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CHAPTER OPENING PHOTO: Flow past a blunt body: On any object placed in a moving fluid there is a stag-
nation point on the front of the object where the velocity is zero. This location has a relatively large pres-
sure and divides the flow field into two portions—one flowing to the left, and one flowing to the right of
the body. 1Dye in water.2 1Photograph by B. R. Munson.2

Lear n in g  Ob je c t ive s

After completing this chapter, you should be able to:

■ discuss the application of Newton’s second law to fluid flows.

■ explain the development, uses, and limitations of the Bernoulli equation.

■ use the Bernoulli equation (stand-alone or in combination with the continuity
equation) to solve simple flow problems.

■ apply the concepts of static, stagnation, dynamic, and total pressures.

■ calculate various flow properties using the energy and hydraulic grade lines.

In this chapter we investigate some typical fluid motions (fluid dynamics) in an elementary way.
We will discuss in some detail the use of Newton’s second law (F  ma) as it is applied to fluid
particle motion that is “ideal” in some sense. We will obtain the celebrated Bernoulli equation
and apply it to various flows. Although this equation is one of the oldest in fluid mechanics and
the assumptions involved in its derivation are numerous, it can be used effectively to predict and
analyze a variety of flow situations. However, if the equation is applied without proper respect
for its restrictions, serious errors can arise. Indeed, the Bernoulli equation is appropriately called
“the most used and the most abused equation in fluid mechanics.”

A thorough understanding of the elementary approach to fluid dynamics involved in this chap-
ter will be useful on its own. It also provides a good foundation for the material in the following
chapters where some of the present restrictions are removed and “more nearly exact” results are
presented.
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As a fluid particle moves from one location to another, it usually experiences an acceleration or de-
celeration. According to Newton’s second law of motion, the net force acting on the fluid particle
under consideration must equal its mass times its acceleration,

In this chapter we consider the motion of inviscid fluids. That is, the fluid is assumed to have zero
viscosity. If the viscosity is zero, then the thermal conductivity of the fluid is also zero and there
can be no heat transfer 1except by radiation2.

In practice there are no inviscid fluids, since every fluid supports shear stresses when it is
subjected to a rate of strain displacement. For many flow situations the viscous effects are rela-
tively small compared with other effects. As a first approximation for such cases it is often possi-
ble to ignore viscous effects. For example, often the viscous forces developed in flowing water
may be several orders of magnitude smaller than forces due to other influences, such as gravity or
pressure differences. For other water flow situations, however, the viscous effects may be the dom-
inant ones. Similarly, the viscous effects associated with the flow of a gas are often negligible, al-
though in some circumstances they are very important.

We assume that the fluid motion is governed by pressure and gravity forces only and exam-
ine Newton’s second law as it applies to a fluid particle in the form:

The results of the interaction between the pressure, gravity, and acceleration provide numerous use-
ful applications in fluid mechanics.

To apply Newton’s second law to a fluid 1or any other object2, we must define an appropri-
ate coordinate system in which to describe the motion. In general the motion will be three-
dimensional and unsteady so that three space coordinates and time are needed to describe it. There
are numerous coordinate systems available, including the most often used rectangular and
cylindrical systems shown by the figure in the margin. Usually the specific flow geometry
dictates which system would be most appropriate.

In this chapter we will be concerned with two-dimensional motion like that confined to the
x–z plane as is shown in Fig. 3.1a. Clearly we could choose to describe the flow in terms of the
components of acceleration and forces in the x and z coordinate directions. The resulting equations
are frequently referred to as a two-dimensional form of the Euler equations of motion in rectan-
gular Cartesian coordinates. This approach will be discussed in Chapter 6.

As is done in the study of dynamics 1Ref. 12, the motion of each fluid particle is described
in terms of its velocity vector, V, which is defined as the time rate of change of the position of the
particle. The particle’s velocity is a vector quantity with a magnitude 1the speed, 2 and di-
rection. As the particle moves about, it follows a particular path, the shape of which is governed
by the velocity of the particle. The location of the particle along the path is a function of where
the particle started at the initial time and its velocity along the path. If it is steady flow 1i.e., noth-
ing changes with time at a given location in the flow field2, each successive particle that passes
through a given point [such as point 112 in Fig. 3.1a] will follow the same path. For such cases the

V � 0V 0

1r, u, z2
1x, y, z2

1particle mass 2 � 1particle acceleration2
1Net pressure force on a particle 2 � 1net gravity force on particle 2 �

F � ma

3.1 Newton’s Second Law
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path is a fixed line in the x–z plane. Neighboring particles that pass on either side of point 112 fol-
low their own paths, which may be of a different shape than the one passing through 112. The entire
x–z plane is filled with such paths.

For steady flows each particle slides along its path, and its velocity vector is everywhere
tangent to the path. The lines that are tangent to the velocity vectors throughout the flow field
are called streamlines. For many situations it is easiest to describe the flow in terms of the
“streamline” coordinates based on the streamlines as are illustrated in Fig. 3.1b. The particle
motion is described in terms of its distance, along the streamline from some convenient
origin and the local radius of curvature of the streamline, The distance along the
streamline is related to the particle’s speed by and the radius of curvature is related
to the shape of the streamline. In addition to the coordinate along the streamline, s, the coordi-
nate normal to the streamline, n, as is shown in Fig. 3.1b, will be of use.

To apply Newton’s second law to a particle flowing along its streamline, we must write the
particle acceleration in terms of the streamline coordinates. By definition, the acceleration is the
time rate of change of the velocity of the particle, For two-dimensional flow in the x–z
plane, the acceleration has two components—one along the streamline, the streamwise accel-
eration, and one normal to the streamline, the normal acceleration.

