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CHAPTER OPENING PHOTO: Floating iceberg: An iceberg is a large piece of fresh water ice that originated as
snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh water ice is lighter
than the salt water in the ocean, the difference in densities is relatively small. Hence, only about one ninth of
the volume of an iceberg protrudes above the ocean’s surface, so that what we see floating is literally “just the
tip of the iceberg.” (Photograph courtesy of Corbis Digital Stock/Corbis Images)

In this chapter we will consider an important class of problems in which the fluid is either at rest
or moving in such a manner that there is no relative motion between adjacent particles. In both
instances there will be no shearing stresses in the fluid, and the only forces that develop on the sur-
faces of the particles will be due to the pressure. Thus, our principal concern is to investigate pres-
sure and its variation throughout a fluid and the effect of pressure on submerged surfaces. The
absence of shearing stresses greatly simplifies the analysis and, as we will see, allows us to obtain
relatively simple solutions to many important practical problems.

2.1 Pressure at a Point

Lear n in g  Ob je ct ive s

After completing this chapter, you should be able to:

■ determine the pressure at various locations in a fluid at rest.

■ explain the concept of manometers and apply appropriate equations to
determine pressures.

■ calculate the hydrostatic pressure force on a plane or curved submerged surface.

■ calculate the buoyant force and discuss the stability of floating or submerged
objects.

As we briefly discussed in Chapter 1, the term pressure is used to indicate the normal force per
unit area at a given point acting on a given plane within the fluid mass of interest. A question that
immediately arises is how the pressure at a point varies with the orientation of the plane passing



through the point. To answer this question, consider the free-body diagram, illustrated in Fig. 2.1,
that was obtained by removing a small triangular wedge of fluid from some arbitrary location
within a fluid mass. Since we are considering the situation in which there are no shearing stresses,
the only external forces acting on the wedge are due to the pressure and the weight. For simplic-
ity the forces in the x direction are not shown, and the z axis is taken as the vertical axis so the
weight acts in the negative z direction. Although we are primarily interested in fluids at rest, to
make the analysis as general as possible, we will allow the fluid element to have accelerated mo-
tion. The assumption of zero shearing stresses will still be valid so long as the fluid element moves
as a rigid body; that is, there is no relative motion between adjacent elements.

The equations of motion 1Newton’s second law, 2 in the y and z directions are, re-
spectively,

where and are the average pressures on the faces, and are the fluid specific weight
and density, respectively, and the accelerations. Note that a pressure must be multiplied
by an appropriate area to obtain the force generated by the pressure. It follows from the geom-
etry that

so that the equations of motion can be rewritten as

Since we are really interested in what is happening at a point, we take the limit as and 
approach zero 1while maintaining the angle 2, and it follows that

or The angle was arbitrarily chosen so we can conclude that the pressure at a point
in a fluid at rest, or in motion, is independent of direction as long as there are no shearing stresses
present. This important result is known as Pascal’s law, named in honor of Blaise Pascal 11623–
16622, a French mathematician who made important contributions in the field of hydrostatics. Thus,
as shown by the photograph in the margin, at the junction of the side and bottom of the beaker, the
pressure is the same on the side as it is on the bottom. In Chapter 6 it will be shown that for mov-
ing fluids in which there is relative motion between particles 1so that shearing stresses develop2, the
normal stress at a point, which corresponds to pressure in fluids at rest, is not necessarily the same
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The pressure at a
point in a fluid at
rest is independent
of direction.
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F I G U R E  2.1 Forces on an arbitrary wedge-shaped element of fluid.
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The pressure may
vary across a fluid
particle.

Although we have answered the question of how the pressure at a point varies with direction, we
are now faced with an equally important question—how does the pressure in a fluid in which there
are no shearing stresses vary from point to point? To answer this question consider a small rectan-
gular element of fluid removed from some arbitrary position within the mass of fluid of interest
as illustrated in Fig. 2.2. There are two types of forces acting on this element: surface forces due
to the pressure, and a body force equal to the weight of the element. Other possible types of body
forces, such as those due to magnetic fields, will not be considered in this text.

If we let the pressure at the center of the element be designated as p, then the average pres-
sure on the various faces can be expressed in terms of p and its derivatives, as shown in Fig. 2.2.
We are actually using a Taylor series expansion of the pressure at the element center to approxi-
mate the pressures a short distance away and neglecting higher order terms that will vanish as we
let and approach zero. This is illustrated by the figure in the margin. For simplicity the
surface forces in the x direction are not shown. The resultant surface force in the y direction is

or

Similarly, for the x and z directions the resultant surface forces are

The resultant surface force acting on the element can be expressed in vector form as
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2.2 Basic Equation for Pressure Field
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F I G U R E  2.2 Surface and body forces acting on small fluid
element.
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in all directions. In such cases the pressure is defined as the average of any three mutually per-
pendicular normal stresses at the point.
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The resultant sur-
face force acting on
a small fluid ele-
ment depends only
on the pressure
gradient if there are
no shearing
stresses present.

For a fluid at rest and Eq. 2.2 reduces to

or in component form

(2.3)

These equations show that the pressure does not depend on x or y. Thus, as we move from
point to point in a horizontal plane 1any plane parallel to the x–y plane2, the pressure does not
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2.3 Pressure Variation in a Fluid at Rest

or

(2.1)

where and are the unit vectors along the coordinate axes shown in Fig. 2.2. The group
of terms in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can be
written as

where

and the symbol is the gradient or “del” vector operator. Thus, the resultant surface force per
unit volume can be expressed as

Since the z axis is vertical, the weight of the element is

where the negative sign indicates that the force due to the weight is downward 1in the negative z
direction2. Newton’s second law, applied to the fluid element, can be expressed as

where represents the resultant force acting on the element, a is the acceleration of the ele-
ment, and is the element mass, which can be written as It follows that

or

and, therefore,

(2.2)

Equation 2.2 is the general equation of motion for a fluid in which there are no shearing stresses.
We will use this equation in Section 2.12 when we consider the pressure distribution in a mov-
ing fluid. For the present, however, we will restrict our attention to the special case of a fluid
at rest.
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change. Since p depends only on z, the last of Eqs. 2.3 can be written as the ordinary differ-
ential equation

(2.4)

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine how
pressure changes with elevation. This equation and the figure in the margin indicate that the pres-
sure gradient in the vertical direction is negative; that is, the pressure decreases as we move up-
ward in a fluid at rest. There is no requirement that be a constant. Thus, it is valid for fluids with
constant specific weight, such as liquids, as well as fluids whose specific weight may vary with
elevation, such as air or other gases. However, to proceed with the integration of Eq. 2.4 it is nec-
essary to stipulate how the specific weight varies with z.

If the fluid is flowing (i.e., not at rest with a � 0), then the pressure variation is much more
complex than that given by Eq. 2.4. For example, the pressure distribution on your car as it is dri-
ven along the road varies in a complex manner with x, y, and z. This idea is covered in detail in
Chapters 3, 6, and 9.

2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration of gravity
changes in are caused either by a change in or g. For most engineering applications

the variation in g is negligible, so our main concern is with the possible variation in the fluid den-
sity. In general, a fluid with constant density is called an incompressible fluid. For liquids the vari-
ation in density is usually negligible, even over large vertical distances, so that the assumption of
constant specific weight when dealing with liquids is a good one. For this instance, Eq. 2.4 can be
directly integrated

to yield

or

(2.5)

where are pressures at the vertical elevations as is illustrated in Fig. 2.3. 
Equation 2.5 can be written in the compact form

(2.6)

or

(2.7)

where h is the distance, which is the depth of fluid measured downward from the location
of This type of pressure distribution is commonly called a hydrostatic distribution, and Eq. 2.7p2.

z2 � z1,

p1 � gh � p2

p1 � p2 � gh

z1 and z2,p1 and p2

p1 � p2 � g1z2 � z12

p2 � p1 � �g1z2 � z12

�
p2

p1

 dp � �g�
z2

z1

 dz

rg1g � rg2,

g

dp

dz
� �g

42 Chapter 2 ■ Fluid Statics

For liquids or gases
at rest, the pressure
gradient in the ver-
tical direction at
any point in a fluid
depends only on the
specific weight of
the fluid at that
point.
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F I G U R E  2.3 Notation for
pressure variation in a fluid at rest with a 
free surface.
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23.1 ft

Water

� = 10 lb

pA = 0 

pA = 10 lb 

A = 1 in.2
shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure
must increase with depth to “hold up” the fluid above it.

It can also be observed from Eq. 2.6 that the pressure difference between two points can be
specified by the distance h since

In this case h is called the pressure head and is interpreted as the height of a column of fluid of
specific weight required to give a pressure difference For example, a pressure differ-
ence of 10 psi can be specified in terms of pressure head as 23.1 ft of water or
518 mm of Hg As illustrated by the figure in the margin, a 23.1-ft-tall column
of water with a cross-sectional area of 1 in.2 weighs 10 lb.

1g � 133 kN�m32.
lb�ft32,1g � 62.4

p1 � p2.g

h �
p1 � p2

g

F I G U R E  2.4 Fluid
pressure in containers of arbitrary
shape.

A B

Specific weight γ  

h

Liquid surface
(p = p0) 

When one works with liquids there is often a free surface, as is illustrated in Fig. 2.3, and it
is convenient to use this surface as a reference plane. The reference pressure would correspond
to the pressure acting on the free surface 1which would frequently be atmospheric pressure2, and
thus if we let in Eq. 2.7 it follows that the pressure p at any depth h below the free sur-
face is given by the equation:

(2.8)

As is demonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible fluid
at rest depends on the depth of the fluid relative to some reference plane, and it is not influ-
enced by the size or shape of the tank or container in which the fluid is held. Thus, in Fig. 2.4

p � gh � p0

p2 � p0

p0

F l u i d s  i n  t h e  N e w s

Giraffe’s blood pressure A giraffe’s long neck allows it to graze
up to 6 m above the ground. It can also lower its head to drink at
ground level. Thus, in the circulatory system there is a significant
hydrostatic pressure effect due to this elevation change. To main-
tain blood to its head throughout this change in elevation, the gi-
raffe must maintain a relatively high blood pressure at heart
level—approximately two and a half times that in humans. To
prevent rupture of blood vessels in the high-pressure lower leg re-

gions, giraffes have a tight sheath of thick skin over their lower
limbs which acts like an elastic bandage in exactly the same way
as do the g-suits of fighter pilots. In addition, valves in the upper
neck prevent backflow into the head when the giraffe lowers its
head to ground level. It is also thought that blood vessels in the gi-
raffe’s kidney have a special mechanism to prevent large changes
in filtration rate when blood pressure increases or decreases with
its head movement. (See Problem 2.14.)



44 Chapter 2 ■ Fluid Statics

The required equality of pressures at equal elevations throughout a system is important for
the operation of hydraulic jacks (see Fig. 2.5a), lifts, and presses, as well as hydraulic controls on
aircraft and other types of heavy machinery. The fundamental idea behind such devices and systems
is demonstrated in Fig. 2.5b. A piston located at one end of a closed system filled with a liquid,
such as oil, can be used to change the pressure throughout the system, and thus transmit an applied
force to a second piston where the resulting force is Since the pressure p acting on the faces
of both pistons is the same 1the effect of elevation changes is usually negligible for this type of hy-
draulic device2, it follows that The piston area can be made much larger than

and therefore a large mechanical advantage can be developed; that is, a small force applied at
the smaller piston can be used to develop a large force at the larger piston. The applied force could
be created manually through some type of mechanical device, such as a hydraulic jack, or through
compressed air acting directly on the surface of the liquid, as is done in hydraulic lifts commonly
found in service stations.

A1

A2F2 � 1A2 �A12F1.

F2.F1

The transmission of
pressure through-
out a stationary
fluid is the princi-
ple upon which
many hydraulic 
devices are based.

the pressure is the same at all points along the line AB even though the containers may have
the very irregular shapes shown in the figure. The actual value of the pressure along AB de-
pends only on the depth, h, the surface pressure, and the specific weight, of the liquid in
the container.

g,p0,

GIVEN Because of a leak in a buried gasoline storage tank,
water has seeped in to the depth shown in Fig. E2.1. The specific
gravity of the gasoline is 

FIND Determine the pressure at the gasoline–water interface
and at the bottom of the tank. Express the pressure in units of

and as a pressure head in feet of water.lb�ft2, lb�in.2,

SG � 0.68.

SOLUTION F I G U R E  E2.1

Pressure–Depth Relationship

It is noted that a rectangular column of water 11.6 ft tall and 
in cross section weighs 721 lb. A similar column with a 
cross section weighs 5.01 lb.

We can now apply the same relationship to determine the pres-
sure at the tank bottom; that is,

(Ans)

(Ans)

(Ans)

COMMENT Observe that if we wish to express these pres-
sures in terms of absolute pressure, we would have to add the lo-
cal atmospheric pressure 1in appropriate units2 to the previous
results. A further discussion of gage and absolute pressure is given
in Section 2.5.

 
p2

gH2O
�

908 lb�ft2

62.4 lb�ft3 � 14.6 ft

 p2 �
908 lb�ft2

144 in.2�ft2
� 6.31 lb�in.2

 � 908 lb�ft2

 � 162.4 lb�ft32 13 ft 2 � 721 lb�ft2

 p2 � gH2O hH2O � p1

1-in.2
1 ft2

(1)

(2)
Water

Gasoline

Open

17 ft

3 ft

E XAMPLE 2.1

Since we are dealing with liquids at rest, the pressure distribution
will be hydrostatic, and therefore the pressure variation can be
found from the equation:

With p0 corresponding to the pressure at the free surface of the
gasoline, then the pressure at the interface is

If we measure the pressure relative to atmospheric pressure 1gage
pressure2, it follows that and therefore

(Ans)

(Ans)

(Ans) 
p1

gH2O
�

721 lb�ft2

62.4 lb�ft3 � 11.6 ft

 p1 �
721 lb�ft2

144 in.2�ft2 � 5.01 lb�in.2

 p1 � 721 lb�ft2

p0 � 0,

 � 721 � p0 1lb�ft22
 � 10.682 162.4 lb�ft32 117 ft 2 � p0

 p1 � SGgH2O 
h � p0

p � gh � p0
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F I G U R E  2.5 (a) Hydraulic jack, (b) Transmission of fluid pressure.

If the specific
weight of a fluid
varies significantly
as we move from
point to point, the
pressure will no
longer vary linearly
with depth.

F1 = pA1F2 = pA2

A2 A1

(b)

A2

(a)

A1

2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids since
the density of the gas can change significantly with changes in pressure and temperature. Thus, al-
though Eq. 2.4 applies at a point in a gas, it is necessary to consider the possible variation in 
before the equation can be integrated. However, as was discussed in Chapter 1, the specific weights
of common gases are small when compared with those of liquids. For example, the specific weight
of air at sea level and is whereas the specific weight of water under the same
conditions is Since the specific weights of gases are comparatively small, it follows
from Eq. 2.4 that the pressure gradient in the vertical direction is correspondingly small, and even
over distances of several hundred feet the pressure will remain essentially constant for a gas. This
means we can neglect the effect of elevation changes on the pressure in gases in tanks, pipes, and
so forth in which the distances involved are small.

For those situations in which the variations in heights are large, on the order of thousands of
feet, attention must be given to the variation in the specific weight. As is described in Chapter 1,
the equation of state for an ideal 1or perfect2 gas is

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature. This re-
lationship can be combined with Eq. 2.4 to give

and by separating variables

(2.9)

where g and R are assumed to be constant over the elevation change from Although the
acceleration of gravity, g, does vary with elevation, the variation is very small 1see Tables C.1 and
C.2 in Appendix C2, and g is usually assumed constant at some average value for the range of el-
evation involved.
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Before completing the integration, one must specify the nature of the variation of tempera-
ture with elevation. For example, if we assume that the temperature has a constant value over
the range 1isothermal conditions2, it then follows from Eq. 2.9 that

(2.10)

This equation provides the desired pressure–elevation relationship for an isothermal layer. As shown
in the margin figure, even for a 10,000-ft altitude change the difference between the constant tem-
perature 1isothermal2 and the constant density 1incompressible2 results are relatively minor. For 
nonisothermal conditions a similar procedure can be followed if the temperature–elevation rela-
tionship is known, as is discussed in the following section.

p2 � p1 exp c�g1z2 � z12
RT0

d

z1 to z2

T0

1

0.8

0.6
0 5000 10,000

z2 – z1,ft

p 2
/p

1

Isothermal

Incompressible

GIVEN In 2007 the Burj Dubai skyscraper being built in the
United Arab Emirates reached the stage in its construction where
it became the world’s tallest building. When completed it is ex-
pected to be at least 2275 ft tall, although its final height remains
a secret.

FIND (a) Estimate the ratio of the pressure at the projected 2275-
ft top of the building to the pressure at its base, assuming the air to be
at a common temperature of (b) Compare the pressure calcu-
lated in part (a) with that obtained by assuming the air to be incom-
pressible with at 14.7 psi 1abs2 1values for air at
standard sea level conditions2.

0.0765 lb�ft3g�

59 °F.

SOLUTION

Incompressible and Isothermal Pressure–Depth VariationsEXAMPLE 2.2

For the assumed isothermal conditions, and treating air as a com-
pressible fluid, Eq. 2.10 can be applied to yield

(Ans)

If the air is treated as an incompressible fluid we can apply
Eq. 2.5. In this case

or

(Ans)

COMMENTS Note that there is little difference between
the two results. Since the pressure difference between the bot-
tom and top of the building is small, it follows that the varia-
tion in fluid density is small and, therefore, the compressible

 � 1 �
10.0765 lb�ft32 12275 ft 2
114.7 lb�in.22 1144 in.2�ft22 � 0.918

 
p2

p1
� 1 �

g1z2 � z12
p1

 p2 � p1 � g1z2 � z12

 � 0.921

 � exp e� 132.2 ft�s22 12275 ft 2
11716 ft # lb�slug # °R2 3 159 � 4602°R 4 f

 
p2

p1
� exp c�g1z2 � z12

RT0
d

fluid and incompressible fluid analyses yield essentially the
same result. 

