filled tank. To proceed with this problem, go to Appendix H which is located on the book's web site, www.wiley.com/college/munson.

uid. When this device is accelerated with a horizontal acceleration a, a differential reading h develops between the manometer legs which are spaced a distance ℓ apart. Determine the relationship between a, ℓ , and h.

2.116 The open U-tube of Fig. P2.116 is partially filled with a liq-

2.123 This problem involves the use of a cleverly designed apparatus to investigate the hydrostatic pressure force on a submerged rectangle. To proceed with this problem, go to Appendix H which is located on the book's web site, www.wiley.com/college/munson.

2.124 This problem involves determining the weight needed to hold down an open-bottom box that has slanted sides when the box is filled with water. To proceed with this problem, go to Appendix H which is located on the book's web site, www.wiley.com/college/munson.

2.125 This problem involves the use of a pressurized air pad to provide the vertical force to support a given load. To proceed with this problem, go to Appendix H which is located on the book's web site, www.wiley.com/college/munson.

Life Long Learning Problems

2.126 Although it is relatively easy to calculate the net hydrostatic pressure force on a dam, it is not necessarily easy to design and construct an appropriate, long-lasting, inexpensive dam. In fact, inspection of older dams has revealed that many of them are in peril of collapse unless corrective action is soon taken. Obtain information about the severity of the poor conditions of older dams throughout the country. Summarize your findings in a brief report.

2.127 Over the years the demand for high-quality, first-growth timber has increased dramatically. Unfortunately, most of the trees that supply such lumber have already been harvested. Recently, however, several companies have started to reclaim the numerous high-quality logs that sank in lakes and oceans during the logging boom times many years ago. Many of these logs are still in excellent condition. Obtain information, particularly that associated with the use of fluid mechanics concepts, about harvesting sunken logs. Summarize your findings in a brief report.

2.128 Liquid-filled manometers and Bourdon tube pressure gages have been the mainstay for measuring pressure for many, many years. However, for many modern applications, these tried-and-true devices are not sufficient. For example, many new uses need small, accurate, inexpensive pressure transducers with digital outputs. Obtain information about some of the new concepts used for pressure measurement. Summarize your findings in a brief report.

FE Exam Problems

Sample FE (Fundamentals of Engineering) exam question for fluid mechanics are provided on the book's web site, www.wiley.com/ college/munson.