The streamwise acceleration results from the fact that the speed of the particle generally
varies along the streamline, For example, in Fig. 3.1a the speed may be at
point 112 and at point 122. Thus, by use of the chain rule of differentiation, the s com-
ponent of the acceleration is given by We have used the
fact that speed is the time rate of change of distance, Note that the streamwise ac-
celeration is the product of the rate of change of speed with distance along the streamline,
and the speed, V. Since can be positive, negative, or zero, the streamwise acceleration
can, therefore, be positive (acceleration), negative (deceleration), or zero (constant speed).

The normal component of acceleration, the centrifugal acceleration, is given in terms of the
particle speed and the radius of curvature of its path. Thus, where both V and may
vary along the streamline. These equations for the acceleration should be familiar from the study
of particle motion in physics 1Ref. 22 or dynamics 1Ref. 12. A more complete derivation and dis-
cussion of these topics can be found in Chapter 4.

Thus, the components of acceleration in the s and n directions, and are given by

(3.1)

where is the local radius of curvature of the streamline, and s is the distance measured along
the streamline from some arbitrary initial point. In general there is acceleration along the stream-
line 1because the particle speed changes along its path, 2 and acceleration normal to the
streamline 1because the particle does not flow in a straight line, 2. Various flows and the ac-
celerations associated with them are shown in the figure in the margin. As discussed in Section
3.6.2, for incompressible flow the velocity is inversely proportional to the streamline spacing.
Hence, converging streamlines produce positive streamwise acceleration. To produce this acceler-
ation there must be a net, nonzero force on the fluid particle.

To determine the forces necessary to produce a given flow 1or conversely, what flow results
from a given set of forces2, we consider the free-body diagram of a small fluid particle as is shown
in Fig. 3.2. The particle of interest is removed from its surroundings, and the reactions of the
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Consider the small fluid particle of size by in the plane of the figure and normal to the
figure as shown in the free-body diagram of Fig. 3.3. Unit vectors along and normal to the stream-
line are denoted by and respectively. For steady flow, the component of Newton’s second law
along the streamline direction, s, can be written as

(3.2)

where represents the sum of the s components of all the forces acting on the particle, which
has mass and is the acceleration in the s direction. Here, is
the particle volume. Equation 3.2 is valid for both compressible and incompressible fluids. That
is, the density need not be constant throughout the flow field.

The gravity force 1weight2 on the particle can be written as where is
the specific weight of the fluid Hence, the component of the weight force in the
direction of the streamline is

If the streamline is horizontal at the point of interest, then and there is no component of
particle weight along the streamline to contribute to its acceleration in that direction.

As is indicated in Chapter 2, the pressure is not constant throughout a stationary fluid  
because of the fluid weight. Likewise, in a flowing fluid the pressure is usually not constant. In gen-
eral, for steady flow, If the pressure at the center of the particle shown in Fig. 3.3 is
denoted as p, then its average value on the two end faces that are perpendicular to the streamline are

and Since the particle is “small,” we can use a one-term Taylor series expansion
for the pressure field 1as was done in Chapter 2 for the pressure forces in static fluids2 to obtain
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surroundings on the particle are indicated by the appropriate forces present, and so forth.
For the present case, the important forces are assumed to be gravity and pressure. Other forces,
such as viscous forces and surface tension effects, are assumed negligible. The acceleration of grav-
ity, g, is assumed to be constant and acts vertically, in the negative z direction, at an angle rela-
tive to the normal to the streamline.
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Thus, if is the net pressure force on the particle in the streamline direction, it follows that

Note that the actual level of the pressure, p, is not important. What produces a net pressure
force is the fact that the pressure is not constant throughout the fluid. The nonzero pressure gradi-
ent, is what provides a net pressure force on the particle. Viscous forces,
represented by are zero, since the fluid is inviscid.

Thus, the net force acting in the streamline direction on the particle shown in Fig. 3.3 is given by

(3.3)

By combining Eqs. 3.2 and 3.3, we obtain the following equation of motion along the streamline
direction:

(3.4)

We have divided out the common particle volume factor, that appears in both the force and
the acceleration portions of the equation. This is a representation of the fact that it is the fluid den-
sity 1mass per unit volume2, not the mass, per se, of the fluid particle that is important.

The physical interpretation of Eq. 3.4 is that a change in fluid particle speed is accomplished
by the appropriate combination of pressure gradient and particle weight along the streamline. For
fluid static situations this balance between pressure and gravity forces is such that no change in
particle speed is produced—the right-hand side of Eq. 3.4 is zero, and the particle remains sta-
tionary. In a flowing fluid the pressure and weight forces do not necessarily balance—the force
unbalance provides the appropriate acceleration and, hence, particle motion.
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The net pressure
force on a particle
is determined by the
pressure gradient.