We see that for both calculations the pressure decreases by ap-
proximately 8% as we go from ground level to the top of this tallest
building. It does not require a very large pressure difference to sup-
port a 2275-ft-tall column of fluid as light as air. This result supports
the earlier statement that the changes in pressures in air and other
gases due to elevation changes are very small, even for distances of
hundreds of feet. Thus, the pressure differences between the top and
bottom of a horizontal pipe carrying a gas, or in a gas storage tank,
are negligible since the distances involved are very small.

F I G U R E  E2.2 (Figure
courtesy of Emaar Properties, Dubai,
UAE.)
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An important application of Eq. 2.9 relates to the variation in pressure in the earth’s atmosphere.
Ideally, we would like to have measurements of pressure versus altitude over the specific range for
the specific conditions 1temperature, reference pressure2 for which the pressure is to be determined.
However, this type of information is usually not available. Thus, a “standard atmosphere” has been
determined that can be used in the design of aircraft, missiles, and spacecraft, and in comparing
their performance under standard conditions. The concept of a standard atmosphere was first de-
veloped in the 1920s, and since that time many national and international committees and organi-
zations have pursued the development of such a standard. The currently accepted standard atmos-
phere is based on a report published in 1962 and updated in 1976 1see Refs. 1 and 22, defining the
so-called U.S. standard atmosphere, which is an idealized representation of middle-latitude, year-
round mean conditions of the earth’s atmosphere. Several important properties for standard atmos-
pheric conditions at sea level are listed in Table 2.1, and Fig. 2.6 shows the temperature profile for
the U.S. standard atmosphere. As is shown in this figure the temperature decreases with altitude
in the region nearest the earth’s surface 1troposphere2, then becomes essentially constant in the next
layer 1stratosphere2, and subsequently starts to increase in the next layer. Typical events that occur
in the atmosphere are shown in the figure in the margin.

Since the temperature variation is represented by a series of linear segments, it is possible
to integrate Eq. 2.9 to obtain the corresponding pressure variation. For example, in the troposphere,
which extends to an altitude of about 11 km the temperature variation is of the form

(2.11)T � Ta � bz

1\36,000 ft2,

2.4 Standard Atmosphere

TAB LE 2 . 1
Properties of U.S. Standard Atmosphere at Sea Levela

Property SI Units BG Units

Temperature, T
Pressure, p 101.33 kPa 1abs2

Density,
Specific weight,
Viscosity,

aAcceleration of gravity at sea level � 9.807 m�s2 � 32.174 ft�s2.

3.737 � 10�7 lb # s�ft21.789 � 10�5 N # s�m2m

0.07647 lb�ft312.014 N�m3g

0.002377 slugs�ft31.225 kg�m3r

314.696 lb�in.2 1abs 2 4
2116.2 lb�ft2 1abs 2
518.67 °R 159.00 °F2288.15 K 115 °C 2

The standard
atmosphere is an
idealized repre-
sentation of mean
conditions in the
earth’s atmosphere.

F I G U R E  2.6 Variation
of temperature with altitude in the
U.S. standard atmosphere.
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F I G U R E  2.7 Graphical
representation of gage and absolute
pressure.

where is the temperature at sea level and is the lapse rate 1the rate of change of tem-
perature with elevation2. For the standard atmosphere in the troposphere,

Equation 2.11 used with Eq. 2.9 yields

(2.12)

where is the absolute pressure at With and g obtained from Table 2.1, and with
the gas constant or the pressure variation throughout the
troposphere can be determined from Eq. 2.12. This calculation shows that at the outer edge of the
troposphere, where the temperature is the absolute pressure is about 23 kPa 13.3 psia2.
It is to be noted that modern jetliners cruise at approximately this altitude. Pressures at other al-
titudes are shown in Fig. 2.6, and tabulated values for temperature, acceleration of gravity, pres-
sure, density, and viscosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in
Appendix C.

�56.5 °C,

1716 ft # lb�slug # °R,R � 286.9 J�kg # K
pa, Ta,z � 0.pa

p � pa a1�
bz

Ta

b
g�Rb

or 0.00357 °R�ft.
b � 0.00650 K�m

b1z � 02Ta

2.5 Measurement of Pressure

Since pressure is a very important characteristic of a fluid field, it is not surprising that numer-
ous devices and techniques are used in its measurement. As is noted briefly in Chapter 1, the
pressure at a point within a fluid mass will be designated as either an absolute pressure or a
gage pressure. Absolute pressure is measured relative to a perfect vacuum 1absolute zero pres-
sure2, whereas gage pressure is measured relative to the local atmospheric pressure. Thus, a gage
pressure of zero corresponds to a pressure that is equal to the local atmospheric pressure. 
Absolute pressures are always positive, but gage pressures can be either positive or negative
depending on whether the pressure is above atmospheric pressure 1a positive value2 or below
atmospheric pressure 1a negative value2. A negative gage pressure is also referred to as a suction
or vacuum pressure. For example, 10 psi 1abs2 could be expressed as psi 1gage2, if the lo-
cal atmospheric pressure is 14.7 psi, or alternatively 4.7 psi suction or 4.7 psi vacuum. The con-
cept of gage and absolute pressure is illustrated graphically in Fig. 2.7 for two typical pressures
located at points 1 and 2.

In addition to the reference used for the pressure measurement, the units used to express
the value are obviously of importance. As is described in Section 1.5, pressure is a force per unit
area, and the units in the BG system are or commonly abbreviated psf or psi, re-
spectively. In the SI system the units are this combination is called the pascal and written
as Pa As noted earlier, pressure can also be expressed as the height of a col-
umn of liquid. Then, the units will refer to the height of the column 1in., ft, mm, m, etc.2, and in
addition, the liquid in the column must be specified 1 etc.2. For example, standard atmos-
pheric pressure can be expressed as 760 mm Hg 1abs2. In this text, pressures will be assumed to
be gage pressures unless specifically designated absolute. For example, 10 psi or 100 kPa would
be gage pressures, whereas 10 psia or 100 kPa 1abs2 would refer to absolute pressures. It is to be

H2O, Hg,

11 N�m2 � 1 Pa2.
N�m2;

lb�in.2,lb�ft2

�4.7

Pressure is desig-
nated as either ab-
solute pressure or
gage pressure.

1

2

Absolute pressure
@ 2

Absolute pressure
@ 1

Gage pressure @ 1

P
re

ss
ur

e

Absolute zero reference

Local atmospheric
pressure reference

Gage pressure @ 2
(suction or vacuum)



2.5 Measurement of Pressure 49

noted that pressure differences are independent of the reference, so that no special notation is re-
quired in this case.

The measurement of atmospheric pressure is usually accomplished with a mercury barom-
eter, which in its simplest form consists of a glass tube closed at one end with the open end im-
mersed in a container of mercury as shown in Fig. 2.8. The tube is initially filled with mercury
1inverted with its open end up2 and then turned upside down 1open end down2, with the open end
in the container of mercury. The column of mercury will come to an equilibrium position where
its weight plus the force due to the vapor pressure 1which develops in the space above the column2
balances the force due to the atmospheric pressure. Thus,

(2.13)

where is the specific weight of mercury. For most practical purposes the contribution of the va-
por pressure can be neglected since it is very small [for mercury, 1abs2 at
a temperature of ], so that It is conventional to specify atmospheric pressure in
terms of the height, h, in millimeters or inches of mercury. Note that if water were used instead of
mercury, the height of the column would have to be approximately 34 ft rather than 29.9 in. of
mercury for an atmospheric pressure of 14.7 psia! This is shown to scale in the figure in the mar-
gin. The concept of the mercury barometer is an old one, with the invention of this device attrib-
uted to Evangelista Torricelli in about 1644.

patm � gh.68 °F
lb�in.2pvapor � 0.000023

g

patm � gh � pvapor

F I G U R E  2.8 Mercury barometer.

pvapor

A

h

patm

B

Mercury

GIVEN A mountain lake has an average temperature of and
a maximum depth of 40 m. The barometric pressure is 598 mm Hg. 

10 °C FIND Determine the absolute pressure 1in pascals2 at the deepest
part of the lake.

SOLUTION

Barometric Pressure

From Table B.2, at and therefore

(Ans)

COMMENT This simple example illustrates the need for
close attention to the units used in the calculation of pressure; that
is, be sure to use a consistent unit system, and be careful not to
add a pressure head 1m2 to a pressure 1Pa2.

 � 472 kPa 1abs 2
 � 392 kN�m2 � 79.5 kN�m2

 p � 19.804 kN�m32 140 m2 � 79.5 kN�m2

10 °CgH2 O � 9.804 kN�m3

EXAMPLE 2.3

The pressure in the lake at any depth, h, is given by the equation

where is the pressure at the surface. Since we want the absolute
pressure, will be the local barometric pressure expressed in a
consistent system of units; that is

and for 

p0 � 10.598 m2 1133 kN�m32 � 79.5 kN�m2

gHg � 133 kN�m3

pbarometric

gHg
� 598 mm � 0.598 m

p0

p0

p � gh � p0

Water

Mercury



F I G U R E  2.9 Piezometer tube.
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A standard technique for measuring pressure involves the use of liquid columns in vertical or inclined
tubes. Pressure measuring devices based on this technique are called manometers. The mercury
barometer is an example of one type of manometer, but there are many other configurations possi-
ble, depending on the particular application. Three common types of manometers include the piezome-
ter tube, the U-tube manometer, and the inclined-tube manometer.

2.6.1 Piezometer Tube

The simplest type of manometer consists of a vertical tube, open at the top, and attached to the
container in which the pressure is desired, as illustrated in Fig. 2.9. The figure in the margin shows
an important device whose operation is based upon this principle. It is a sphygmomanometer, the
traditional instrument used to measure blood pressure. 

Since manometers involve columns of fluids at rest, the fundamental equation describing
their use is Eq. 2.8

which gives the pressure at any elevation within a homogeneous fluid in terms of a reference pres-
sure and the vertical distance h between Remember that in a fluid at rest pressure will
increase as we move downward and will decrease as we move upward. Application of this equa-
tion to the piezometer tube of Fig. 2.9 indicates that the pressure can be determined by a mea-
surement of through the relationship

where is the specific weight of the liquid in the container. Note that since the tube is open at
the top, the pressure can be set equal to zero 1we are now using gage pressure2, with the heightp0

g1

pA � g1h1

h1

pA

p and p0.p0

p � gh � p0

Manometers use
vertical or inclined
liquid columns to
measure pressure.

2.6 Manometry

Open

h1

1

(1)

γ

A

Column of
mercury

Tube open at top

Container of
mercury

Arm cuff

F l u i d s  i n  t h e  N e w s

Weather, barometers, and bars One of the most important
indicators of weather conditions is atmospheric pressure. In
general, a falling or low pressure indicates bad weather; rising
or high pressure, good weather. During the evening TV
weather report in the United States, atmospheric pressure is
given as so many inches (commonly around 30 in.). This value
is actually the height of the mercury column in a mercury
barometer adjusted to sea level. To determine the true atmos-
pheric pressure at a particular location, the elevation relative to
sea level must be known. Another unit used by meteorologists
to indicate atmospheric pressure is the bar, first used in

weather reporting in 1914, and defined as . The defi-
nition of a bar is probably related to the fact that standard sea-
level pressure is , that is, only slightly
larger than one bar. For typical weather patterns, “sea-level
equivalent” atmospheric pressure remains close to one bar.
However, for extreme weather conditions associated with tor-
nadoes, hurricanes, or typhoons, dramatic changes can occur.
The lowest atmospheric sea-level pressure ever recorded was
associated with a typhoon, Typhoon Tip, in the Pacific Ocean
on October 12, 1979. The value was 0.870 bars (25.8 in. Hg).
(See Problem 2.19.) 

1.0133 � 105 N�m2

105 N�m2



measured from the meniscus at the upper surface to point 112. Since point 112 and point A within
the container are at the same elevation,

Although the piezometer tube is a very simple and accurate pressure measuring device, it has
several disadvantages. It is only suitable if the pressure in the container is greater than atmospheric
pressure 1otherwise air would be sucked into the system2, and the pressure to be measured must be
relatively small so the required height of the column is reasonable. Also, the fluid in the container in
which the pressure is to be measured must be a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer which is widely used
consists of a tube formed into the shape of a U, as is shown in Fig. 2.10. The fluid in the manome-
ter is called the gage fluid. To find the pressure in terms of the various column heights, we start
at one end of the system and work our way around to the other end, simply utilizing Eq. 2.8. Thus,
for the U-tube manometer shown in Fig. 2.10, we will start at point A and work around to the open
end. The pressure at points A and 112 are the same, and as we move from point 112 to 122 the pres-
sure will increase by The pressure at point 122 is equal to the pressure at point 132, since the
pressures at equal elevations in a continuous mass of fluid at rest must be the same. Note that we
could not simply “jump across” from point 112 to a point at the same elevation in the right-hand
tube since these would not be points within the same continuous mass of fluid. With the pressure
at point 132 specified, we now move to the open end where the pressure is zero. As we move ver-
tically upward the pressure decreases by an amount In equation form these various steps can
be expressed as

and, therefore, the pressure can be written in terms of the column heights as

(2.14)

A major advantage of the U-tube manometer lies in the fact that the gage fluid can be different
from the fluid in the container in which the pressure is to be determined. For example, the fluid
in A in Fig. 2.10 can be either a liquid or a gas. If A does contain a gas, the contribution of 
the gas column, is almost always negligible so that , and in this instance Eq. 2.14
becomes

Thus, for a given pressure the height, is governed by the specific weight, of the gage fluid
used in the manometer. If the pressure is large, then a heavy gage fluid, such as mercury, can
be used and a reasonable column height 1not too long2 can still be maintained. Alternatively, if the
pressure is small, a lighter gage fluid, such as water, can be used so that a relatively large col-
umn height 1which is easily read2 can be achieved.

pA

pA

g2,h2,

pA � g2h2

pA � p2g1h1,

pA � g2h2 � g1h1

pA

pA � g1h1 � g2h2 � 0

g2h2.

g1h1.

pA

pA � p1.
h1
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h1

h2

Open

(1)

(3)(2)

A

 
(gage
fluid)

1γ

2γ

F I G U R E  2.10 Simple U-tube manometer.

The contribution of
gas columns in
manometers is usu-
ally negligible
since the weight of
the gas is so small.

V2.2 Blood pres-
sure measurement



F I G U R E  2.11 Differential U-tube
manometer.

The U-tube manometer is also widely used to measure the difference in pressure between
two containers or two points in a given system. Consider a manometer connected between con-
tainers A and B as is shown in Fig. 2.11. The difference in pressure between A and B can be found
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(1)

(2) (3)

(4)

(5)

A

B

h1

h2

h3

2γ

3γ

1γ

Manometers are of-
ten used to measure
the difference in
pressure between
two points.

Simple U-Tube ManometerE XAMPLE 2.4

F I G U R E  E2.4

GIVEN A closed tank contains compressed air and oil
as is shown in Fig. E2.4. A U-tube manometer using

mercury is connected to the tank as shown. The col-
umn heights are and 

FIND Determine the pressure reading 1in psi2 of the gage.

h3 � 9 in.h1 � 36 in., h2 � 6 in.,
1SGHg � 13.62

1SGoil � 0.902

Following the general procedure of starting at one end of the
manometer system and working around to the other, we will start
at the air–oil interface in the tank and proceed to the open end
where the pressure is zero. The pressure at level 112 is

This pressure is equal to the pressure at level 122, since these two
points are at the same elevation in a homogeneous fluid at rest. As
we move from level 122 to the open end, the pressure must de-
crease by and at the open end the pressure is zero. Thus, the
manometer equation can be expressed as

or

For the values given

so that

pair � 440 lb�ft2

� 113.62 162.4 lb�ft32  a 9

12
 ftb

pair � �10.92 162.4 lb�ft32 a36 � 6

12
 ftb

pair � 1SGoil2 1gH2O2 1h1 � h22 � 1SGHg 2 1gH2O2  h3 � 0

pair � goil1h1 � h22 � gHgh3 � 0

gHgh3,

p1 � pair � goil1h1 � h22

SOLUTION

Pressure
gage

Air

Oil

Open

Hg

(1) (2)

h1

h2

h3

Since the specific weight of the air above the oil is much smaller
than the specific weight of the oil, the gage should read the pres-
sure we have calculated; that is,

(Ans)

COMMENTS Note that the air pressure is a function of the
height of the mercury in the manometer and the depth of the oil
(both in the tank and in the tube). It is not just the mercury in the
manometer that is important.