FIND Determine the pressure variation along the streamline
from point A far in front of the sphere and to
point B on the sphere and VB � 02.1xB � �a

VA � V021xA � �A

Pressure Variation along a StreamlineEXAMPLE 3.1

GIVEN Consider the inviscid, incompressible, steady flow
along the horizontal streamline A–B in front of the sphere of ra-
dius a, as shown in Fig. E3.1a. From a more advanced theory of
flow past a sphere, the fluid velocity along this streamline is

as shown in Fig. E3.1b. 
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Equation 3.4 can be rearranged and integrated as follows. First, we note from Fig. 3.3 that along
the streamline Also, we can write Finally, along the streamline the
value of n is constant so that Hence, as indi-
cated by the figure in the margin, along a given streamline p(s, n) � p(s) and These
ideas combined with Eq. 3.4 give the following result valid along a streamline

This simplifies to

(3.5)

which, for constant acceleration of gravity, can be integrated to give

(3.6)

where C is a constant of integration to be determined by the conditions at some point on the
streamline.
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SOLUTION
This variation is indicated in Fig. E3.1c. It is seen that the pres-
sure increases in the direction of flow from point A
to point B. The maximum pressure gradient occurs
just slightly ahead of the sphere It is the pressure
gradient that slows the fluid down from to as
shown in Fig. E3.1b.

The pressure distribution along the streamline can be obtained
by integrating Eq. 2 from 1gage2 at to pressure p at
location x. The result, plotted in Fig. E3.1d, is

(Ans)

COMMENT The pressure at B, a stagnation point since
is the highest pressure along the streamline 

As shown in Chapter 9, this excess pressure on the front of the
sphere 1i.e., 2 contributes to the net drag force on the
sphere. Note that the pressure gradient and pressure are directly
proportional to the density of the fluid, a representation of the fact
that the fluid inertia is proportional to its mass.
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Since the flow is steady and inviscid, Eq. 3.4 is valid. In addition,
since the streamline is horizontal, and the
equation of motion along the streamline reduces to

(1)

With the given velocity variation along the streamline, the
acceleration term is

where we have replaced s by x since the two coordinates are iden-
tical 1within an additive constant2 along streamline A–B. It follows
that along the streamline. The fluid slows down
from far ahead of the sphere to zero velocity on the “nose” of
the sphere 

Thus, according to Eq. 1, to produce the given motion the
pressure gradient along the streamline is
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Incorrect raindrop shape The incorrect representation that
raindrops are teardrop shaped is found nearly everywhere—
from children’s books, to weather maps on the Weather Chan-
nel. About the only time raindrops possess the typical teardrop
shape is when they run down a windowpane. The actual shape
of a falling raindrop is a function of the size of the drop and re-
sults from a balance between surface tension forces and the air
pressure exerted on the falling drop. Small drops with a radius
less than about 0.5 mm are spherical shaped because the sur-
face tension effect (which is inversely proportional to drop

size) wins over the increased pressure, , caused by the
motion of the drop and exerted on its bottom. With increasing
size, the drops fall faster and the increased pressure causes the
drops to flatten. A 2-mm drop, for example, is flattened into a
hamburger bun shape. Slightly larger drops are actually con-
cave on the bottom. When the radius is greater than about
4 mm, the depression of the bottom increases and the drop
takes on the form of an inverted bag with an annular ring of wa-
ter around its base. This ring finally breaks up into smaller
drops. (See Problem 3.28.)
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For steady, inviscid
flow the sum of cer-
tain pressure, ve-
locity, and
elevation effects is
constant along a
streamline.



In general it is not possible to integrate the pressure term because the density may not be con-
stant and, therefore, cannot be removed from under the integral sign. To carry out this integration we
must know specifically how the density varies with pressure. This is not always easily determined.
For example, for a perfect gas the density, pressure, and temperature are related according to

where R is the gas constant. To know how the density varies with pressure, we must also
know the temperature variation. For now we will assume that the density and specific weight are con-
stant 1incompressible flow2. The justification for this assumption and the consequences of compress-
ibility will be considered further in Section 3.8.1 and more fully in Chapter 11.

With the additional assumption that the density remains constant 1a very good assumption
for liquids and also for gases if the speed is “not too high”2, Eq. 3.6 assumes the following sim-
ple representation for steady, inviscid, incompressible flow.

(3.7)

This is the celebrated Bernoulli equation—a very powerful tool in fluid mechanics. In 1738 Daniel
Bernoulli 11700–17822 published his Hydrodynamics in which an equivalent of this famous equa-
tion first appeared. To use it correctly we must constantly remember the basic assumptions used
in its derivation: 112 viscous effects are assumed negligible, 122 the flow is assumed to be steady,
132 the flow is assumed to be incompressible, 142 the equation is applicable along a streamline. In
the derivation of Eq. 3.7, we assume that the flow takes place in a plane 1the x–z plane2. In gen-
eral, this equation is valid for both planar and nonplanar 1three-dimensional2 flows, provided it is
applied along the streamline.

We will provide many examples to illustrate the correct use of the Bernoulli equation and will
show how a violation of the basic assumptions used in the derivation of this equation can lead to
erroneous conclusions. The constant of integration in the Bernoulli equation can be evaluated if suf-
ficient information about the flow is known at one location along the streamline.

p � 1
2rV

2 � gz � constant along streamline

r � p�RT,
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GIVEN Consider the flow of air around a bicyclist moving
through still air with velocity as is shown in Fig. E3.2.

FIND Determine the difference in the pressure between points
112 and 122.

V0,

SOLUTION

The Bernoulli Equation

the velocity distribution along the streamline, was known.
The Bernoulli equation is a general integration of To
determine knowledge of the detailed velocity distri-
bution is not needed—only the “boundary conditions” at 112 and
122 are required. Of course, knowledge of the value of V along
the streamline is needed to determine the pressure at points
between 112 and 122. Note that if we measure we can de-
termine the speed, As discussed in Section 3.5, this is the
principle upon which many velocity measuring devices are
based.

If the bicyclist were accelerating or decelerating, the flow
would be unsteady 1i.e., constant2 and the above analysis
would be incorrect since Eq. 3.7 is restricted to steady flow.

V0 q

V0.
p2 � p1

p2 � p1,
F � ma.

V1s2,

EXAMPLE 3.2

In a coordinate fixed to the ground, the flow is unsteady as the bi-
cyclist rides by. However, in a coordinate system fixed to the bike,
it appears as though the air is flowing steadily toward the bicyclist
with speed V0. Since use of the Bernoulli equation is restricted to
steady flows, we select the coordinate system fixed to the bike. If
the assumptions of Bernoulli’s equation are valid 1steady, incom-
pressible, inviscid flow2, Eq. 3.7 can be applied as follows along
the streamline that passes through 112 and 122

We consider 112 to be in the free stream so that and 122 to
be at the tip of the bicyclist’s nose and assume that and

1both of which, as is discussed in Section 3.4, are reason-
able assumptions2. It follows that the pressure at 122 is greater than
that at 112 by an amount

(Ans)

COMMENTS A similar result was obtained in Example 3.1
by integrating the pressure gradient, which was known because
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The difference in fluid velocity between two points in a flow field, and can often be
controlled by appropriate geometric constraints of the fluid. For example, a garden hose nozzle
is designed to give a much higher velocity at the exit of the nozzle than at its entrance where it
is attached to the hose. As is shown by the Bernoulli equation, the pressure within the hose must
be larger than that at the exit 1for constant elevation, an increase in velocity requires a decrease
in pressure if Eq. 3.7 is valid2. It is this pressure drop that accelerates the water through the noz-
zle. Similarly, an airfoil is designed so that the fluid velocity over its upper surface is greater 1on
the average2 than that along its lower surface. From the Bernoulli equation, therefore, the aver-
age pressure on the lower surface is greater than that on the upper surface. A net upward force,
the lift, results.

V2,V1
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In this section we will consider application of Newton’s second law in a direction normal to
the streamline. In many flows the streamlines are relatively straight, the flow is essentially
one-dimensional, and variations in parameters across streamlines 1in the normal direction2 can
often be neglected when compared to the variations along the streamline. However, in nu-
merous other situations valuable information can be obtained from considering normal
to the streamlines. For example, the devastating low-pressure region at the center of a tornado
can be explained by applying Newton’s second law across the nearly circular streamlines of
the tornado.

We again consider the force balance on the fluid particle shown in Fig. 3.3 and the figure in
the margin. This time, however, we consider components in the normal direction, and write New-
ton’s second law in this direction as

(3.8)

where represents the sum of n components of all the forces acting on the particle and 
is particle mass. We assume the flow is steady with a normal acceleration where is
the local radius of curvature of the streamlines. This acceleration is produced by the change in di-
rection of the particle’s velocity as it moves along a curved path.

We again assume that the only forces of importance are pressure and gravity. The compo-
nent of the weight 1gravity force2 in the normal direction is

If the streamline is vertical at the point of interest, and there is no component of the par-
ticle weight normal to the direction of flow to contribute to its acceleration in that direction.

If the pressure at the center of the particle is p, then its values on the top and bottom of the
particle are and where Thus, if is the net pressure
force on the particle in the normal direction, it follows that

Hence, the net force acting in the normal direction on the particle shown in Fig 3.3 is given by

(3.9)

By combining Eqs. 3.8 and 3.9 and using the fact that along a line normal to the streamline
1see Fig. 3.32, we obtain the following equation of motion along the normal direction
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The physical interpretation of Eq. 3.10 is that a change in the direction of flow of a fluid
particle 1i.e., a curved path, 2 is accomplished by the appropriate combination of pressure
gradient and particle weight normal to the streamline. A larger speed or density or a smaller radius
of curvature of the motion requires a larger force unbalance to produce the motion. For example,
if gravity is neglected 1as is commonly done for gas flows2 or if the flow is in a horizontal 
plane, Eq. 3.10 becomes

(3.10b)

This indicates that the pressure increases with distance away from the center of curvature
1 is negative since is positive—the positive n direction points toward the “inside”
of the curved streamline2. Thus, the pressure outside a tornado 1typical atmospheric pres-
sure2 is larger than it is near the center of the tornado 1where an often dangerously low
partial vacuum may occur2. This pressure difference is needed to balance the centrifugal
acceleration associated with the curved streamlines of the fluid motion. (See Fig. E6.6a in
Section 6.5.3.)

rV 2 r0p 0n

0p

0n

rV 2

r

1dz dn 02

r 6

3.3 F� ma Normal to a Streamline 101

Weight and/or pres-
sure can produce
curved streamlines.

V3.6 Free vortex

GIVEN Shown in Figs. E3.3a,b are two flow fields with circu-
lar streamlines. The velocity distributions are

for case (a)

and

for case (b)

where V0 is the velocity at 

FIND Determine the pressure distributions, p p(r), for each,
given that p p0 at r r0.

r r0.

V1r2 1V0 r02
r

V1r2 1V0 /r02r

SOLUTION

Pressure Variation Normal to a StreamlineE XAMPLE 3.3

F I G U R E  E3.3

y

r = g n

(a)

V = (V0/r0)r V = (V0r0)/r

y

(b)

xx

We assume the flows are steady, inviscid, and incompressible
with streamlines in the horizontal plane (dz/dn 0). Because the
streamlines are circles, the coordinate n points in a direction op-
posite that of the radial coordinate, ∂/∂n  ∂/∂r, and the radius
of curvature is given by r r. Hence, Eq. 3.9 becomes

For case (a) this gives

whereas for case (b) it gives

For either case the pressure increases as r increases since ∂p/∂r 0.
Integration of these equations with respect to r, starting with a
known pressure p p0 at r r0, gives

(Ans)p p0 1SV2
0 22 3 1r/r022 1 4

0p

0r

S1V0 r022
r3

0p

0r
S1V0 /r022r

0p

0r

SV2

r

for case (a) and

(Ans)

for case (b). These pressure distributions are shown in Fig. E3.3c. 