Assume that the gage pressure remains at 3.06 psi, but the
manometer is altered so that it contains only oil. That is, the mer-
cury is replaced by oil. A simple calculation shows that in this
case the vertical oil-filled tube would need to be h3 � 11.3 ft tall,
rather than the original h3 � 9 in. There is an obvious advantage
of using a heavy fluid such as mercury in manometers.

pgage �
440 lb�ft2

144 in.2�ft2 � 3.06 psi
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by again starting at one end of the system and working around to the other end. For example, at
A the pressure is which is equal to and as we move to point 122 the pressure increases by

The pressure at is equal to and as we move upward to point 142 the pressure decreases
by Similarly, as we continue to move upward from point 142 to 152 the pressure decreases by

Finally, since they are at equal elevations. Thus,

Or, as indicated in the figure in the margin, we could start at B and work our way around to A to
obtain the same result. In either case, the pressure difference is

When the time comes to substitute in numbers, be sure to use a consistent system of units!
Capillarity due to surface tension at the various fluid interfaces in the manometer is usu-

ally not considered, since for a simple U-tube with a meniscus in each leg, the capillary effects
cancel 1assuming the surface tensions and tube diameters are the same at each meniscus2, or we
can make the capillary rise negligible by using relatively large bore tubes 1with diameters of
about 0.5 in. or larger; see Section 1.92. Two common gage fluids are water and mercury. Both
give a well-defined meniscus 1a very important characteristic for a gage fluid2 and have well-
known properties. Of course, the gage fluid must be immiscible with respect to the other flu-
ids in contact with it. For highly accurate measurements, special attention should be given to
temperature since the various specific weights of the fluids in the manometer will vary with
temperature.

pA � pB � g2h2 � g3h3 � g1h1

pA � g1h1 � g2h2 � g3h3 � pB

p5 � pB,g3h3.
g2h2.

p3,p2g1h1.
p1,pA,

pA

γ2h2

γ1h1

γ3h3

pA − pB

pB

U-Tube ManometerEXAMPLE 2.5

GIVEN As will be discussed in Chapter 3, the volume rate of
flow, Q, through a pipe can be determined by means of a flow noz-
zle located in the pipe as illustrated in Fig. E2.5a. The nozzle cre-
ates a pressure drop, along the pipe which is related to the
flow through the equation where K is a constant
depending on the pipe and nozzle size. The pressure drop is fre-
quently measured with a differential U-tube manometer of the type
illustrated. 

Q � K1pA � pB,
pA � pB,

FIND 1a2 Determine an equation for in terms of the
specific weight of the flowing fluid, the specific weight of
the gage fluid, and the various heights indicated. 1b2 For

and
what is the value of the pressure drop, pA � pB?

0.5 m,h2 �h1 � 1.0 m,g2 � 15.6 kN�m3,g1� 9.80 kN�m3,
g2,

g1,
pA � pB

SOLUTION

F I G U R E  E2.5a

A B

Flow nozzle

(1)

h1

(2) (3)

(4)
h2

(5)

Flow

γ1

γ2

γ1

manometer could be placed 0.5 or 5.0 m above the pipe (h1� 0.5 m
or h1 � 5.0 m), and the value of h2 would remain the same.

(b) The specific value of the pressure drop for the data given is

(Ans)

COMMENT By repeating the calculations for manometer
fluids with different specific weights, H2, the results shown in
Fig. E2.5b are obtained. Note that relatively small pressure

� 2.90 kPa

 pA � pB � 10.5 m2 115.6 kN�m3 � 9.80 kN�m32

(a) Although the fluid in the pipe is moving, the fluids in the
columns of the manometer are at rest so that the pressure variation
in the manometer tubes is hydrostatic. If we start at point A and
move vertically upward to level 112, the pressure will decrease by

and will be equal to the pressure at 122 and at 132. We can now
move from 132 to 142 where the pressure has been further reduced
by The pressures at levels 142 and 152 are equal, and as we
move from 152 to B the pressure will increase by 
Thus, in equation form

or

(Ans)

COMMENT It is to be noted that the only column height
of importance is the differential reading, h2. The differential

pA � pB � h21g2 � g12

pA � g1h1 � g2h2 � g11h1 � h22 � pB

g11h1 � h22.
g2h2.

g1h1



F I G U R E  2.12 Inclined-tube manometer.
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2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.12 is frequently used.
One leg of the manometer is inclined at an angle and the differential reading is measured
along the inclined tube. The difference in pressure can be expressed as

or

(2.15)

where it is to be noted the pressure difference between points 112 and 122 is due to the vertical dis-
tance between the points, which can be expressed as Thus, for relatively small angles the
differential reading along the inclined tube can be made large even for small pressure differences.
The inclined-tube manometer is often used to measure small differences in gas pressures so that
if pipes A and B contain a gas then

or

(2.16)

where the contributions of the gas columns have been neglected. Equation 2.16 and the
figure in the margin show that the differential reading 1for a given pressure difference2 of the in-
clined-tube manometer can be increased over that obtained with a conventional U-tube manome-
ter by the factor Recall that as uS 0.sin uS 01 sin u.

/2

h1 and h3

/2

pA pB

g2 sin u

pA pB g2/2 sin u

/2 sin u.

pA pB g2/2 sin u g3 h3 g1h1

pA g1h1 g2/2 sin u g3 h3 pB

pA pB

/2u,

h1

h3

�2

(2)

γ3

γ2

γ1

A

B

θ
(1)

Inclined-tube
manometers can be
used to measure
small pressure dif-
ferences accurately.

�2

300 60 90

θ  , deg

~�2 sin  
1
θ

differences can be measured if the manometer fluid has nearly
the same specific weight as the flowing fluid. It is the difference
in the specific weights, H2  H1, that is important.

Hence, by rewriting the answer as 
it is seen that even if the value of is small, the value of 
can be large enough to provide an accurate reading provided the
value of is also small.g2 g1

h2pA pB

h2 1pA pB2 1g2 g12

8

3

2

1

0
10 12 14 16

p A
 –

 p
B
,  
kP

a

�2, kN/m3

�2 = �1

(15.6 kN/m3, 2.90 kPa)

F I G U R E  E2.5b
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2.7 Mechanical and Electronic Pressure Measuring Devices

Although manometers are widely used, they are not well suited for measuring very high pressures,
or pressures that are changing rapidly with time. In addition, they require the measurement of one
or more column heights, which, although not particularly difficult, can be time consuming. To over-
come some of these problems numerous other types of pressure measuring instruments have been
developed. Most of these make use of the idea that when a pressure acts on an elastic structure the
structure will deform, and this deformation can be related to the magnitude of the pressure. Prob-
ably the most familiar device of this kind is the Bourdon pressure gage, which is shown in 
Fig. 2.13a. The essential mechanical element in this gage is the hollow, elastic curved tube 1Bour-
don tube2 which is connected to the pressure source as shown in Fig. 2.13b. As the pressure within
the tube increases the tube tends to straighten, and although the deformation is small, it can be
translated into the motion of a pointer on a dial as illustrated. Since it is the difference in pressure
between the outside of the tube 1atmospheric pressure2 and the inside of the tube that causes the
movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be cali-
brated so that the dial reading can directly indicate the pressure in suitable units such as psi, psf,
or pascals. A zero reading on the gage indicates that the measured pressure is equal to the local
atmospheric pressure. This type of gage can be used to measure a negative gage pressure 1vacuum2
as well as positive pressures.

The aneroid barometer is another type of mechanical gage that is used for measuring atmos-
pheric pressure. Since atmospheric pressure is specified as an absolute pressure, the conventional
Bourdon gage is not suitable for this measurement. The common aneroid barometer contains a hol-
low, closed, elastic element which is evacuated so that the pressure inside the element is near
absolute zero. As the external atmospheric pressure changes, the element deflects, and this motion
can be translated into the movement of an attached dial. As with the Bourdon gage, the dial can
be calibrated to give atmospheric pressure directly, with the usual units being millimeters or inches
of mercury.

For many applications in which pressure measurements are required, the pressure must be
measured with a device that converts the pressure into an electrical output. For example, it may be
desirable to continuously monitor a pressure that is changing with time. This type of pressure mea-
suring device is called a pressure transducer, and many different designs are used. One possible
type of transducer is one in which a Bourdon tube is connected to a linear variable differential
transformer 1LVDT2, as is illustrated in Fig. 2.14. The core of the LVDT is connected to the free
end of the Bourdon tube so that as a pressure is applied the resulting motion of the end of the tube
moves the core through the coil and an output voltage develops. This voltage is a linear function
of the pressure and could be recorded on an oscillograph or digitized for storage or processing on
a computer.

A Bourdon tube
pressure gage uses
a hollow, elastic,
and curved tube to
measure pressure.

F I G U R E  2.13 (a) Liquid-filled Bourdon pressure gages for various pressure ranges.
(b) Internal elements of Bourdon gages. The “C-shaped” Bourdon tube is shown on the left, and the
“coiled spring” Bourdon tube for high pressures of 1000 psi and above is shown on the right.
(Photographs courtesy of Weiss Instruments, Inc.)

(a) (b)

V2.3 Bourdon gage



F I G U R E  2.14 Pressure
transducer which combines a linear variable
differential transformer (LVDT) with a
Bourdon gage. (From Ref. 4, used by 
permission.)
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One disadvantage of a pressure transducer using a Bourdon tube as the elastic sensing ele-
ment is that it is limited to the measurement of pressures that are static or only changing slowly
1quasistatic2. Because of the relatively large mass of the Bourdon tube, it cannot respond to rapid
changes in pressure. To overcome this difficulty, a different type of transducer is used in which the
sensing element is a thin, elastic diaphragm which is in contact with the fluid. As the pressure
changes, the diaphragm deflects, and this deflection can be sensed and converted into an electri-
cal voltage. One way to accomplish this is to locate strain gages either on the surface of the di-
aphragm not in contact with the fluid, or on an element attached to the diaphragm. These gages
can accurately sense the small strains induced in the diaphragm and provide an output voltage pro-
portional to pressure. This type of transducer is capable of measuring accurately both small and
large pressures, as well as both static and dynamic pressures. For example, strain-gage pressure
transducers of the type shown in Fig. 2.15 are used to measure arterial blood pressure, which is a
relatively small pressure that varies periodically with a fundamental frequency of about 1 Hz. The
transducer is usually connected to the blood vessel by means of a liquid-filled, small diameter tube
called a pressure catheter. Although the strain-gage type of transducers can be designed to have
very good frequency response 1up to approximately 10 kHz2, they become less sensitive at the
higher frequencies since the diaphragm must be made stiffer to achieve the higher frequency re-
sponse. As an alternative, the diaphragm can be constructed of a piezoelectric crystal to be used as
both the elastic element and the sensor. When a pressure is applied to the crystal, a voltage devel-
ops because of the deformation of the crystal. This voltage is directly related to the applied pres-
sure. Depending on the design, this type of transducer can be used to measure both very low and
high pressures 1up to approximately 100,000 psi2 at high frequencies. Additional information on
pressure transducers can be found in Refs. 3, 4, and 5.

Bourdon C-tube

Core
LVDT Output

Input
Spring

Pressure line

Mounting
block

F l u i d s  i n  t h e  N e w s

Tire pressure warning Proper tire inflation on vehicles is im-
portant for more than ensuring long tread life. It is critical in pre-
venting accidents such as rollover accidents caused by underinfla-
tion of tires. The National Highway Traffic Safety Administration
is developing a regulation regarding four-tire tire-pressure moni-
toring systems that can warn a driver when a tire is more than 25
percent underinflated. Some of these devices are currently in
operation on select vehicles; it is expected that they will soon
be required on all vehicles. A typical tire-pressure monitoring

system fits within the tire and contains a pressure transducer
(usually either a piezo-resistive or a capacitive type trans-
ducer) and a transmitter that sends the information to an elec-
tronic control unit within the vehicle. Information about tire
pressure and a warning when the tire is underinflated is dis-
played on the instrument panel. The environment (hot, cold,
vibration) in which these devices must operate, their small
size, and required low cost provide challenging constraints for
the design engineer.

It is relatively com-
plicated to make
accurate pressure
transducers for the
measurement of
pressures that vary
rapidly with time.



When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The deter-
mination of these forces is important in the design of storage tanks, ships, dams, and other hy-
draulic structures. For fluids at rest we know that the force must be perpendicular to the surface
since there are no shearing stresses present. We also know that the pressure will vary linearly with
depth as shown in Fig. 2.16 if the fluid is incompressible. For a horizontal surface, such as the bot-
tom of a liquid-filled tank 1Fig. 2.16a2, the magnitude of the resultant force is simply 
where p is the uniform pressure on the bottom and A is the area of the bottom. For the open tank
shown, Note that if atmospheric pressure acts on both sides of the bottom, as is illustrated,
the resultant force on the bottom is simply due to the liquid in the tank. Since the pressure is con-
stant and uniformly distributed over the bottom, the resultant force acts through the centroid of the
area as shown in Fig. 2.16a. As shown in Fig. 2.16b, the pressure on the ends of the tank is not
uniformly distributed. Determination of the resultant force for situations such as this is presented
below.

p � gh.

FR � pA,
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(a)

Diaphragm

Case

Electrical connections

Beam (strain gages deposited on beam)

Link pin

Diaphragm

Armature

Diaphragm
stop

(b)

F I G U R E  2.15 (a) Two different sized strain-gage pressure transducers
(Spectramed Models P10EZ and P23XL) commonly used to measure physiological
pressures. Plastic domes are filled with fluid and connected to blood vessels through a
needle or catheter. (Photograph courtesy of Spectramed, Inc.) (b) Schematic diagram of
the P23XL transducer with the dome removed. Deflection of the diaphragm due to
pressure is measured with a silicon beam on which strain gages and an associated
bridge circuit have been deposited.
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V2.4 Hoover dam



F I G U R E  2.16 (a) Pressure distribution and resultant hydrostatic force on the 
bottom of an open tank. (b) Pressure distribution on the ends of an open tank.
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For the more general case in which a submerged plane surface is inclined, as is illustrated
in Fig. 2.17, the determination of the resultant force acting on the surface is more involved. For
the present we will assume that the fluid surface is open to the atmosphere. Let the plane in which
the surface lies intersect the free surface at 0 and make an angle with this surface as in Fig. 2.17.
The x–y coordinate system is defined so that 0 is the origin and y � 0 (i.e., the x-axis) is directed
along the surface as shown. The area can have an arbitrary shape as shown. We wish to determine
the direction, location, and magnitude of the resultant force acting on one side of this area due to
the liquid in contact with the area. At any given depth, h, the force acting on dA 1the differential
area of Fig. 2.172 is and is perpendicular to the surface. Thus, the magnitude of the
resultant force can be found by summing these differential forces over the entire surface. In equa-
tion form

FR � �
A
 gh dA � �

A
 gy sin u dA

dF � gh dA

u

Free surface
p = 0

Specific weight = γ

FR
h

p = 0

p =   hγ

(a) Pressure on tank bottom

Free surface
p = 0

Specific weight = γ

p = 0

p =   hγ

(b) Pressure on tank ends

y

yc
yR

xR

xc

c

CP Centroid, c

Location of
resultant force

(center of pressure, CP)

dA

A

x

x

y

θ

0Free surface

h
hc

FR

dF

F I G U R E  2.17 Notation for hydrostatic force on an inclined plane
surface of arbitrary shape.

The resultant force
of a static fluid on a
plane surface is due
to the hydrostatic
pressure distribution
on the surface.



where For constant and 

(2.17)

The integral appearing in Eq. 2.17 is the first moment of the area with respect to the x axis, so we
can write

where is the y coordinate of the centroid of area A measured from the x axis which passes through 0.
Equation 2.17 can thus be written as

or more simply as

(2.18)

where is the vertical distance from the fluid surface to the centroid of the area. Note that the
magnitude of the force is independent of the angle . As indicated by the figure in the margin, it
depends only on the specific weight of the fluid, the total area, and the depth of the centroid of
the area below the surface. In effect, Eq. 2.18 indicates that the magnitude of the resultant force
is equal to the pressure at the centroid of the area multiplied by the total area. Since all the differ-
ential forces that were summed to obtain are perpendicular to the surface, the resultant must
also be perpendicular to the surface.

Although our intuition might suggest that the resultant force should pass through the cen-
troid of the area, this is not actually the case. The y coordinate, of the resultant force can be
determined by summation of moments around the x axis. That is, the moment of the resultant force
must equal the moment of the distributed pressure force, or

and, therefore, since 

The integral in the numerator is the second moment of the area (moment of inertia), with re-
spect to an axis formed by the intersection of the plane containing the surface and the free surface
1x axis2. Thus, we can write

Use can now be made of the parallel axis theorem to express as

where is the second moment of the area with respect to an axis passing through its centroid and
parallel to the x axis. Thus,

(2.19)

As shown by Eq. 2.19 and the figure in the margin, the resultant force does not pass through the
centroid but for nonhorizontal surfaces is always below it, since 

The x coordinate, for the resultant force can be determined in a similar manner by sum-
ming moments about the y axis. Thus,

FR xR � �
A
 g sin u xy dA

xR,
Ixc�yc A 7 0.

yR �
Ixc

yc A
� yc

Ixc

Ix � Ixc � Ay2
c

Ix

yR �
Ix

yc A

Ix,

yR �

�
A
 y2 dA

yc A

FR � gAyc sin u

FR 

yR � �
A
 y dF � �

A
 g sin u y2 dA

yR,

FRFR

u

hc

FR � ghc  A

FR � gAyc sin u

yc

�
A
 y dA � yc A

FR � g sin u�
A
 y dA

ugh � y sin u.
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The magnitude of
the resultant fluid
force is equal to the
pressure acting at
the centroid of the
area multiplied by
the total area.