COMMENT The pressure distributions needed to balance the
centrifugal accelerations in cases (a) and (b) are not the same be-
cause the velocity distributions are different. In fact, for case (a) the

p p0 1rV 2
0 22 31 1r0/r22 4

0 0.5 1 1.5 2 2.5

4

6

2

0

2

4

6

r/r0

(c)

p – p0

 V 0
2/2ρ

(b)

(a)



If we multiply Eq. 3.10 by dn, use the fact that if s is constant, and integrate
across the streamline 1in the n direction2 we obtain

(3.11)

To complete the indicated integrations, we must know how the density varies with pressure and
how the fluid speed and radius of curvature vary with n. For incompressible flow the density is
constant and the integration involving the pressure term gives simply We are still left, how-
ever, with the integration of the second term in Eq. 3.11. Without knowing the n dependence in

and this integration cannot be completed.
Thus, the final form of Newton’s second law applied across the streamlines for steady, in-

viscid, incompressible flow is

(3.12)

As with the Bernoulli equation, we must be careful that the assumptions involved in the derivation
of this equation are not violated when it is used.

p � r  
V 2

r
 dn � gz � constant across the streamline

r � r1s, n2V � V1s, n2

p�r.

 
dp
r
�  

V 2

r
 dn � gz � constant across the streamline

0p�0n � dp�dn
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pressure increases without bound as r→ , whereas for case (b)
the pressure approaches a finite value as r→ . The streamline
patterns are the same for each case, however.

Physically, case (a) represents rigid body rotation (as obtained
in a can of water on a turntable after it has been “spun up”) and

q

q case (b) represents a free vortex (an approximation to a tornado, a
hurricane, or the swirl of water in a drain, the “bathtub vortex”).
See Fig. E6.6 for an approximation of this type of flow.

In the previous two sections, we developed the basic equations governing fluid motion under a
fairly stringent set of restrictions. In spite of the numerous assumptions imposed on these flows,
a variety of flows can be readily analyzed with them. A physical interpretation of the equations
will be of help in understanding the processes involved. To this end, we rewrite Eqs. 3.7 and 3.12
here and interpret them physically. Application of along and normal to the streamline re-
sults in

(3.13)

and

(3.14)

as indicated by the figure in the margin.
The following basic assumptions were made to obtain these equations: The flow is steady

and the fluid is inviscid and incompressible. In practice none of these assumptions is exactly
true.

A violation of one or more of the above assumptions is a common cause for obtaining an
incorrect match between the “real world” and solutions obtained by use of the Bernoulli equa-
tion. Fortunately, many “real-world” situations are adequately modeled by the use of Eqs. 3.13
and 3.14 because the flow is nearly steady and incompressible and the fluid behaves as if it were
nearly inviscid.

The Bernoulli equation was obtained by integration of the equation of motion along the “nat-
ural” coordinate direction of the streamline. To produce an acceleration, there must be an unbalance
of the resultant forces, of which only pressure and gravity were considered to be important. Thus,

p � r  
V 2

r
 dn � gz � constant across the streamline

p � 1
2rV

2 � gz � constant along the streamline

F � ma

3.4 Physical Interpretation

The sum of pres-
sure, elevation, and
velocity effects is
constant across
streamlines.

z

p + r      dn + gz

= constant

V2

g

p +    rV2 + gz

= constant

1
2



there are three processes involved in the flow—mass times acceleration 1the term2, pressure
1the p term2, and weight 1the term2.

Integration of the equation of motion to give Eq. 3.13 actually corresponds to the work-
energy principle often used in the study of dynamics [see any standard dynamics text 1Ref. 12].
This principle results from a general integration of the equations of motion for an object in a way
very similar to that done for the fluid particle in Section 3.2. With certain assumptions, a statement
of the work-energy principle may be written as follows:

The work done on a particle by all forces acting on the particle is equal to the change
of the kinetic energy of the particle.

The Bernoulli equation is a mathematical statement of this principle.
As the fluid particle moves, both gravity and pressure forces do work on the particle. Recall

that the work done by a force is equal to the product of the distance the particle travels times the
component of force in the direction of travel 1i.e., 2. The terms and p in Eq. 3.13
are related to the work done by the weight and pressure forces, respectively. The remaining term,

is obviously related to the kinetic energy of the particle. In fact, an alternate method of de-
riving the Bernoulli equation is to use the first and second laws of thermodynamics 1the energy
and entropy equations2, rather than Newton’s second law. With the appropriate restrictions, the gen-
eral energy equation reduces to the Bernoulli equation. This approach is discussed in Section 5.4.

An alternate but equivalent form of the Bernoulli equation is obtained by dividing each term
of Eq. 3.7 by the specific weight, to obtain

Each of the terms in this equation has the units of energy per weight or length 1feet,
meters2 and represents a certain type of head.

The elevation term, z, is related to the potential energy of the particle and is called the eleva-
tion head. The pressure term, is called the pressure head and represents the height of a column
of the fluid that is needed to produce the pressure p. The velocity term, is the velocity head
and represents the vertical distance needed for the fluid to fall freely 1neglecting friction2 if it is to
reach velocity V from rest. The Bernoulli equation states that the sum of the pressure head, the ve-
locity head, and the elevation head is constant along a streamline.

V 

2�2g,
p�g,

1LF�F � L2

p
g
�

V 2

2g
� z � constant on a streamline

g,

rV 

2�2,

gzwork � F  d

gz
rV 

2�2
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The Bernoulli
equation can be
written in terms of
heights called
heads.

GIVEN Consider the flow of water from the syringe shown in
Fig. E3.4(a). As indicated in Fig. E3.4b, a force, F, applied to the

plunger will produce a pressure greater than atmospheric at point
112 within the syringe. The water flows from the needle, point 122,
with relatively high velocity and coasts up to point 132 at the top of
its trajectory. 

FIND Discuss the energy of the fluid at points 112, 122, and 132 by
using the Bernoulli equation.

Kinetic, Potential, and Pressure EnergyE XAMPLE 3.4

Energy Type

Kinetic Potential Pressure
Point p

1 Small Zero Large
2 Large Small Zero
3 Zero Large Zero

GzR 2�2

g

F

(1)

(2)

(3)

(b)

F I G U R E  E3.4

(a)



A net force is required to accelerate any mass. For steady flow the acceleration can be in-
terpreted as arising from two distinct occurrences—a change in speed along the streamline and
a change in direction if the streamline is not straight. Integration of the equation of motion along
the streamline accounts for the change in speed 1kinetic energy change2 and results in the Bernoulli
equation. Integration of the equation of motion normal to the streamline accounts for the cen-
trifugal acceleration and results in Eq. 3.14.

When a fluid particle travels along a curved path, a net force directed toward the center of cur-
vature is required. Under the assumptions valid for Eq. 3.14, this force may be either gravity or pres-
sure, or a combination of both. In many instances the streamlines are nearly straight so that
centrifugal effects are negligible and the pressure variation across the streamlines is merely hydro-
static 1because of gravity alone2, even though the fluid is in motion.

1r � A 2

1V 2�r2
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If the assumptions 1steady, inviscid, incompressible flow2 of the
Bernoulli equation are approximately valid, it then follows that
the flow can be explained in terms of the partition of the total en-
ergy of the water. According to Eq. 3.13 the sum of the three types
of energy 1kinetic, potential, and pressure2 or heads 1velocity, ele-
vation, and pressure2 must remain constant. The table above indi-
cates the relative magnitude of each of these energies at the three
points shown in the figure.

The motion results in 1or is due to2 a change in the magnitude
of each type of energy as the fluid flows from one location to an-
other. An alternate way to consider this flow is as follows. The

pressure gradient between 112 and 122 produces an acceleration to
eject the water from the needle. Gravity acting on the particle be-
tween 122 and 132 produces a deceleration to cause the water to
come to a momentary stop at the top of its flight.

COMMENT If friction 1viscous2 effects were important,
there would be an energy loss between 112 and 132 and for the given

the water would not be able to reach the height indicated in the
figure. Such friction may arise in the needle 1see Chapter 8 on
pipe flow2 or between the water stream and the surrounding air
1see Chapter 9 on external flow2.

p1

SOLUTION

F l u i d s  i n  t h e  N e w s

Armed with a water jet for hunting Archerfish, known for their
ability to shoot down insects resting on foliage, are like subma-
rine water pistols. With their snout sticking out of the water, they
eject a high-speed water jet at their prey, knocking it onto the wa-
ter surface where they snare it for their meal. The barrel of their
water pistol is formed by placing their tongue against a groove in
the roof of their mouth to form a tube. By snapping shut their
gills, water is forced through the tube and directed with the tip of

their tongue. The archerfish can produce a pressure head within
their gills large enough so that the jet can reach 2 to 3 m. How-
ever, it is accurate to only about 1 m. Recent research has shown
that archerfish are very adept at calculating where their prey will
fall. Within 100 milliseconds (a reaction time twice as fast as a
human’s), the fish has extracted all the information needed to pre-
dict the point where the prey will hit the water. Without further vi-
sual cues it charges directly to that point. (See Problem 3.41.)

GIVEN Water flows in a curved, undulating waterslide as
shown in Fig. E3.5a. As an approximation to this flow, consider

Pressure Variation in a Flowing StreamE XAMPLE 3.5

z
g

(2)

(1)

h2-1

A B

C D
g

Free surface
(p = 0)

n

h4-3

(4)

(3)

^

F I G U R E  E3.5b

F I G U R E  E3.5a (Photo courtesy of
Schlitterbahn® Waterparks.)

The pressure varia-
tion across straight
streamlines is hy-
drostatic.

the inviscid, incompressible, steady flow shown in Fig. E3.5b.
From section A to B the streamlines are straight, while from C to D
they follow circular paths. 

FIND Describe the pressure variation between points 112 and 122
and points 132 and 142.
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With the above assumptions and the fact that for the por-
tion from A to B, Eq. 3.14 becomes

The constant can be determined by evaluating the known variables at
the two locations using and to give

(Ans)

Note that since the radius of curvature of the streamline is infinite,
the pressure variation in the vertical direction is the same as if the
fluid were stationary.