γ

A

hc

c
FR = γhcA

c

yc

Ixc

ycA

FR



F I G U R E  2.18 Geometric properties of some common shapes.

and, therefore,

where is the product of inertia with respect to the x and y axes. Again, using the parallel axis
theorem,1 we can write

(2.20)

where is the product of inertia with respect to an orthogonal coordinate system passing through
the centroid of the area and formed by a translation of the x–y coordinate system. If the submerged
area is symmetrical with respect to an axis passing through the centroid and parallel to either the
x or y axes, the resultant force must lie along the line since is identically zero in this
case. The point through which the resultant force acts is called the center of pressure. It is to be
noted from Eqs. 2.19 and 2.20 that as increases the center of pressure moves closer to the cen-
troid of the area. Since the distance will increase if the depth of submergence,
increases, or, for a given depth, the area is rotated so that the angle, decreases. Thus, the hydro-
static force on the right-hand side of the gate shown in the margin figure acts closer to the cen-
troid of the gate than the force on the left-hand side. Centroidal coordinates and moments of iner-
tia for some common areas are given in Fig. 2.18.

u,
hc,ycyc � hc�sin u,

yc

Ixycx � xc,

Ixyc

xR �
Ixyc

yc A
� xc

Ixy

xR �
�

A

 xy dA

yc A
�

Ixy

yc A
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c
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4
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2
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12

c

y
x

R R

4R–––
3π

c

y
x

b + d–––––––
3

b

a––
3

d

a

R

c

y

x
Rc

y

x

b––
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2

a––
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2

(a) Rectangle (b) Circle

(c) Semicircle (d) Triangle

(e) Quarter circle

1Recall that the parallel axis theorem for the product of inertia of an area states that the product of inertia with respect to an orthogonal
set of axes 1x–y coordinate system2 is equal to the product of inertia with respect to an orthogonal set of axes parallel to the original set
and passing through the centroid of the area, plus the product of the area and the x and y coordinates of the centroid of the area. Thus,
Ixy � Ixyc � Axcyc.

The resultant fluid
force does not pass
through the cen-
troid of the area.

FRleft

FRright

c

Gate
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F l u i d s  i n  t h e  N e w s

The Three Gorges Dam The Three Gorges Dam being con-
structed on China’s Yangtze River will contain the world’s
largest hydroelectric power plant when in full operation. The
dam is of the concrete gravity type, having a length of 2309 me-
ters with a height of 185 meters. The main elements of the pro-
ject include the dam, two power plants, and navigation facilities
consisting of a ship lock and lift. The power plants will contain
26 Francis type turbines, each with a capacity of 700 megawatts.
The spillway section, which is the center section of the dam, is
483 meters long with 23 bottom outlets and 22 surface sluice

gates. The maximum discharge capacity is 102,500 cubic meters
per second. After more than 10 years of construction, the dam
gates were finally closed, and on June 10, 2003, the reservoir
had been filled to its interim level of 135 meters. Due to the
large depth of water at the dam and the huge extent of the stor-
age pool, hydrostatic pressure forces have been a major factor
considered by engineers. When filled to its normal pool level of
175 meters, the total reservoir storage capacity is 39.3 billion
cubic meters. The project is scheduled for completion in 2009.
(See Problem 2.79.)

Hydrostatic Force on a Plane Circular SurfaceEXAMPLE 2.6

GIVEN The 4-m-diameter circular gate of Fig. E2.6a is lo-
cated in the inclined wall of a large reservoir containing water

The gate is mounted on a shaft along its hor-
izontal diameter, and the water depth is 10 m above the shaft.

FIND Determine 

(a) the magnitude and location of the resultant force exerted
on the gate by the water and 

(b) the moment that would have to be applied to the shaft to
open the gate.

1g � 9.80 kN�m32.

SOLUTION

F I G U R E  E2.6a–c

x
y

c

A

A Center of
pressure

FR

�

M

Oy

Ox
c(a)

(c)

(b)

4 m

Shaft

Stop
10 m

60°

0 0

FR
c

y R

y c
 =

 
10

 m
––

––
––

––
–

si
n 

60
°

(a) To find the magnitude of the force of the water we can apply
Eq. 2.18,

and since the vertical distance from the fluid surface to the cen-
troid of the area is 10 m, it follows that

(Ans)

To locate the point 1center of pressure2 through which acts,
we use Eqs. 2.19 and 2.20,

For the coordinate system shown, since the area is sym-
metrical, and the center of pressure must lie along the diameter A-
A. To obtain we have from Fig. 2.18

and is shown in Fig. E2.6b. Thus,

 � 0.0866 m � 11.55 m � 11.6 m

 yR �
1p�42 12 m24

110 m�sin 60°2 14p m22 �
10 m

sin 60°

yc

Ixc �
pR4

4

yR,

xR � 0

xR �
Ixyc

yc A
� xc  yR �

Ixc

yc A
� yc

FR

 � 1230 � 103 N � 1.23 MN

 FR � 19.80 � 103 N�m32 110 m2 14p m22

FR � ghc A

and the distance 1along the gate2 below the shaft to the center of
pressure is

(Ans)

We can conclude from this analysis that the force on the gate due
to the water has a magnitude of 1.23 MN and acts through a point
along its diameter A-A at a distance of 0.0866 m 1along the gate2
below the shaft. The force is perpendicular to the gate surface as
shown in Fig. E2.6b.

COMMENT By repeating the calculations for various values
of the depth to the centroid, hc, the results shown in Fig. E2.6d are
obtained. Note that as the depth increases, the distance between
the center of pressure and the centroid decreases.

(b) The moment required to open the gate can be obtained with
the aid of the free-body diagram of Fig. E2.6c. In this diagram w

yR � yc � 0.0866 m
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is the weight of the gate and and are the horizontal and
vertical reactions of the shaft on the gate. We can now sum mo-
ments about the shaft

and, therefore,

(Ans) � 1.07 � 105 N # m

 � 11230 � 103 N2 10.0866 m2
 M � FR 1yR � yc2

a Mc � 0

OyOx 0.5

0.4

0.3

0.2

0.1

0
0 5 10 15

hc, m

y R
 –

 y
c,

 m

20 25 30

(10m, 0.0886 m)

F I G U R E  E2.6d

Hydrostatic Pressure Force on a Plane Triangular SurfaceE XAMPLE 2.7

GIVEN An aquarium contains seawater to a
depth of 1 ft as shown in Fig. E2.7a. To repair some damage to
one corner of the tank, a triangular section is replaced with a new
section as illustrated in Fig. E2.7b. 

1g � 64.0 lb�ft32

(a) The various distances needed to solve this problem are
shown in Fig. E2.7c. Since the surface of interest lies in a ver-
tical plane, and from Eq. 2.18 the magnitude
of the force is

(Ans)

COMMENT Note that this force is independent of the tank
length. The result is the same if the tank is 0.25 ft, 25 ft, or 25 miles
long. 

(b) The y coordinate of the center of pressure 1CP2 is found from
Eq. 2.19,

and from Fig. 2.18

yR �
Ixc

yc A
� yc

� 164.0 lb�ft32 10.9 ft 2 3 10.3 ft22�2 4 � 2.59 lb

 FR � ghc A

yc � hc � 0.9 ft,

SOLUTION

FIND Determine 

(a) the magnitude of the force of the seawater on this triangular
area, and

(b) the location of this force.

F I G U R E  E2.7b–d

0.3 ft

0.3 ft

0.9 ft 2.5 ft

1 ft

(b)

(c) (d )

1 ft

0.1 ft

0.2 ft

0.1 ft 0.15 ft 0.15 ft

Median line

δA
yR

xR

yc

y

x

c

CP

c

CP

F I G U R E  E2.7a (Photograph courtesy
of Tenecor Tanks, Inc.)
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2.9 Pressure Prism

An informative and useful graphical interpretation can be made for the force developed by a fluid
acting on a plane rectangular area. Consider the pressure distribution along a vertical wall of a tank
of constant width b, which contains a liquid having a specific weight Since the pressure must
vary linearly with depth, we can represent the variation as is shown in Fig. 2.19a, where the pres-
sure is equal to zero at the upper surface and equal to at the bottom. It is apparent from this
diagram that the average pressure occurs at the depth and therefore the resultant force acting
on the rectangular area is

which is the same result as obtained from Eq. 2.18. The pressure distribution shown in Fig. 2.19a
applies across the vertical surface so we can draw the three-dimensional representation of the pres-
sure distribution as shown in Fig. 2.19b. The base of this “volume” in pressure-area space is the
plane surface of interest, and its altitude at each point is the pressure. This volume is called the pres-
sure prism, and it is clear that the magnitude of the resultant force acting on the rectangular surface
is equal to the volume of the pressure prism. Thus, for the prism of Fig. 2.19b the fluid force is

where bh is the area of the rectangular surface, A.
The resultant force must pass through the centroid of the pressure prism. For the volume un-

der consideration the centroid is located along the vertical axis of symmetry of the surface, and at
a distance of above the base 1since the centroid of a triangle is located at above its base2.
This result can readily be shown to be consistent with that obtained from Eqs. 2.19 and 2.20.

h�3h�3

FR � volume �
1

2
 1gh2 1bh2 � g ah

2
b A

FR � pav  A � g ah

2
b A

A � bh
h�2,
gh

g.

FR

γh

h

h–3

(a) (b)

γh

h

FR

h–3

b

CP
p

F I G U R E  2.19
Pressure prism for vertical
rectangular area.

The magnitude of
the resultant fluid
force is equal to the
volume of the pres-
sure prism and
passes through its
centroid.

so that

(Ans)

Similarly, from Eq. 2.20

and from Fig. 2.18

Ixyc �
10.3 ft 2 10.3 ft 22

72
 10.3 ft 2 � 0.0081

72
 ft4

xR �
Ixyc

yc A
� xc

 � 0.00556 ft � 0.9 ft � 0.906 ft

 yR �
0.0081�36 ft4

10.9 ft 2 10.09�2 ft22 � 0.9 ft

Ixc �
10.3 ft 2 10.3 ft 23

36
�

0.0081

36
 ft4

so that

(Ans)

COMMENT Thus, we conclude that the center of pressure is
0.00278 ft to the right of and 0.00556 ft below the centroid of the
area. If this point is plotted, we find that it lies on the median line
for the area as illustrated in Fig. E2.7d. Since we can think of the
total area as consisting of a number of small rectangular strips of
area 1and the fluid force on each of these small areas acts
through its center2, it follows that the resultant of all these parallel
forces must lie along the median.

dA

xR �
0.0081�72 ft4

10.9 ft2 10.09�2 ft22 � 0 � 0.00278 ft
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This same graphical approach can be used for plane rectangular surfaces that do not extend
up to the fluid surface, as illustrated in Fig. 2.20a. In this instance, the cross section of the pres-
sure prism is trapezoidal. However, the resultant force is still equal in magnitude to the volume of
the pressure prism, and it passes through the centroid of the volume. Specific values can be ob-
tained by decomposing the pressure prism into two parts, ABDE and BCD, as shown in Fig. 2.20b.
Thus,

where the components can readily be determined by inspection for rectangular surfaces. The loca-
tion of can be determined by summing moments about some convenient axis, such as one pass-
ing through A. In this instance

and can be determined by inspection.
For inclined plane rectangular surfaces the pressure prism can still be developed, and the

cross section of the prism will generally be trapezoidal, as is shown in Fig. 2.21. Although it is usu-
ally convenient to measure distances along the inclined surface, the pressures developed depend
on the vertical distances as illustrated.

The use of pressure prisms for determining the force on submerged plane areas is convenient
if the area is rectangular so the volume and centroid can be easily determined. However, for other
nonrectangular shapes, integration would generally be needed to determine the volume and centroid.
In these circumstances it is more convenient to use the equations developed in the previous section,
in which the necessary integrations have been made and the results presented in a convenient and
compact form that is applicable to submerged plane areas of any shape.

The effect of atmospheric pressure on a submerged area has not yet been considered, and we
may ask how this pressure will influence the resultant force. If we again consider the pressure dis-
tribution on a plane vertical wall, as is shown in Fig. 2.22a, the pressure varies from zero at the
surface to at the bottom. Since we are setting the surface pressure equal to zero, we are usinggh

y1 and y2

FRyA � F1y1 � F2 y2

FR

FR � F1 � F2

h1

h2

p

(a) (b)

C D E

AB

FR

F2

F1

y1
yA y2

(h2 - h1)γ

h1γ

F I G U R E  2.20
Graphical representation of
hydrostatic forces on a
vertical rectangular surface.

γ h2

h2

γ h1
h1

F I G U R E  2.21 Pressure variation
along an inclined plane area.

The use of the pres-
sure prism concept
to determine the
force on a sub-
merged area is best
suited for plane
rectangular 
surfaces.



atmospheric pressure as our datum, and thus the pressure used in the determination of the fluid
force is gage pressure. If we wish to include atmospheric pressure, the pressure distribution will
be as is shown in Fig. 2.22b. We note that in this case the force on one side of the wall now con-
sists of as a result of the hydrostatic pressure distribution, plus the contribution of the atmos-
pheric pressure, where A is the area of the surface. However, if we are going to include the
effect of atmospheric pressure on one side of the wall, we must realize that this same pressure acts
on the outside surface 1assuming it is exposed to the atmosphere2, so that an equal and opposite force
will be developed as illustrated in the figure. Thus, we conclude that the resultant fluid force on the
surface is that due only to the gage pressure contribution of the liquid in contact with the surface—
the atmospheric pressure does not contribute to this resultant. Of course, if the surface pressure of
the liquid is different from atmospheric pressure 1such as might occur in a closed tank2, the resul-
tant force acting on a submerged area, A, will be changed in magnitude from that caused simply
by hydrostatic pressure by an amount where is the gage pressure at the liquid surface 1the
outside surface is assumed to be exposed to atmospheric pressure2.

psps A,

patm A,
FR
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FR FR

patm patm

patmpatm A A

(a) (b)

h

h

γ

patm

p

F I G U R E  2.22 Effect of atmospheric pressure on the resultant
force acting on a plane vertical wall.

The resultant fluid
force acting on a
submerged area is
affected by the
pressure at the free
surface.

Use of the Pressure Prism ConceptE XAMPLE 2.8

GIVEN A pressurized tank contains oil and has a
square, 0.6-m by 0.6-m plate bolted to its side, as is illustrated in
Fig. E2.8a. The pressure gage on the top of the tank reads 50 kPa,
and the outside of the tank is at atmospheric pressure.

1SG � 0.902 FIND What is the magnitude and location of the resultant force
on the attached plate?

p = 50 kPa

Air

2 m

0.6 m

(a)

F1

FR

Plate
O

(h2 – h1)γ

0.2 m

F2

yO
0.3 m

0.6 m

h2 = 2.6 m
h1 = 2 m

h1γ
ps Oil surface

(b)

Oil

F I G U R E  E2.8
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The equations developed in Section 2.8 for the magnitude and location of the resultant force act-
ing on a submerged surface only apply to plane surfaces. However, many surfaces of interest
1such as those associated with dams, pipes, and tanks2 are nonplanar. The domed bottom of the
beverage bottle shown in the figure in the margin shows a typical curved surface example. Al-
though the resultant fluid force can be determined by integration, as was done for the plane sur-
faces, this is generally a rather tedious process and no simple, general formulas can be devel-
oped. As an alternative approach we will consider the equilibrium of the fluid volume enclosed
by the curved surface of interest and the horizontal and vertical projections of this surface.

For example, consider a curved portion of the swimming pool shown in Fig. 2.23a. We wish
to find the resultant fluid force acting on section BC (which has a unit length perpendicular to the
plane of the paper) shown in Fig. 2.23b. We first isolate a volume of fluid that is bounded by the
surface of interest, in this instance section BC, the horizontal plane surface AB, and the vertical
plane surface AC. The free-body diagram for this volume is shown in Fig. 2.23c. The magnitude
and location of forces can be determined from the relationships for planar surfaces. The
weight, is simply the specific weight of the fluid times the enclosed volume and acts through
the center of gravity 1CG2 of the mass of fluid contained within the volume. The forces 
represent the components of the force that the tank exerts on the fluid.

In order for this force system to be in equilibrium, the horizontal component must be
equal in magnitude and collinear with and the vertical component equal in magnitude and
collinear with the resultant of the vertical forces This follows since the three forces act-
ing on the fluid mass 1 the resultant of and the resultant force that the tank exerts on
the mass2 must form a concurrent force system. That is, from the principles of statics, it is known
that when a body is held in equilibrium by three nonparallel forces, they must be concurrent 1their
lines of action intersect at a common point2, and coplanar. Thus,

and the magnitude of the resultant is obtained from the equation

FR � 21FH22 � 1FV22

 FV � F1 �w

 FH � F2

F1 and w,F2,
F1 and w.

FVF2,
FH

FH and FV

w,
F1 and F2

2.10 Hydrostatic Force on a Curved Surface

SOLUTION
The pressure distribution acting on the inside surface of the plate is
shown in Fig. E2.8b. The pressure at a given point on the plate is
due to the air pressure, at the oil surface, and the pressure due to
the oil, which varies linearly with depth as is shown in the figure.
The resultant force on the plate 1having an area A2 is due to the com-
ponents, where F1 and F2 are due to the rectangular and
triangular portions of the pressure distribution, respectively. Thus,

and

 � 0.954 � 103 N

 � 10.902  19.81 � 103 N�m32  a0.6 m

2
b 10.36 m22

 F2 � g ah2 � h1

2
b A

 � 24.4 � 103 N

 � 10.902 19.81 � 103 N�m32 12 m2 4 10.36 m22
 � 350 � 103 N�m2

 F1 � 1  ps � gh12  

 A

F1 and F2,

ps,

The magnitude of the resultant force, is therefore

(Ans)

The vertical location of can be obtained by summing mo-
ments around an axis through point O so that

or

(Ans)

Thus, the force acts at a distance of 0.296 m above the bottom of
the plate along the vertical axis of symmetry.

COMMENT Note that the air pressure used in the calculation
of the force was gage pressure. Atmospheric pressure does not af-
fect the resultant force 1magnitude or location2, since it acts on
both sides of the plate, thereby canceling its effect.

 � 0.296 m

 yO �
124.4 � 103 N2 10.3 m2 � 10.954 � 103 N2 10.2 m2

25.4 � 103 N

FR yO � F110.3 m2 � F210.2 m2

FR

FR � F1 � F2 � 25.4 � 103 N � 25.4 kN

FR,

V2.5 Pop bottle
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F I G U R E  2.23 Hydrostatic
force on a curved surface.

CG

O

C

A B

FH

FV

F2

F1

�
A

C

B

(b) (c) (d)

O

B

C

 √(FH)2 + (FV)2FR =

(a)

The resultant passes through the point O, which can be located by summing moments about an
appropriate axis. The resultant force of the fluid acting on the curved surface BC is equal and op-
posite in direction to that obtained from the free-body diagram of Fig. 2.23c. The desired fluid
force is shown in Fig. 2.23d.

FR

Hydrostatic Pressure Force on a Curved SurfaceE XAMPLE 2.9

GIVEN A 6-ft-diameter drainage conduit of the type shown in
Fig. E2.9a is half full of water at rest, as shown in Fig. E2.9b.

FIND Determine the magnitude and line of action of the resul-
tant force that the water exerts on a 1-ft length of the curved sec-
tion BC of the conduit wall.

SOLUTION

F I G U R E  E2.9 (Photograph courtesy of CONTECH Construction Products, Inc.)

B

C

(b)

A B

C

FV

FHF1
1 ft

�

CG

(c)

1 ft

A

1.27 ft

O

FR = 523 lb

32.5°

(d)

3 ft
A

(a)

We first isolate a volume of fluid bounded by the curved section
BC, the horizontal surface AB, and the vertical surface AC, as
shown in Fig. E2.9c. The volume has a length of 1 ft. The forces
acting on the volume are the horizontal force, which acts on
the vertical surface AC, the weight, of the fluid contained
within the volume, and the horizontal and vertical components of
the force of the conduit wall on the fluid, respectively.

The magnitude of is found from the equation

and this force acts 1 ft above C as shown. The weight ,
where is the fluid volume, is

w � g V� � 162.4 lb�ft32  19p�4 ft22  11 ft 2 � 441 lb

V�
w � gV�

F1 � ghc  A � 162.4 lb�ft32  132 ft 2 13 ft22 � 281 lb

F1

FH and FV,

w,
F1,

and acts through the center of gravity of the mass of fluid, which
according to Fig. 2.18 is located 1.27 ft to the right of AC as
shown. Therefore, to satisfy equilibrium

and the magnitude of the resultant force is

(Ans)

The force the water exerts on the conduit wall is equal, but oppo-
site in direction, to the forces shown in Fig. E2.9c.
Thus, the resultant force on the conduit wall is shown in
Fig. E2.9d. This force acts through the point O at the angle shown.

FH and FV

 � 21281 lb22 � 1441 lb22 � 523 lb

 FR � 21FH22 � 1FV22

FH � F1 � 281 lb  FV �w � 441 lb



This same general approach can also be used for determining the force on curved surfaces
of pressurized, closed tanks. If these tanks contain a gas, the weight of the gas is usually negli-
gible in comparison with the forces developed by the pressure. Thus, the forces 1such as 
in Fig. 2.23c2 on horizontal and vertical projections of the curved surface of interest can simply
be expressed as the internal pressure times the appropriate projected area.

F1 and F2
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2.11.1 Archimedes’ Principle

When a stationary body is completely submerged in a fluid 1such as the hot air balloon shown in
the figure in the margin2, or floating so that it is only partially submerged, the resultant fluid force
acting on the body is called the buoyant force. A net upward vertical force results because pres-
sure increases with depth and the pressure forces acting from below are larger than the pressure
forces acting from above. This force can be determined through an approach similar to that used
in the previous section for forces on curved surfaces. Consider a body of arbitrary shape, having
a volume that is immersed in a fluid as illustrated in Fig. 2.24a. We enclose the body in a par-
allelepiped and draw a free-body diagram of the parallelepiped with the body removed as shown
in Fig. 2.24b. Note that the forces and are simply the forces exerted on the plane
surfaces of the parallelepiped 1for simplicity the forces in the x direction are not shown2, is the
weight of the shaded fluid volume 1parallelepiped minus body2, and is the force the body is
exerting on the fluid. The forces on the vertical surfaces, such as are all equal and can-
cel, so the equilibrium equation of interest is in the z direction and can be expressed as

(2.21)

If the specific weight of the fluid is constant, then

where A is the horizontal area of the upper 1or lower2 surface of the parallelepiped, and Eq. 2.21
can be written as

Simplifying, we arrive at the desired expression for the buoyant force

(2.22)FB � gV�

FB � g1h2 � h12A � g 3 1h2 � h12A � V� 4

F2 � F1 � g1h2 � h12A

FB � F2 � F1 �w

F3 and F4,
FB

w
F4F1, F2, F3,

V�,

2.11 Buoyancy, Flotation, and Stability

(Photograph courtesy of
Cameron Balloons.)

COMMENT An inspection of this result will show that the line
of action of the resultant force passes through the center of the con-
duit. In retrospect, this is not a surprising result since at each point
on the curved surface of the conduit the elemental force due to the

pressure is normal to the surface, and each line of action must pass
through the center of the conduit. It therefore follows that the resul-
tant of this concurrent force system must also pass through the cen-
ter of concurrence of the elemental forces that make up the system.

F l u i d s  i n  t h e  N e w s

Miniature, exploding pressure vessels Our daily lives are safer
because of the effort put forth by engineers to design safe, light-
weight pressure vessels such as boilers, propane tanks, and pop
bottles. Without proper design, the large hydrostatic pressure
forces on the curved surfaces of such containers could cause the
vessel to explode with disastrous consequences. On the other
hand, the world is a more friendly place because of miniature pres-
sure vessels that are designed to explode under the proper condi-
tions—popcorn kernels. Each grain of popcorn contains a small

amount of water within the special, impervious hull (pressure ves-
sel) which, when heated to a proper temperature, turns to steam,
causing the kernel to explode and turn itself inside out. Not all
popcorn kernels have the proper properties to make them pop well.
First, the kernel must be quite close to 13.5% water. With too little
moisture, not enough steam will build up to pop the kernel; too
much moisture causes the kernel to pop into a dense sphere rather
than the light fluffy delicacy expected. Second, to allow the pres-
sure to build up, the kernels must not be cracked or damaged.

V2.6 Atmospheric
buoyancy
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where is the specific weight of the fluid and is the volume of the body. The direction of the
buoyant force, which is the force of the fluid on the body, is opposite to that shown on the free-
body diagram. Therefore, the buoyant force has a magnitude equal to the weight of the fluid dis-
placed by the body and is directed vertically upward. This result is commonly referred to as
Archimedes’ principle in honor of Archimedes 1287–212 B.C.2, a Greek mechanician and mathe-
matician who first enunciated the basic ideas associated with hydrostatics.

The location of the line of action of the buoyant force can be determined by summing moments
of the forces shown on the free-body diagram in Fig. 2.24b with respect to some convenient axis. For
example, summing moments about an axis perpendicular to the paper through point D we have

and on substitution for the various forces

(2.23)

where is the total volume The right-hand side of Eq. 2.23 is the first 
moment of the displaced volume with respect to the x–z plane so that is equal to the y co-
ordinate of the centroid of the volume In a similar fashion it can be shown that the x coordi-
nate of the buoyant force coincides with the x coordinate of the centroid. Thus, we conclude that
the buoyant force passes through the centroid of the displaced volume as shown in Fig. 2.24c.
The point through which the buoyant force acts is called the center of buoyancy.

V�.
ycV�

1h2 � h12A.V�T

V�yc � V�Ty1 � 1V�T � V�2  y2

FByc � F2 y1 � F1y1 �wy2

V�g

F I G U R E  2.24 Buoyant force on submerged and floating bodies.
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F3 F4FB
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c

F2

F1

�

Centroid

Centroid
of displaced

volume

c

Archimedes’ princi-
ple states that the
buoyant force has a
magnitude equal to
the weight of the
fluid displaced by
the body and is
directed vertically
upward.

F l u i d s  i n  t h e  N e w s

Concrete canoes A solid block of concrete thrown into a pond or
lake will obviously sink. But, if the concrete is formed into the
shape of a canoe it can be made to float. Of course the reason the
canoe floats is the development of the buoyant force due to the
displaced volume of water. With the proper design, this vertical
force can be made to balance the weight of the canoe plus passen-
gers—the canoe floats. Each year since 1988 there is a National
Concrete Canoe Competition for university teams. It’s jointly

sponsored by the American Society of Civil Engineers and Master
Builders Inc. The canoes must be 90% concrete and are typically
designed with the aid of a computer by civil engineering students.
Final scoring depends on four components: a design report, an
oral presentation, the final product, and racing. For the 2007 com-
petition the University of Wisconsin’s team won for its fifth con-
secutive national championship with a 179-lb, 19.11-ft canoe.
(See Problem 2.107.)

V2.7 Cartesian
Diver
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These same results apply to floating bodies which are only partially submerged, as illustrated
in Fig. 2.24d, if the specific weight of the fluid above the liquid surface is very small compared
with the liquid in which the body floats. Since the fluid above the surface is usually air, for prac-
tical purposes this condition is satisfied.

In the derivations presented above, the fluid is assumed to have a constant specific weight,
If a body is immersed in a fluid in which varies with depth, such as in a layered fluid, the

magnitude of the buoyant force remains equal to the weight of the displaced fluid. However, the
buoyant force does not pass through the centroid of the displaced volume, but rather, it passes
through the center of gravity of the displaced volume.

gg.

V2.8 Hydrometer

Buoyant Force on a Submerged ObjectEXAMPLE 2.10

GIVEN The 0.4-lb lead fish sinker shown in Fig. E2.10a is at-
tached to a fishing line as shown in Fig. E2.10b. The specific
gravity of the sinker is SGsinker 11.3.

FIND Determine the difference between the tension in the line
above and below the sinker.

SOLUTION

A free body diagram of the sinker is shown in Fig. E.10b, where
is the weight of the sinker, FB is the buoyant force acting on the

sinker, and TA and TB are the tensions in the line above and below
the sinker, respectively. For equilibrium it follows that

(1)

Also,

(2)

where is the specific weight of water and is the volume of the
sinker. From Eq. 2.22,

(3)

By combining Eqs. 2 and 3 we obtain

(4)FB w SGsinker

FB gV

Vg

w gsinker V gSGsinker V

TA TB w FB

w
Hence, from Eqs. 1 and 4 the difference in the tensions is

(5)

(Ans)

COMMENTS Note that if the sinker were raised out of the
water, the difference in tension would equal the entire weight of
the sinker (TA TB 0.4 lb) rather than the 0.365 lb when it is
in the water. Thus, since the sinker material is significantly heav-
ier than water, the buoyant force is relatively unimportant. As
seen from Eq. 5, as SGsinker becomes very large, the buoyant force
becomes insignificant, and the tension difference becomes nearly
equal to the weight of the sinker. On the other hand, if SGsinker  1,
then TA TB 0 and the sinker is no longer a “sinker.” It is neu-
trally buoyant and no external force from the line is required to
hold it in place.

0.4 lb 31 11 11.32 4 0.365 lb

TA TB w w SGsinker w 31 11 SGsinker2 4

F I G U R E  E2.10

(a)

�

FB

TA

TB

Pressure
envelope

�

TB

(b) (c)

TA
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2.11.2 Stability

Another interesting and important problem associated with submerged or floating bodies is con-
cerned with the stability of the bodies. As illustrated by the figure in the margin, a body is said to
be in a stable equilibrium position if, when displaced, it returns to its equilibrium position. Con-
versely, it is in an unstable equilibrium position if, when displaced 1even slightly2, it moves to a
new equilibrium position. Stability considerations are particularly important for submerged or float-
ing bodies since the centers of buoyancy and gravity do not necessarily coincide. A small rotation
can result in either a restoring or overturning couple. For example, for the completely submerged
body shown in Fig. 2.25, which has a center of gravity below the center of buoyancy, a rotation
from its equilibrium position will create a restoring couple formed by the weight, and the buoy-
ant force, which causes the body to rotate back to its original position. Thus, for this configu-
ration the body is stable. It is to be noted that as long as the center of gravity falls below the cen-
ter of buoyancy, this will always be true; that is, the body is in a stable equilibrium position with
respect to small rotations. However, as is illustrated in Fig. 2.26, if the center of gravity of the
completely submerged body is above the center of buoyancy, the resulting couple formed by the
weight and the buoyant force will cause the body to overturn and move to a new equilibrium po-
sition. Thus, a completely submerged body with its center of gravity above its center of buoyancy
is in an unstable equilibrium position.

For floating bodies the stability problem is more complicated, since as the body rotates the
location of the center of buoyancy 1which passes through the centroid of the displaced volume2 may

FB,
w,

Stable

Unstable

The stability of a
body can be deter-
mined by consider-
ing what happens
when it is displaced
from its equilibrium
position.

F I G U R E  2.25
Stability of a completely immersed
body—center of gravity below
centroid.

F I G U R E  2.26
Stability of a completely immersed
body—center of gravity above
centroid.

FB FB
c c

CG CG

� �

Restoring
couple

Stable

FB FB

c c
CG CG

� �

Overturning
couple

Unstable

In this example we replaced the hydrostatic pressure force on the body by the buoyant force,
FB. Another correct free-body diagram of the sinker is shown in Fig. E2.20c. The net effect of
the pressure forces on the surface of the sinker is equal to the upward force of magnitude FB (the
buoyant force). Do not include both the buoyant force and the hydrostatic pressure effects in your
calculations—use one or the other.

F l u i d s  i n  t h e  N e w s

Explosive Lake In 1986 a tremendous explosion of carbon diox-
ide (CO2) from Lake Nyos, west of Cameroon, killed more than
1700 people and livestock. The explosion resulted from a build up
of CO2 that seeped into the high pressure water at the bottom of the
lake from warm springs of CO2-bearing water. The CO2-rich water
is heavier than pure water and can hold a volume of CO2 more than
five times the water volume. As long as the gas remains dissolved
in the water, the stratified lake (i.e., pure water on top, CO2 water
on the bottom) is stable. But if some mechanism causes the gas

bubbles to nucleate, they rise, grow, and cause other bubbles to
form, feeding a chain reaction. A related phenomenon often occurs
when a pop bottle is shaken and then opened. The pop shoots from
the container rather violently. When this set of events occurred in
Lake Nyos, the entire lake overturned through a column of rising
and expanding buoyant bubbles. The heavier-than-air CO2 then
flowed through the long, deep valleys surrounding the lake and as-
phyxiated human and animal life caught in the gas cloud. One vic-
tim was 27 km downstream from the lake.

V2.9 Stability of a
floating cube



change. As is shown in Fig. 2.27, a floating body such as a barge that rides low in the water can be
stable even though the center of gravity lies above the center of buoyancy. This is true since as the
body rotates the buoyant force, shifts to pass through the centroid of the newly formed displaced
volume and, as illustrated, combines with the weight, to form a couple which will cause the
body to return to its original equilibrium position. However, for the relatively tall, slender body
shown in Fig. 2.28, a small rotational displacement can cause the buoyant force and the weight to
form an overturning couple as illustrated.

It is clear from these simple examples that the determination of the stability of submerged or
floating bodies can be difficult since the analysis depends in a complicated fashion on the particular
geometry and weight distribution of the body. Thus, although both the relatively narrow kayak and
the wide houseboat shown in the figures in the margin are stable, the kayak will overturn much more
easily than the houseboat. The problem can be further complicated by the necessary inclusion of other
types of external forces such as those induced by wind gusts or currents. Stability considerations are
obviously of great importance in the design of ships, submarines, bathyscaphes, and so forth, and
such considerations play a significant role in the work of naval architects 1see, for example, Ref. 62.

w,
FB,
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F I G U R E  2.27 Stability of a floating body—stable configuration.

�

FB

c
CG

Restoring
couple

c' = centroid of new
displaced volume

c = centroid of original
displaced volume

Stable

�

FB

c'
CG

F I G U R E  2.28 Stability of a
floating body—unstable configuration.
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Although in this chapter we have been primarily concerned with fluids at rest, the general equa-
tion of motion 1Eq. 2.22

was developed for both fluids at rest and fluids in motion, with the only stipulation being that there
were no shearing stresses present. Equation 2.2 in component form, based on rectangular coordi-
nates with the positive z axis being vertically upward, can be expressed as

(2.24)

A general class of problems involving fluid motion in which there are no shearing stresses
occurs when a mass of fluid undergoes rigid-body motion. For example, if a container of fluid ac-
celerates along a straight path, the fluid will move as a rigid mass 1after the initial sloshing mo-
tion has died out2 with each particle having the same acceleration. Since there is no deformation,

�
0p

0x
� rax  �

0p

0y
� ray  �

0p

0z
� g � raz

�§p � gk̂� ra

2.12 Pressure Variation in a Fluid with Rigid-Body Motion

Marginally stable

Very stable

Even though a fluid
may be in motion, if
it moves as a rigid
body there will be
no shearing
stresses present.

V2.10 Stability of a
model barge
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there will be no shearing stresses and, therefore, Eq. 2.2 applies. Similarly, if a fluid is contained
in a tank that rotates about a fixed axis, the fluid will simply rotate with the tank as a rigid body,
and again Eq. 2.2 can be applied to obtain the pressure distribution throughout the moving fluid.
Specific results for these two cases 1rigid-body uniform motion and rigid-body rotation2 are devel-
oped in the following two sections. Although problems relating to fluids having rigid-body motion
are not, strictly speaking, “fluid statics” problems, they are included in this chapter because, as we
will see, the analysis and resulting pressure relationships are similar to those for fluids at rest.