However, if we apply Eq. 3.14 between points 132 and 142we ob-
tain 1using 2

p4 � r �
z4

z3 

 
V 2

r
 1�dz2 � gz4 � p3 � gz3

dn � �dz

p1 � p2 � g1z2 � z12 � p2 � gh2–1

z2 � h2–1p2 � 0 1gage 2, z1 � 0,

p � gz � constant

r � A With and this becomes

(Ans)

To evaluate the integral, we must know the variation of V and 
with z. Even without this detailed information we note that the in-
tegral has a positive value. Thus, the pressure at 132 is less than the
hydrostatic value, by an amount equal to 
This lower pressure, caused by the curved streamline, is neces-
sary to accelerate the fluid around the curved path.

COMMENT Note that we did not apply the Bernoulli equa-
tion 1Eq. 3.132 across the streamlines from 112 to 122 or 132 to 142.
Rather we used Eq. 3.14. As is discussed in Section 3.8, applica-
tion of the Bernoulli equation across streamlines 1rather than
along them2 may lead to serious errors.

r F z4

z3
 1V 2�r2 dz.gh4–3,

r

p3 � gh4–3 � r �
z4

z3

 
V 2

r
 dz

z4 � z3 � h4–3p4 � 0

SOLUTION

A useful concept associated with the Bernoulli equation deals with the stagnation and dynamic pres-
sures. These pressures arise from the conversion of kinetic energy in a flowing fluid into a “pres-
sure rise” as the fluid is brought to rest 1as in Example 3.22. In this section we explore various results
of this process. Each term of the Bernoulli equation, Eq. 3.13, has the dimensions of force per unit
area—psi, The first term, p, is the actual thermodynamic pressure of the fluid as it
flows. To measure its value, one could move along with the fluid, thus being “static” relative to the
moving fluid. Hence, it is normally termed the static pressure. Another way to measure the static
pressure would be to drill a hole in a flat surface and fasten a piezometer tube as indicated by the
location of point 132 in Fig. 3.4. As we saw in Example 3.5, the pressure in the flowing fluid at 112
is the same as if the fluid were static. From the manometer considerations of Chap-
ter 2, we know that Thus, since it follows that 

The third term in Eq. 3.13, is termed the hydrostatic pressure, in obvious regard to the hy-
drostatic pressure variation discussed in Chapter 2. It is not actually a pressure but does represent the
change in pressure possible due to potential energy variations of the fluid as a result of elevation changes.

The second term in the Bernoulli equation, is termed the dynamic pressure. Its in-
terpretation can be seen in Fig. 3.4 by considering the pressure at the end of a small tube inserted
into the flow and pointing upstream. After the initial transient motion has died out, the liquid will
fill the tube to a height of H as shown. The fluid in the tube, including that at its tip, 122, will be
stationary. That is, or point 122 is a stagnation point.

If we apply the Bernoulli equation between points 112 and 122, using and assuming
that we find that

p2 � p1 �
1
2rV

2
1

z1 � z2,
V2 � 0

V2 � 0,

rV 2�2,

gz,
p1 � gh.h3–1 � h4–3 � hp3 � gh4–3.

p1 � gh3–1 � p3,

lb�ft2, N�m2.

3.5 Static, Stagnation, Dynamic, and Total Pressure

Each term in the
Bernoulli equation
can be interpreted
as a form of pres-
sure.

F I G U R E  3.4 Measurement
of static and stagnation pressures.

(1) (2)

(3)

(4)

h3-1

h h4-3

ρ

Open

H

V

V1 = V V2 = 0
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V3.7 Stagnation
point flow

Stagnation point

(a)

Stagnation streamline

(b)

Stagnation point

F I G U R E  3.5 Stagnation points.

Hence, the pressure at the stagnation point is greater than the static pressure, by an amount
the dynamic pressure.

It can be shown that there is a stagnation point on any stationary body that is placed into a
flowing fluid. Some of the fluid flows “over” and some “under” the object. The dividing line 1or sur-
face for two-dimensional flows2 is termed the stagnation streamline and terminates at the stagnation
point on the body. 1See the photograph at the beginning of Chapter 3.2 For symmetrical objects 1such
as a baseball2 the stagnation point is clearly at the tip or front of the object as shown in Fig. 3.5a.
For other flows such as a water jet against a car as shown in Fig. 3.5b, there is also a stagnation point
on the car.

If elevation effects are neglected, the stagnation pressure, is the largest pressure
obtainable along a given streamline. It represents the conversion of all of the kinetic energy into a
pressure rise. The sum of the static pressure, hydrostatic pressure, and dynamic pressure is termed
the total pressure, The Bernoulli equation is a statement that the total pressure remains con-
stant along a streamline. That is,

(3.15)

Again, we must be careful that the assumptions used in the derivation of this equation are appro-
priate for the flow being considered.

p � 1
2rV

2 � gz � pT � constant along a streamline

pT.

p � rV 2�2,

rV 

2
1�2,

p1,

F l u i d s  i n  t h e  N e w s

Pressurized eyes Our eyes need a certain amount of internal pres-
sure in order to work properly, with the normal range being be-
tween 10 and 20 mm of mercury. The pressure is determined by a
balance between the fluid entering and leaving the eye. If the
pressure is above the normal level, damage may occur to the op-
tic nerve where it leaves the eye, leading to a loss of the visual
field termed glaucoma. Measurement of the pressure within the
eye can be done by several different noninvasive types of instru-

ments, all of which measure the slight deformation of the eyeball
when a force is put on it. Some methods use a physical probe that
makes contact with the front of the eye, applies a known force,
and measures the deformation. One noncontact method uses a
calibrated “puff” of air that is blown against the eye. The stagna-
tion pressure resulting from the air blowing against the eyeball
causes a slight deformation, the magnitude of which is correlated
with the pressure within the eyeball. (See Problem 3.29.)