2.12.1 Linear Motion

We first consider an open container of a liquid that is translating along a straight path with a constant
acceleration a as illustrated in Fig. 2.29. Since , it follows from the first of Eqs. 2.24 that the
pressure gradient in the x direction is zero In the y and z directions

(2.25)

(2.26)

The change in pressure between two closely spaced points located at y, z, and can
be expressed as

or in terms of the results from Eqs. 2.25 and 2.26

(2.27)

Along a line of constant pressure, and therefore from Eq. 2.27 it follows that the slope of
this line is given by the relationship

(2.28)

This relationship is illustrated by the figure in the margin. Along a free surface the pressure is con-
stant, so that for the accelerating mass shown in Fig. 2.29 the free surface will be inclined if 
In addition, all lines of constant pressure will be parallel to the free surface as illustrated.

ay q 0.

dz

dy
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ay

g � az

dp � 0,

dp � �ray dy � r1g � az2 dz

dp �
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0p

0z
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y � dy, z � dz
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F I G U R E  2.29 Linear acceleration of a liquid with a free surface.
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For the special circumstance in which which corresponds to the mass of
fluid accelerating in the vertical direction, Eq. 2.28 indicates that the fluid surface will be hor-
izontal. However, from Eq. 2.26 we see that the pressure distribution is not hydrostatic, but is
given by the equation

For fluids of constant density this equation shows that the pressure will vary linearly with depth,
but the variation is due to the combined effects of gravity and the externally induced acceleration,

rather than simply the specific weight Thus, for example, the pressure along the bot-
tom of a liquid-filled tank which is resting on the floor of an elevator that is accelerating upward
will be increased over that which exists when the tank is at rest 1or moving with a constant veloc-
ity2. It is to be noted that for a freely falling fluid mass the pressure gradients in all
three coordinate directions are zero, which means that if the pressure surrounding the mass is zero,
the pressure throughout will be zero. The pressure throughout a “blob” of orange juice floating in
an orbiting space shuttle 1a form of free fall2 is zero. The only force holding the liquid together is
surface tension 1see Section 1.92.

1az � �g2,

rg.r1g � az2,

dp

dz
� �r  1g � az2

ay � 0, az q 0,
The pressure distri-
bution in a fluid
mass that is accel-
erating along a
straight path is not
hydrostatic.

Pressure Variation in an Accelerating TankE XAMPLE 2.11

GIVEN The cross section for the fuel tank of an experimental
vehicle is shown in Fig. E2.11. The rectangular tank is vented to
the atmosphere and the specific gravity of the fuel is SG � 0.65.
A pressure transducer is located in its side as illustrated. During
testing of the vehicle, the tank is subjected to a constant linear ac-
celeration,

FIND (a) Determine an expression that relates and the pres-
sure at the transducer. (b) What is the maximum acceler-
ation that can occur before the fuel level drops below the trans-
ducer?

1in lb�ft22
ay

ay.

SOLUTION

(a) For a constant horizontal acceleration the fuel will move as
a rigid body, and from Eq. 2.28 the slope of the fuel surface can
be expressed as

since Thus, for some arbitrary the change in depth, of
liquid on the right side of the tank can be found from the equation

or

Since there is no acceleration in the vertical, z, direction, the
pressure along the wall varies hydrostatically as shown by Eq.
2.26. Thus, the pressure at the transducer is given by the rela-
tionship

p � gh

z1 � 10.75 ft 2  a
ay

g
b

�
z1

0.75 ft
� �

ay

g

z1,ay,az � 0.

dz

dy
� �

ay

g

where h is the depth of fuel above the transducer, and therefore

(Ans)

for As written, p would be given in 

(b) The limiting value for 1when the fuel level reaches
the transducer2 can be found from the equation

or

and for standard acceleration of gravity

(Ans)

COMMENT Note that the pressure in horizontal layers is not
constant in this example since Thus, for exam-
ple, p1 q p2.

0p�0y � �ray q 0.

1ay2max �
2
3 132.2 ft�s22 � 21.5 ft�s2

1ay2max �
2g

3

0.5 ft � 10.75 ft 2 c
1ay2max

g
d

1ay2max

lb�ft2.z1 � 0.5 ft.

 � 20.3 � 30.4 

ay

g

 p � 10.652 162.4 lb�ft32 30.5 ft � 10.75 ft 2 1ay�g2 4

F I G U R E  E2.11
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2.12.2 Rigid-Body Rotation

After an initial “start-up” transient, a fluid contained in a tank that rotates with a constant angular
velocity about an axis as is shown in Fig. 2.30 will rotate with the tank as a rigid body. It is
known from elementary particle dynamics that the acceleration of a fluid particle located at a dis-
tance r from the axis of rotation is equal in magnitude to and the direction of the acceleration
is toward the axis of rotation, as is illustrated in the figure. Since the paths of the fluid particles
are circular, it is convenient to use cylindrical polar coordinates r, and z, defined in the insert in
Fig. 2.30. It will be shown in Chapter 6 that in terms of cylindrical coordinates the pressure gra-
dient can be expressed as

(2.29)

Thus, in terms of this coordinate system

and from Eq. 2.2

(2.30)

These results show that for this type of rigid-body rotation, the pressure is a function of two vari-
ables r and z, and therefore the differential pressure is

or

(2.31)

On a horizontal plane (dz � 0), it follows from Eq. 2.31 that dp dr � SW2r, which is greater than
zero. Hence, as illustrated in the figure in the margin, because of centrifugal acceleration, the pres-
sure increases in the radial direction. 

Along a surface of constant pressure, such as the free surface, so that from Eq. 2.31
1using 2

Integration of this result gives the equation for surfaces of constant pressure as

(2.32)z �
v2r2

2g
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dz

dr
�

rv2

g

g � rg
dp � 0,

�

 dp � rrv2 dr � g dz

 dp �
0p

0r
 dr �

0p

0z
 dz

0p

0r
� rrv2  

0p

0u
� 0  

0p

0z
� �g

ar � �rv2 êr  au � 0  az � 0
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0p

0r
 êr �

1
r
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 êu �

0p

0z
 êz

§p

u,

rv2,

vA fluid contained in
a tank that is rotat-
ing with a constant
angular velocity
about an axis will
rotate as a rigid
body.

z = constant
p
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dp
––– = rw2r

F I G U R E  2.30 Rigid-body rotation of a liquid in a tank. (Photograph courtesy of Geno Pawlak.)
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F I G U R E  2.31 Pressure
distribution in a rotating liquid.
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This equation reveals that these surfaces of constant pressure are parabolic, as illustrated in Fig. 2.31.
Integration of Eq. 2.31 yields

or

(2.33)

where the constant of integration can be expressed in terms of a specified pressure at some arbi-
trary point This result shows that the pressure varies with the distance from the axis of ro-
tation, but at a fixed radius, the pressure varies hydrostatically in the vertical direction as shown
in Fig. 2.31.

r0, z0.

p �
rv2r 2

2
� gz � constant

�  dp � rv2
 �  r dr � g �  dz

Constant
pressure

lines

p1

p2

p3

p4

p1

p2

p3
p4

   2r2____
2g
ω

r

y

x

z

The free surface in
a rotating liquid is
curved rather than
flat.

E XAMPLE 2.12

GIVEN It has been suggested that the angular velocity, of a
rotating body or shaft can be measured by attaching an open
cylinder of liquid, as shown in Fig. E2.12a, and measuring with
some type of depth gage the change in the fluid level,
caused by the rotation of the fluid. 

FIND Determine the relationship between this change in fluid
level and the angular velocity.

H � h0,

v,

SOLUTION

cylindrical shell is taken at some arbitrary radius, r, and its vol-
ume is

dV� � 2prh dr

Free Surface Shape of Liquid in a Rotating Tank
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r

hH
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r

h0
h

dr

(b)(a)

ω

0

z

Depth
gage

Initial
depth

The height, h, of the free surface above the tank bottom can be de-
termined from Eq. 2.32, and it follows that

The initial volume of fluid in the tank, is equal to

The volume of the fluid with the rotating tank can be found with
the aid of the differential element shown in Fig. E2.12b. This

V�i � pR2H

V�i,

h �
v2r2

2g
� h0



2.13 Chapter Summary and Study Guide

In this chapter the pressure variation in a fluid at rest is considered, along with some impor-
tant consequences of this type of pressure variation. It is shown that for incompressible fluids
at rest the pressure varies linearly with depth. This type of variation is commonly referred to
as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution will
not generally be hydrostatic, but Eq. 2.4 remains valid and can be used to determine the pres-
sure distribution if additional information about the variation of the specific weight is specified.
The distinction between absolute and gage pressure is discussed along with a consideration of
barometers for the measurement of atmospheric pressure.

Pressure measuring devices called manometers, which utilize static liquid columns, are
analyzed in detail. A brief discussion of mechanical and electronic pressure gages is also
included. Equations for determining the magnitude and location of the resultant fluid force
acting on a plane surface in contact with a static fluid are developed. A general approach for
determining the magnitude and location of the resultant fluid force acting on a curved surface
in contact with a static fluid is described. For submerged or floating bodies the concept of the
buoyant force and the use of Archimedes’ principle are reviewed.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

calculate the pressure at various locations within an incompressible fluid at rest.

calculate the pressure at various locations within a compressible fluid at rest using Eq. 2.4
if the variation in the specific weight is specified.

use the concept of a hydrostatic pressure distribution to determine pressures from measure-
ments using various types of manometers.

determine the magnitude, direction, and location of the resultant hydrostatic force acting on a
plane surface.
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Pascal’s law 
surface force 
body force 
incompressible fluid 
hydrostatic pressure

distribution 
pressure head 
compressible fluid 
U.S. standard 

atmosphere 
absolute pressure 
gage pressure 
vacuum pressure 
barometer 
manometer 
Bourdon pressure

gage 
center of pressure 
buoyant force 
Archimedes’ principle 
center of buoyancy

The total volume is, therefore,

Since the volume of the fluid in the tank must remain constant 1as-
suming that none spills over the top2, it follows that

pR 2H �
pv2R 4

4g
� pR2h0

V� � 2p�
R

0

 r      av
2r2

2g
� h0b dr �

pv2R 4

4g
� pR2h0

or

(Ans)

COMMENT This is the relationship we were looking for. It
shows that the change in depth could indeed be used to determine
the rotational speed, although the relationship between the
change in depth and speed is not a linear one.

H � h0 �
v2R2

4g

F l u i d s  i n  t h e  N e w s

Rotating mercury mirror telescope A telescope mirror has the
same shape as the parabolic free surface of a liquid in a rotating
tank. The liquid mirror telescope (LMT) consists of a pan of liquid
(normally mercury because of its excellent reflectivity) rotating to
produce the required parabolic shape of the free surface mirror. With
recent technological advances, it is possible to obtain the vibration-
free rotation and the constant angular velocity necessary to produce
a liquid mirror surface precise enough for astronomical use. Con-
struction of the largest LMT, located at the University of British

Columbia, has recently been completed. With a diameter of 6 ft and
a rotation rate of 7 rpm, this mirror uses 30 liters of mercury for its
1-mm thick, parabolic-shaped mirror. One of the major benefits of a
LMT (compared to a normal glass mirror telescope) is its low cost.
Perhaps the main disadvantage is that a LMT can look only straight
up, although there are many galaxies, supernova explosions, and
pieces of space junk to view in any part of the sky. The next genera-
tion LMTs may have movable secondary mirrors to allow a larger
portion of the sky to be viewed. (See Problem 2.121.)



Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems des-
ignated with a 1 2 are “open-ended” problems and require crit-
ical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.†

Problems
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determine the magnitude, direction, and location of the resultant hydrostatic force acting on
a curved surface.

use Archimedes’ principle to calculate the resultant hydrostatic force acting on floating or
submerged bodies.

analyze, based on Eq. 2.2, the motion of fluids moving with simple rigid-body linear motion
or simple rigid-body rotation.

Some of the important equations in this chapter are:

Pressure gradient in a stationary fluid (2.4)

Pressure variation in a stationary incompressible fluid (2.7)

Hydrostatic force on a plane surface (2.18)

Location of hydrostatic force on a plane surface (2.19)

(2.20)

Buoyant force (2.22)

Pressure gradient in rigid-body motion (2.24)

Pressure gradient in rigid-body rotation (2.30)

References

1. The U.S. Standard Atmosphere, 1962, U.S. Government Printing Office, Washington, D.C., 1962.
2. The U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976.
3. Benedict, R. P., Fundamentals of Temperature, Pressure, and Flow Measurements, 3rd Ed., Wiley,

New York, 1984.
4. Dally, J. W., Riley, W. F., and McConnell, K. G., Instrumentation for Engineering Measurements, 2nd

Ed., Wiley, New York, 1993.
5. Holman, J. P., Experimental Methods for Engineers, 4th Ed., McGraw-Hill, New York, 1983.
6. Comstock, J. P., ed., Principles of Naval Architecture, Society of Naval Architects and Marine Engi-

neers, New York, 1967.
7. Hasler, A. F., Pierce, H., Morris, K. R., and Dodge, J., “Meteorological Data Fields ‘In Perspective’,”

Bulletin of the American Meteorological Society, Vol. 66, No. 7, July 1985.

0p

0r
� rrv2, 

0p

0u
� 0, 

0p

0z
� �g

�
0p

0x
� rax, �

0p

0y
� ray, �

0p

0z
� g � raz

FB � gV�

xR �
Ixyc

ycA
� xc

yR �
Ixc

ycA
� yc

FR � ghcA

p1 � gh � p2

dp

dz
� �g



Problems 79

Section 2.3 Pressure Variation in a Fluid at Rest

2.1 Obtain a photograph/image of a situation in which the fact
that in a static fluid the pressure increases with depth is important.
Print this photo and write a brief paragraph that describes the
situation involved.

2.2 A closed, 5-m-tall tank is filled with water to a depth of 4 m.
The top portion of the tank is filled with air which, as indicated by
a pressure gage at the top of the tank, is at a pressure of 20 kPa.
Determine the pressure that the water exerts on the bottom of the tank.

2.3 A closed tank is partially filled with glycerin. If the air
pressure in the tank is 6 lb/in.2 and the depth of glycerin is 10 ft,
what is the pressure in lb/ft2 at the bottom of the tank?

2.4 Blood pressure is usually given as a ratio of the maximum
pressure (systolic pressure) to the minimum pressure (diastolic
pressure). As shown in Video V2.2, such pressures are commonly
measured with a mercury manometer. A typical value for this ratio
for a human would be where the pressures are in mm Hg.
(a) What would these pressures be in pascals? (b) If your car tire
was inflated to 120 mm Hg, would it be sufficient for normal driving?

2.5 An unknown immiscible liquid seeps into the bottom of an
open oil tank. Some measurements indicate that the depth of the
unknown liquid is 1.5 m and the depth of the oil (specific
weight floating on top is 5.0 m. A pressure gage
connected to the bottom of the tank reads 65 kPa. What is the
specific gravity of the unknown liquid?

2.6 Bathyscaphes are capable of submerging to great depths in the
ocean. What is the pressure at a depth of 5 km, assuming that
seawater has a constant specific weight of Express
your answer in pascals and psi.

2.7 For the great depths that may be encountered in the ocean the
compressibility of seawater may become an important consideration.
(a) Assume that the bulk modulus for seawater is constant and
derive a relationship between pressure and depth which takes into
account the change in fluid density with depth. (b) Make use of
part (a) to determine the pressure at a depth of 6 km assuming
seawater has a bulk modulus of and a density of

at the surface. Compare this result with that obtained
by assuming a constant density of 

2.8 Sometimes when riding an elevator or driving up or down a
hilly road a person’s ears “pop” as the pressure difference between
the inside and outside of the ear is equalized. Determine the
pressure difference (in psi) associated with this phenomenon if it
occurs during a 150 ft elevation change.

2.9 Develop an expression for the pressure variation in a liquid in
which the specific weight increases with depth, h, as 
where K is a constant and is the specific weight at the free surface.

*2.10 In a certain liquid at rest, measurements of the specific
weight at various depths show the following variation:

g0

g � Kh � g0,

1030 kg�m3.
1030 kg�m3

2.3 � 109 Pa

10.1 kN�m3?

� 8.5 kN�m32

120�70,

The depth corresponds to a free surface at atmospheric pres-
sure. Determine, through numerical integration of Eq. 2.4, the cor-
responding variation in pressure and show the results on a plot of
pressure (in psf) versus depth (in feet).

†2.11 Because of elevation differences, the water pressure in the
second floor of your house is lower than it is in the first floor. For
tall buildings this pressure difference can become unacceptable. Dis-
cuss possible ways to design the water distribution system in very tall
buildings so that the hydrostatic pressure difference is within accept-
able limits.

*2.12 Under normal conditions the temperature of the atmosphere
decreases with increasing elevation. In some situations, however,
a temperature inversion may exist so that the air temperature in-
creases with elevation. A series of temperature probes on a moun-
tain give the elevation–temperature data shown in the table below.
If the barometric pressure at the base of the mountain is 12.1 psia,
determine by means of numerical integration the pressure at the
top of the mountain.

†2.13 Although it is difficult to compress water, the density of
water at the bottom of the ocean is greater than that at the surface
because of the higher pressure at depth. Estimate how much higher
the ocean’s surface would be if the density of seawater were
instantly changed to a uniform density equal to that at the surface.

2.14 (See Fluids in the News article titled “Giraffe’s blood pres-
sure,” Section 2.3.1.) (a) Determine the change in hydrostatic pres-
sure in a giraffe’s head as it lowers its head from eating leaves 6 m
above the ground to getting a drink of water at ground level as
shown in Fig. P2.14. Assume the specific gravity of blood is

. (b) Compare the pressure change calculated in part (a) to
the normal 120 mm of mercury pressure in a human’s heart.
SG � 1

h � 0

h (ft) ( )

0 70
10 76
20 84
30 91
40 97
50 102
60 107
70 110
80 112
90 114

100 115

lb�ft3G

Elevation (ft) Temperature ( )

5000 50.1 1base2
5500 55.2
6000 60.3
6400 62.6
7100 67.0
7400 68.4
8200 70.0
8600 69.5
9200 68.0
9900 67.1 1top2

�F

6 m

Water

F I G U R E  P2.14
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Mercury

Water hw

hm

hm

Section 2.4 Standard Atmosphere

2.15 Assume that a person skiing high in the mountains at an
altitude of 15,000 ft takes in the same volume of air with each
breath as she does while walking at sea level. Determine the ratio
of the mass of oxygen inhaled for each breath at this high altitude
compared to that at sea level.

2.16 Pikes Peak near Denver, Colorado, has an elevation of
14,110 ft. (a) Determine the pressure at this elevation, based on
Eq. 2.12. (b) If the air is assumed to have a constant specific weight
of what would the pressure be at this altitude?
(c) If the air is assumed to have a constant temperature of 
what would the pressure be at this elevation? For all three cases
assume standard atmospheric conditions at sea level (see Table 2.1).

2.17 Equation 2.12 provides the relationship between pressure and
elevation in the atmosphere for those regions in which the
temperature varies linearly with elevation. Derive this equation and
verify the value of the pressure given in Table C.2 in Appendix C
for an elevation of 5 km.

2.18 As shown in Fig. 2.6 for the U.S. standard atmosphere, the
troposphere extends to an altitude of 11 km where the pressure is
22.6 kPa (abs). In the next layer, called the stratosphere, the
temperature remains constant at Determine the pressure
and density in this layer at an altitude of 15 km. Assume

in your calculations. Compare your results with
those given in Table C.2 in Appendix C.

2.19 (See Fluids in the News article titled “Weather, barometers,
and bars,” Section  2.5.) The record low sea-level barometric pres-
sure ever recorded is 25.8 in. of mercury. At what altitude in the
standard atmosphere is the pressure equal to this value?

Section 2.5 Measurement of Pressure

2.20 On a given day, a barometer at the base of the Washington
Monument reads 29.97 in. of mercury. What would the barometer
reading be when you carry it up to the observation deck 500 ft
above the base of the monument?

2.21 Bourdon gages (see Video V2.3 and Fig. 2.13) are commonly
used to measure pressure. When such a gage is attached to the
closed water tank of Fig. P2.21 the gage reads 5 psi. What is the
absolute air pressure in the tank? Assume standard atmospheric
pressure of 14.7 psi.

g � 9.77 m�s2

�56.5 °C.

59 °F,
0.07647 lb�ft3,

2.22 On the suction side of a pump a Bourdon pressure gage reads
40 kPa vacuum. What is the corresponding absolute pressure if the
local atmospheric pressure is 100 kPa (abs)?

Section 2.6 Manometry

2.23 Obtain a photograph/image of a situation in which the use of
a manometer is important. Print this photo and write a brief
paragraph that describes the situation involved.

2.24 A water-filled U-tube manometer is used to measure the pressure
inside a tank that contains air. The water level in the U-tube on the side
that connects to the tank is 5 ft above the base of the tank. The water
level in the other side of the U-tube (which is open to the atmosphere)
is 2 ft above the base. Determine the pressure within the tank.

2.25 A barometric pressure of 29.4 in. Hg corresponds to what
value of atmospheric pressure in psia, and in pascals?

2.26 For an atmospheric pressure of 101 kPa (abs) determine the
heights of the fluid columns in barometers containing one of the
following liquids: (a) mercury, (b) water, and (c) ethyl alcohol.
Calculate the heights including the effect of vapor pressure, and
compare the results with those obtained neglecting vapor pressure.
Do these results support the widespread use of mercury for
barometers? Why?

2.27 A mercury manometer is connected to a large reservoir of
water as shown in Fig. P2.27. Determine the ratio, hw �hm, of the
distances hw and hm indicated in the figure.

F I G U R E  P2.21

Air

Water
15 20

25

30

35
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5

0

12 in.

Bourdon gage

6 in.

2.28 A U-tube manometer is connected to a closed tank containing
air and water as shown in Fig. P2.28. At the closed end of the
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gage

Air

Water

Air pressure = 16 psia

Gage fluid
(   = 90 lb/ ft3)γ

Closed valve

4 ft

2 ft



manometer the air pressure is 16 psia. Determine the reading on the
pressure gage for a differential reading of 4 ft on the manometer.
Express your answer in psi (gage). Assume standard atmospheric
pressure and neglect the weight of the air columns in the manometer.

2.29 A closed cylindrical tank filled with water has a hemispherical
dome and is connected to an inverted piping system as shown in Fig.
P2.29. The liquid in the top part of the piping system has a specific
gravity of 0.8, and the remaining parts of the system are filled with
water. If the pressure gage reading at A is 60 kPa, determine: (a) the
pressure in pipe B, and (b) the pressure head, in millimeters of
mercury, at the top of the dome (point C).

the tank is oil . The pressure at point A is 2.00 psi.
Determine: (a) the depth of oil, z, and (b) the differential reading, h,
on the manometer.

2.32 For the inclined-tube manometer of Fig. P2.32 the pressure
in pipe A is 0.6 psi. The fluid in both pipes A and B is water, and
the gage fluid in the manometer has a specific gravity of 2.6. What
is the pressure in pipe B corresponding to the differential reading
shown?

1g � 54.0 lb�ft32

2.33 A flowrate measuring device is installed in a horizontal
pipe through which water is flowing. A U-tube manometer is
connected to the pipe through pressure taps located 3 in. on either
side of the device. The gage fluid in the manometer has a specific
weight of . Determine the differential reading of the
manometer corresponding to a pressure drop between the taps
of 

2.34 Small differences in gas pressures are commonly measured
with a micromanometer of the type illustrated in Fig. P2.34. This
device consists of two large reservoirs each having a cross-
sectional area which are filled with a liquid having a specific
weight and connected by a U-tube of cross-sectional area
containing a liquid of specific weight When a differential gas
pressure, is applied, a differential reading, h, develops.
It is desired to have this reading sufficiently large (so that it can
be easily read) for small pressure differentials. Determine the
relationship between h and when the area ratio is
small, and show that the differential reading, h, can be magnified
by making the difference in specific weights, small.
Assume that initially (with ) the fluid levels in the two
reservoirs are equal.

p1 � p2

g2 � g1,

At�Arp1 � p2

p1 � p2,
g2.

Atg1

Ar

0.5 lb/in.2.

112 lb/ft3

2.35 The cyclindrical tank with hemispherical ends shown in Fig.
P2.35 contains a volatile liquid and its vapor. The liquid density is

and its vapor density is negligible. The pressure in the
vapor is 120 kPa (abs), and the atmospheric pressure is 101 kPa
(abs). Determine: (a) the gage pressure reading on the pressure
gage; and (b) the height, h, of the mercury manometer.

800 kg�m3,
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60 kPa
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2 m

4 m

3 m

3 m

SG = 0.8

Water

Hemispherical dome

C

A

2.30 Two pipes are connected by a manometer as shown in Fig.
P2.30. Determine the pressure difference, between the pipes.pA � pB,

2.31 A U-tube manometer is connected to a closed tank as shown in
Fig. P2.31. The air pressure in the tank is 0.50 psi and the liquid in

Gage fluid
(SG = 2.6)

1.3 m

0.5 m

0.6 m

Water

Water

B

A
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2.36 Determine the elevation difference, between the water
levels in the two open tanks shown in Fig. P2.36.

¢h,

2.37 For the configuration shown in Fig. P2.37 what must be the
value of the specific weight of the unknown fluid? Express your
answer in .lb/ft3

2.38 An air-filled, hemispherical shell is attached to the ocean
floor at a depth of 10 m as shown in Fig. P2.38. A mercury
barometer located inside the shell reads 765 mm Hg, and a
mercury U-tube manometer designed to give the outside water
pressure indicates a differential reading of 735 mm Hg as
illustrated. Based on these data what is the atmospheric pressure
at the ocean surface?

*2.39 Both ends of the U-tube mercury manometer of Fig. P2.39
are initially open to the atmosphere and under standard atmospheric
pressure. When the valve at the top of the right leg is open, the level
of mercury below the valve is After the valve is closed, air pressure
is applied to the left leg. Determine the relationship between the
differential reading on the manometer and the applied gage pressure,

Show on a plot how the differential reading varies with for
50, 75, and 100 mm over the range 

Assume that the temperature of the trapped air remains constant.
0 pg 300 kPa.hi 25,

pgpg.

hi.
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2.40 The inverted U-tube manometer of Fig. P2.40 contains oil
and water as shown. The pressure differential between

pipes A and B, is . Determine the differential
reading, h.

5 kPapA pB,
1SG 0.92

F I G U R E  P2.40

A

Water

Oil

h
0.2 m

0.3 m

B

2.41 An inverted U-tube manometer containing oil (SG  0.8) is
located between two reservoirs as shown in Fig. P2.41. The



reservoir on the left, which contains carbon tetrachloride, is closed
and pressurized to 8 psi. The reservoir on the right contains water
and is open to the atmosphere. With the given data, determine the
depth of water, h, in the right reservoir.

2.42 Determine the pressure of the water in pipe A shown in Fig.
P2.42 if the gage pressure of the air in the tank is 2 psi.

2.43 In Fig. P2.43 pipe A contains gasoline , pipe B
contains oil , and the manometer fluid is mercury.
Determine the new differential reading if the pressure in pipe A is
decreased 25 kPa, and the pressure in pipe B remains constant. The
initial differential reading is 0.30 m as shown.

1SG � 0.92
1SG � 0.72

2.44 The inclined differential manometer of Fig. P2.44 contains
carbon tetrachloride. Initially the pressure differential between
pipes A and B, which contain a brine is zero as
illustrated in the figure. It is desired that the manometer give a
differential reading of 12 in. (measured along the inclined tube)
for a pressure differential of 0.1 psi. Determine the required angle
of inclination, u.

1SG � 1.12,

2.45 Determine the new differential reading along the inclined leg
of the mercury manometer of Fig. P2.45, if the pressure in pipe A
is decreased 10 kPa and the pressure in pipe B remains unchanged.
The fluid in A has a specific gravity of 0.9 and the fluid in B is
water.

2.46 Determine the change in the elevation of the mercury in the
left leg of the manometer of Fig. P2.46 as a result of an increase
in pressure of 5 psi in pipe A while the pressure in pipe B remains
constant.

2.47 The U-shaped tube shown in Fig. P2.47 initially contains
water only. A second liquid with specific weight, , less than water
is placed on top of the water with no mixing occurring. Can the

g
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height, h, of the second liquid be adjusted so that the left and right
levels are at the same height? Provide proof of your answer.

*2.48 An inverted hollow cylinder is pushed into the water as is
shown in Fig. P2.48. Determine the distance, that the water rises
in the cylinder as a function of the depth, d, of the lower edge of the
cylinder. Plot the results for when H is equal to 1 m. As-
sume the temperature of the air within the cylinder remains constant.

0 d H,

/,

Section 2.8 Hydrostatic Force on a Plane Surface (Also
see Lab Problems 2.122, 2.123, 2.124, and 2.125.)

2.49 Obtain a photograph/image of a situation in which the
hydrostatic force on a plane surface is important. Print this photo
and write a brief paragraph that describes the situation involved.

*2.50 A Bourdon gage (see Fig. 2.13 and Video V2.3) is often
used to measure pressure. One way to calibrate this type of gage
is to use the arrangement shown in Fig. P2.50a. The container is
filled with a liquid and a weight, �, placed on one side with the
gage on the other side. The weight acting on the liquid through a
0.4-in.-diameter opening creates a pressure that is transmitted to
the gage. This arrangement, with a series of weights, can be used
to determine what a change in the dial movement, in Fig. P2.50b,
corresponds to in terms of a change in pressure. For a particular
gage, some data are given below. Based on a plot of these data,
determine the relationship between and the pressure, p, where p
is measured in psi.

� (lb) 0 1.04 2.00 3.23 4.05 5.24 6.31
(deg.) 0 20 40 60 80 100 120u

u

u,

2.51 You partially fill a glass with water, place an index card on
top of the glass, and then turn the glass upside down while holding
the card in place. You can then remove your hand from the card
and the card remains in place, holding the water in the glass.
Explain how this works.

2.52 A piston having a cross-sectional area of is located
in a cylinder containing water as shown in Fig. P2.52. An open
U-tube manometer is connected to the cylinder as shown. For

what is the value of the applied
force, P, acting on the piston? The weight of the piston is
negligible.

h1 60 mm and h 100 mm,

0.07 m2

2.53 A 6-in.-diameter piston is located within a cylinder which is
connected to a -diameter inclined-tube manometer as shown in
Fig. P2.53. The fluid in the cylinder and the manometer is oil

When a weight, , is placed on the
top of the cylinder, the fluid level in the manometer tube rises from
point (1) to (2). How heavy is the weight? Assume that the change
in position of the piston is negligible.

w1specific weight 59 lb ft32.

1
2-in.

2.54 A circular 2-m-diameter gate is located on the sloping side
of a swimming pool. The side of the pool is oriented 60  relative
to the horizontal bottom, and the center of the gate is located 
3 m below the water surface. Determine the magnitude of the
water force acting on the gate and the point through which it
acts.

2.55 A vertical rectangular gate is 8 ft wide and 10 ft long and
weighs 6000 lb. The gate slides in vertical slots in the side of a
reservoir containing water. The coefficient of friction between the
slots and the gate is 0.03. Determine the minimum vertical force
required to lift the gate when the water level is 4 ft above the top
edge of the gate.

2.56 A horizontal 2-m-diameter conduit is half filled with a
liquid (SG  1.6) and is capped at both ends with plane vertical
surfaces. The air pressure in the conduit above the liquid surface
is 200 kPa. Determine the resultant force of the fluid acting on
one of the end caps, and locate this force relative to the bottom
of the conduit.

2.57 Forms used to make a concrete basement wall are shown in
Fig. P2.57. Each 4-ft-long form is held together by four ties—two
at the top and two at the bottom as indicated. Determine the tension
in the upper and lower ties. Assume concrete acts as a fluid with
a weight of 150 lb ft3.

2.58 A structure is attached to the ocean floor as shown in Fig.
P2.58. A 2-m-diameter hatch is located in an inclined wall and
hinged on one edge. Determine the minimum air pressure, p1,
within the container that will open the hatch. Neglect the weight
of the hatch and friction in the hinge.
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2.59 A long, vertical wall separates seawater from freshwater. If
the seawater stands at a depth of 7 m, what depth of freshwater is
required to give a zero resultant force on the wall? When the
resultant force is zero will the moment due to the fluid forces be
zero? Explain.

2.60 A pump supplies water under pressure to a large tank as
shown in Fig. P2.60. The circular-plate valve fitted in the short
discharge pipe on the tank pivots about its diameter A–A and is
held shut against the water pressure by a latch at B. Show that the
force on the latch is independent of the supply pressure, p, and the
height of the tank, h.

in Fig. P2.61. Water acts against the gate which is hinged at point
A. Friction in the hinge is negligible. Determine the tension in the
cable.

†2.62 Sometimes it is difficult to open an exterior door of a
building because the air distribution system maintains a pressure
difference between the inside and outside of the building. Estimate
how big this pressure difference can be if it is “not too difficult”
for an average person to open the door.

2.63 An area in the form of an isosceles triangle with a base width
of 6 ft and an altitude of 8 ft lies in the plane forming one wall of
a tank which contains a liquid having a specific weight of

The side slopes upward, making an angle of with
the horizontal. The base of the triangle is horizontal and the vertex
is above the base. Determine the resultant force the fluid exerts on
the area when the fluid depth is 20 ft above the base of the triangu-
lar area. Show, with the aid of a sketch, where the center of pres-
sure is located.

2.64 Solve Problem 2.63 if the isosceles triangle is replaced with
a right triangle having the same base width and altitude as the
isosceles triangle.

2.65 A vertical plane area having the shape shown in Fig. P2.65 is
immersed in an oil bath . Deter-
mine the magnitude of the resultant force acting on one side of the
area as a result of the oil.

1specific weight � 8.75 kN�m32

60°79.8 lb�ft3.
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2.61 A homogeneous, 4-ft-wide, 8-ft-long rectangular gate weigh-
ing 800 lb is held in place by a horizontal flexible cable as shown

2.66 A 3-m-wide, 8-m-high rectangular gate is located at the
end of a rectangular passage that is connected to a large open
tank filled with water as shown in Fig. P2.66. The gate is hinged
at its bottom and held closed by a horizontal force, , located
at the center of the gate. The maximum value for 
(a) Determine the maximum water depth, h, above the center 
of the gate that can exist without the gate opening. (b) Is the 
answer the same if the gate is hinged at the top? Explain your
answer.

FH is 3500 kN.
FH
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2.67 A gate having the cross section shown in Fig. P2.67 closes an
opening 5 ft wide and 4 ft high in a water reservoir. The gate weighs
500 lb and its center of gravity is 1 ft to the left of AC and 2 ft above
BC. Determine the horizontal reaction that is developed on the gate
at C.

2.68 The massless, 4-ft-wide gate shown in Fig. P2.68 pivots
about the frictionless hinge O. It is held in place by the 2000 lb
counterweight, W. Determine the water depth, h.

*2.69 A 200-lb homogeneous gate of 10-ft width and 5-ft
length is hinged at point A and held in place by a 12-ft-long
brace as shown in Fig. P2.69. As the bottom of the brace is
moved to the right, the water level remains at the top of the
gate. The line of action of the force that the brace exerts on the
gate is along the brace. (a) Plot the magnitude of the force
exerted on the gate by the brace as a function of the angle of
the gate, (b) Repeat the calculations for the
case in which the weight of the gate is negligible. Comment on
the results as uS 0.

u, for 0 � u � 90°.

2.70 An open tank has a vertical partition and on one side contains
gasoline with a density at a depth of 4 m, as shown
in Fig. P2.70. A rectangular gate that is 4 m high and 2 m wide and
hinged at one end is located in the partition. Water is slowly added
to the empty side of the tank. At what depth, h, will the gate start to
open?

r � 700 kg�m3

2.71 A 4-ft by 3-ft massless rectangular gate is used to close the
end of the water tank shown in Fig. P2.71. A 200 lb weight attached
to the arm of the gate at a distance from the frictionless hinge is
just sufficient to keep the gate closed when the water depth is 2 ft,
that is, when the water fills the semicircular lower portion of the
tank. If the water were deeper the gate would open. Determine the
distance ./

/

2.72 A rectangular gate that is 2 m wide is located in the vertical
wall of a tank containing water as shown in Fig. P2.72. It is desired
to have the gate open automatically when the depth of water above
the top of the gate reaches 10 m. (a) At what distance, d, should the
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frictionless horizontal shaft be located? (b) What is the magnitude
of the force on the gate when it opens?

2.73 A thin 4-ft-wide, right-angle gate with negligible mass is free
to pivot about a frictionless hinge at point O, as shown in Fig.
P2.73. The horizontal portion of the gate covers a 1-ft-diameter
drain pipe which contains air at atmospheric pressure. Determine
the minimum water depth, h, at which the gate will pivot to allow
water to flow into the pipe.

contains a spout that is closed by a 6-in.-diameter circular gate
that is hinged along one side as illustrated. The horizontal axis of
the hinge is located 10 ft below the water surface. Determine the
minimum torque that must be applied at the hinge to hold the
gate shut. Neglect the weight of the gate and friction at the hinge.

2.77 A 4-ft-tall, 8-in.-wide concrete (150 lb�ft3) retaining wall is
built as shown in Fig. P2.77. During a heavy rain, water fills the
space between the wall and the earth behind it to a depth h. Deter-
mine the maximum depth of water possible without the wall tipping
over. The wall simply rests on the ground without being anchored
to it.

2.79 (See Fluids in the News article titled “The Three Gorges
Dam,” Section 2.8.) (a) Determine the horizontal hydrostatic force
on the 2309-m-long Three Gorges Dam when the average depth of
the water against it is 175 m. (b) If all of the 6.4 billion people on
Earth were to push horizontally against the Three Gorges Dam,
could they generate enough force to hold it in place? Support your
answer with appropriate calculations.

Section 2.10 Hydrostatic Force on a Curved Surface

2.80 Obtain a photograph/image of a situation in which the
hydrostatic force on a curved surface is important. Print this
photo and write a brief paragraph that describes the situation
involved.
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2.74 An open rectangular tank is 2 m wide and 4 m long. The
tank contains water to a depth of 2 m and oil on top of
the water to a depth of 1 m. Determine the magnitude and location
of the resultant fluid force acting on one end of the tank.

*2.75 An open rectangular settling tank contains a liquid suspen-
sion that at a given time has a specific weight that varies
approximately with depth according to the following data:

The depth corresponds to the free surface. Determine, by
means of numerical integration, the magnitude and location of the
resultant force that the liquid suspension exerts on a vertical wall of
the tank that is 6 m wide. The depth of fluid in the tank is 3.6 m.

2.76 The closed vessel of Fig. P2.76 contains water with an air
pressure of 10 psi at the water surface. One side of the vessel

h � 0

1SG � 0.82

h (m) ( )

0 10.0
0.4 10.1
0.8 10.2
1.2 10.6
1.6 11.3
2.0 12.3
2.4 12.7
2.8 12.9
3.2 13.0
3.6 13.1

N�m3G

*2.78 Water backs up behind a concrete dam as shown in
Fig. P2.78. Leakage under the foundation gives a pressure distribu-
tion under the dam as indicated. If the water depth, h, is too great,
the dam will topple over about its toe (point A). For the dimensions
given, determine the maximum water depth for the following widths
of the dam: Base your analysis on a
unit length of the dam. The specific weight of the concrete is
150 lb�ft3.

/ � 20, 30, 40, 50, and 60 ft.
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2.85 The air pressure in the top of the 2-liter pop bottle shown in
Video V2.5 and Fig. P2.85 is 40 psi, and the pop depth is 10 in. The
bottom of the bottle has an irregular shape with a diameter of 4.3 in.
(a) If the bottle cap has a diameter of 1 in. what is the magnitude of
the axial force required to hold the cap in place? (b) Determine the
force needed to secure the bottom 2 in. of the bottle to its cylindri-
cal sides. For this calculation assume the effect of the weight of the
pop is negligible. (c) By how much does the weight of the pop in-
crease the pressure 2 in. above the bottom? Assume the pop has the
same specific weight as that of water.

2.86 Hoover Dam (see Video 2.4) is the highest arch-gravity type
of dam in the United States. A cross section of the dam is shown in
Fig. P2.86(a). The walls of the canyon in which the dam is located
are sloped, and just upstream of the dam the vertical plane shown in
Figure P2.86(b) approximately represents the cross section of the
water acting on the dam. Use this vertical cross section to estimate
the resultant horizontal force of the water on the dam, and show
where this force acts.

2.87 A plug in the bottom of a pressurized tank is conical in shape,
as shown in Fig. P2.87. The air pressure is 40 kPa and the liquid inF I G U R E  P2.83
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2.81 A 2-ft-diameter hemispherical plexiglass “bubble” is to be
used as a special window on the side of an above-ground swimming
pool. The window is to be bolted onto the vertical wall of the pool
and faces outward, covering a 2-ft-diameter opening in the wall.
The center of the opening is 4 ft below the surface. Determine the
horizontal and vertical components of the force of the water on the
hemisphere.

2.82 Two round, open tanks containing the same type of fluid rest
on a table top as shown in Fig. P2.82. They have the same bottom
area, A, but different shapes. When the depth, h, of the liquid in
the two tanks is the same, the pressure force of the liquids on the
bottom of the two tanks is the same. However, the force that the
table exerts on the two tanks is different because the weight in each
of the tanks is different. How do you account for this apparent
paradox?

2.83 Two hemispherical shells are bolted together as shown in Fig.
P2.83. The resulting spherical container, which weighs 300 lb, is
filled with mercury and supported by a cable as shown. The
container is vented at the top. If eight bolts are symmetrically located
around the circumference, what is the vertical force that each bolt
must carry?

2.84 The 18-ft-long gate of Fig. P2.84 is a quarter circle and is
hinged at H. Determine the horizontal force, P, required to hold
the gate in place. Neglect friction at the hinge and the weight of
the gate.
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the tank has a specific weight of Determine the magni-
tude, direction, and line of action of the force exerted on the curved
surface of the cone within the tank due to the 40-kPa pressure and
the liquid.

2.88 The homogeneous gate shown in Fig. P2.88 consists of one
quarter of a circular cylinder and is used to maintain a water depth
of 4 m. That is, when the water depth exceeds 4 m, the gate opens
slightly and lets the water flow under it. Determine the weight of
the gate per meter of length.

27 kN�m3.

2.89 The concrete seawall of Fig.
P2.89 has a curved surface and restrains seawater at a depth of 24 ft.
The trace of the surface is a parabola as illustrated. Determine the
moment of the fluid force (per unit length) with respect to an axis
through the toe (point A).

1specific weight � 150 lb�ft32

2.90 A cylindrical tank with its axis horizontal has a diameter of
2.0 m and a length of 4.0 m. The ends of the tank are vertical planes.
A vertical, 0.1-m-diameter pipe is connected to the top of the tank.
The tank and the pipe are filled with ethyl alcohol to a level of 1.5 m
above the top of the tank. Determine the resultant force of the
alcohol on one end of the tank and show where it acts.

2.91 If the tank ends in Problem 2.90 are hemispherical, what is
the magnitude of the resultant horizontal force of the alcohol on
one of the curved ends?

2.92 An open tank containing water has a bulge in its vertical side
that is semicircular in shape as shown in Fig. P2.92. Determine the
horizontal and vertical components of the force that the water ex-
erts on the bulge. Base your analysis on a 1-ft length of the bulge.

2.93 A closed tank is filled with water and has a 4-ft-diameter hemi-
spherical dome as shown in Fig. P2.93. A U-tube manometer is con-
nected to the tank. Determine the vertical force of the water on the
dome if the differential manometer reading is 7 ft and the air pressure
at the upper end of the manometer is 12.6 psi.

2.94 A 3-m-diameter open cylindrical tank contains water and has a
hemispherical bottom as shown in Fig. P2.94. Determine the magni-
tude, line of action, and direction of the force of the water on the
curved bottom.

2.95 Three gates of negligible weight are used to hold back water
in a channel of width b as shown in Fig. P2.95 on the next page. The
force of the gate against the block for gate (b) is R. Determine (in
terms of R) the force against the blocks for the other two gates.

Section 2.11 Buoyancy, Flotation, and Stability

2.96 Obtain a photograph/image of a situation in which
Archimedes’ principle is important. Print this photo and write a
brief paragraph that describes the situation involved.

2.97 A freshly cut log floats with one fourth of its volume pro-
truding above the water surface. Determine the specific weight of
the log.
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2.100 When the Tucurui Dam was constructed in northern
Brazil, the lake that was created covered a large forest of valuable
hardwood trees. It was found that even after 15 years underwater
the trees were perfectly preserved and underwater logging was
started. During the logging process a tree is selected, trimmed,
and anchored with ropes to prevent it from shooting to the surface
like a missile when cut. Assume that a typical large tree can be ap-
proximated as a truncated cone with a base diameter of 8 ft, a top
diameter of 2 ft, and a height of 100 ft. Determine the resultant
vertical force that the ropes must resist when the completely sub-
merged tree is cut. The specific gravity of the wood is approxi-
mately 0.6.

†2.101 Estimate the minimum water depth needed to float a canoe
carrying two people and their camping gear. List all assumptions
and show all calculations.
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2.98 A river barge, whose cross section is approximately rectan-
gular, carries a load of grain. The barge is 28 ft wide and 
90 ft long. When unloaded its draft (depth of submergence) 
is 5 ft, and with the load of grain the draft is 7 ft. Determine:
(a) the unloaded weight of the barge, and (b) the weight of the
grain.

2.99 A tank of cross-sectional area A is filled with a liquid of
specific weight as shown in Fig. P2.99a. Show that when a
cylinder of specific weight and volume V– is floated in the liq-
uid (see Fig. P2.99b), the liquid level rises by an amount
¢h � 1g2 � g12 V��A.

 g2

 g1

2.102 An inverted test tube partially filled with air floats in a plas-
tic water-filled soft drink bottle as shown in Video V2.7 and Fig.
P2.102. The amount of air in the tube has been adjusted so that it
just floats. The bottle cap is securely fastened. A slight squeezing of
the plastic bottle will cause the test tube to sink to the bottom of the
bottle. Explain this phenomenon.

2.103 An irregularly shaped piece of a solid material weighs 8.05 lb
in air and 5.26 lb when completely submerged in water. Determine
the density of the material.

2.104 A  1-m-diameter cylindrical mass, M, is connected to a 2-
m-wide rectangular gate as shown in Fig. P2.104. The gate is to
open when the water level, h, drops below 2.5 m. Determine the
required value for M. Neglect friction at the gate hinge and the
pulley. 

2.105 When a hydrometer (see Fig. P2.105 and Video V2.8) hav-
ing a stem diameter of 0.30 in. is placed in water, the stem pro-
trudes 3.15 in. above the water surface. If the water is replaced with
a liquid having a specific gravity of 1.10, how much of the stem
would protrude above the liquid surface? The hydrometer weighs
0.042 lb.
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2.106 A 2-ft-thick block constructed of wood (SG � 0.6) is sub-
merged in oil (SG � 0.8), and has a 2-ft-thick aluminum (specific
weight � 168 lb�ft3) plate attached to the bottom as indicated in Fig.
P2.106. Determine completely the force required to hold the block
in the position shown. Locate the force with respect to point A.

2.107 (See Fluids in the News article titled “Concrete canoe,”
Section 2.11.1.) How much extra water does a 147-lb concrete ca-
noe displace compared to an ultralightweight 38-lb Kevlar canoe of
the same size carrying the same load?

2.108 An iceberg (specific gravity 0.917) floats in the ocean (spe-
cific gravity 1.025). What percent of the volume of the iceberg is
under water?

Section 2.12 Pressure Variation in a Fluid 
with Rigid-Body Motion

2.109 Obtain a photograph/image of a situation in which the pres-
sure variation in a fluid with rigid-body motion is involved. Print
this photo and write a brief paragraph that describes the situation
involved.

2.110 It is noted that while stopping, the water surface in a glass of
water sitting in the cup holder of a car is slanted at an angle of 15º
relative to the horizontal street. Determine the rate at which the car
is decelerating.

2.111 An open container of oil rests on the flatbed of a truck that
is traveling along a horizontal road at As the truck slows
uniformly to a complete stop in 5 s, what will be the slope of the oil
surface during the period of constant deceleration?

2.112 A 5-gal, cylindrical open container with a bottom area of
is filled with glycerin and rests on the floor of an elevator.

(a) Determine the fluid pressure at the bottom of the container
when the elevator has an upward acceleration of (b) What
resultant force does the container exert on the floor of the elevator
during this acceleration? The weight of the container is negligible.
(Note: )

2.113 An open rectangular tank 1 m wide and 2 m long contains
gasoline to a depth of 1 m. If the height of the tank sides is 1.5 m,
what is the maximum horizontal acceleration (along the long axis of
the tank) that can develop before the gasoline would begin to spill?

2.114 If the tank of Problem 2.113 slides down a frictionless plane
that is inclined at with the horizontal, determine the angle the
free surface makes with the horizontal.

2.115 A closed cylindrical tank that is 8 ft in diameter and 24 ft
long is completely filled with gasoline. The tank, with its long axis
horizontal, is pulled by a truck along a horizontal surface. Deter-
mine the pressure difference between the ends (along the long axis
of the tank) when the truck undergoes an acceleration of 5 ft�s2.

30°

1 gal � 231 in.3

3 ft�s2.

120 in.2

55 mi�hr.

2.116 The open U-tube of Fig. P2.116 is partially filled with a liq-
uid. When this device is accelerated with a horizontal acceleration
a, a differential reading h develops between the manometer legs
which are spaced a distance apart. Determine the relationship be-
tween a, and h./,

/
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■ Lab Problems

2.122 This problem involves the force needed to open a gate that
covers an opening in the side of a water-filled tank. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

2.117 An open 1-m-diameter tank contains water at a depth of 0.7
m when at rest. As the tank is rotated about its vertical axis the cen-
ter of the fluid surface is depressed. At what angular velocity will
the bottom of the tank first be exposed? No water is spilled from the
tank.

2.118 An open, 2-ft-diameter tank contains water to a depth of 3 ft
when at rest. If the tank is rotated about its vertical axis with an an-
gular velocity of 180 rev�min, what is the minimum height of the
tank walls to prevent water from spilling over the sides?

2.119 A child riding in a car holds a string attached to a floating,
helium-filled balloon. As the car decelerates to a stop, the balloon
tilts backwards. As the car makes a right-hand turn, the balloon
tilts to the right. On the other hand, the child tends to be forced
forward as the car decelerates and to the left as the car makes a
right-hand turn. Explain these observed effects on the balloon and
child.

2.120 A closed, 0.4-m-diameter cylindrical tank is completely
filled with oil and rotates about its vertical longitudinal
axis with an angular velocity of Determine the difference
in pressure just under the vessel cover between a point on the cir-
cumference and a point on the axis.

2.121 (See Fluids in the News article titled “Rotating mercury
mirror telescope,” Section 2.12.2.) The largest liquid mirror tele-
scope uses a 6-ft-diameter tank of mercury rotating at 7 rpm to pro-
duce its parabolic-shaped mirror as shown in Fig. P2.121. Deter-
mine the difference in elevation of the mercury, , between the
edge and the center of the mirror.

¢h

40 rad�s.
1SG � 0.92
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2.123 This problem involves the use of a cleverly designed appa-
ratus to investigate the hydrostatic pressure force on a submerged
rectangle. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

2.124 This problem involves determining the weight needed to hold
down an open-bottom box that has slanted sides when the box is filled
with water. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

2.125 This problem involves the use of a pressurized air pad to
provide the vertical force to support a given load. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

■ Life Long Learning Problems

2.126 Although it is relatively easy to calculate the net hydrostatic
pressure force on a dam, it is not necessarily easy to design and
construct an appropriate, long-lasting, inexpensive dam. In fact, in-
spection of older dams has revealed that many of them are in peril
of collapse unless corrective action is soon taken. Obtain informa-
tion about the severity of the poor conditions of older dams
throughout the country. Summarize your findings in a brief report.

2.127 Over the years the demand for high-quality, first-growth
timber has increased dramatically. Unfortunately, most of the trees
that supply such lumber have already been harvested. Recently,
however, several companies have started to reclaim the numerous
high-quality logs that sank in lakes and oceans during the logging
boom times many years ago. Many of these logs are still in excel-
lent condition. Obtain information, particularly that associated with
the use of fluid mechanics concepts, about harvesting sunken logs.
Summarize your findings in a brief report.

2.128 Liquid-filled manometers and Bourdon tube pressure gages
have been the mainstay for measuring pressure for many, many
years. However, for many modern applications, these tried-and-true
devices are not sufficient. For example, many new uses need small,
accurate, inexpensive pressure transducers with digital outputs.
Obtain information about some of the new concepts used for pres-
sure measurement. Summarize your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam question for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.