Knowledge of the values of the static and stagnation pressures in a fluid implies that the fluid
speed can be calculated. This is the principle on which the Pitot-static tube is based [H. de Pitot
(1695–1771)]. As shown in Fig. 3.6, two concentric tubes are attached to two pressure gages 1or a
differential gage2 so that the values of and 1or the difference 2 can be determined. The
center tube measures the stagnation pressure at its open tip. If elevation changes are negligible,

p3 � p � 1
2rV

2

p3 � p4p4p3



where p and V are the pressure and velocity of the fluid upstream of point 122. The outer tube is
made with several small holes at an appropriate distance from the tip so that they measure the sta-
tic pressure. If the effect of the elevation difference between 112 and 142 is negligible, then

By combining these two equations we see that

which can be rearranged to give

(3.16)

The actual shape and size of Pitot-static tubes vary considerably. A typical Pitot-static probe used
to determine aircraft airspeed is shown in Fig. 3.7. (See Fig. E3.6a also.)

V � 221 p3 � p42�r

p3 � p4 �
1
2rV

2

p4 � p1 � p
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V

p

(1)

(2)

(4)

(3)

F I G U R E  3.6 The Pitot-static tube.

Pitot-static tubes
measure fluid ve-
locity by converting
velocity into pres-
sure.

(b)

Four static pressure ports

Heated outer case

Stagnation
pressure port

Stagnation pressure fitting

Heater leads

Mounting flange

Static pressure fitting

(a)

F I G U R E  3.7 Airplane
Pitot-static probe. (a) Schematic, (b) Photo-
graph, (Photograph courtesy of SpaceAge
Control, Inc.)

V3.8 Airspeed
indicator
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F l u i d s  i n  t h e  N e w s

Bugged and plugged Pitot tubes Although a Pitot tube is a sim-
ple device for measuring aircraft airspeed, many airplane acci-
dents have been caused by inaccurate Pitot tube readings. Most of
these accidents are the result of having one or more of the holes
blocked and, therefore, not indicating the correct pressure
(speed). Usually this is discovered during takeoff when time to re-
solve the issue is short. The two most common causes for such a
blockage are either that the pilot (or ground crew) has forgotten to
remove the protective Pitot tube cover, or that insects have built

their nest within the tube where the standard visual check cannot
detect it. The most serious accident (in terms of number of fatali-
ties) caused by a blocked Pitot tube involved a Boeing 757 and
occurred shortly after takeoff from Puerto Plata in the Dominican
Republic. The incorrect airspeed data was automatically fed to
the computer, causing the autopilot to change the angle of attack
and the engine power. The flight crew became confused by the
false indications, the aircraft stalled, and then plunged into the
Caribbean Sea killing all aboard. (See Problem 3.30.)

GIVEN An airplane flies 200 miZhr at an elevation of 10,000 ft
in a standard atmosphere as shown in Fig. E3.6a. 

FIND Determine the pressure at point 112 far ahead of the air-
plane, the pressure at the stagnation point on the nose of the
airplane, point 122, and the pressure difference indicated by a Pitot-
static probe attached to the fuselage.

SOLUTION F I G U R E  E3.6a (Photo
courtesy of Hawker Beechcraft.)

F I G U R E  E3.6b

Pitot-Static Tube

It was assumed that the flow is incompressible—the density re-
mains constant from 112 to 122. However, since a change in
pressure 1or temperature2will cause a change in density. For this rel-
atively low speed, the ratio of the absolute pressures is nearly unity

so that
the density change is negligible. However, by repeating the calcula-
tions for various values of the speed, , the results shown in Fig.
E3.6b are obtained. Clearly at the 500 to 600 mph speeds nor-
mally flown by commercial airliners, the pressure ratio is such
that density changes are important. In such situations it is neces-
sary to use compressible flow concepts to obtain accurate results.
1See Section 3.8.1 and Chapter 11.2

V1

3 i.e., p1�p2� 110.11 psia2� 110.11 � 0.524 psia2 � 0.951 4 ,

r � p�RT,

(2)

(1)

Pitot-static tube
V1 = 200 mph

E XAMPLE 3.6

From Table C.1 we find that the static pressure at the altitude
given is

(Ans)

Also, the density is 
If the flow is steady, inviscid, and incompressible and eleva-

tion changes are neglected, Eq. 3.13 becomes

With and 1since the co-
ordinate system is fixed to the airplane2 we obtain

Hence, in terms of gage pressure

(Ans)

Thus, the pressure difference indicated by the Pitot-static tube is

(Ans)

COMMENTS Note that it is very easy to obtain incorrect re-
sults by using improper units. Do not add and Recall
that 1slug�ft32 1ft2�s22 � 1slug # ft�s22� 1ft22 � lb�ft2.

lb�ft2.lb�in.2

p2 � p1 �
rV 2

1

2
� 0.524 psi

p2 � 75.4 lb�ft2 � 0.524 psi

 � 11456 � 75.42 lb�ft2 1abs 2
 p2 � 1456 lb�ft2 � 10.001756 slugs�ft32 12932 ft2�s22�2

V2 � 0V1 � 200 mi�hr � 293 ft�s

p2 � p1 �
rV 2

1

2

r � 0.001756 slug�ft3.

p1 � 1456 lb�ft2 1abs 2 � 10.11 psia
(200 mph, 0.951)

1

0.8

0.6
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0.2

0
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p 1
/p
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The Pitot-static tube provides a simple, relatively inexpensive way to measure fluid speed.
Its use depends on the ability to measure the static and stagnation pressures. Care is needed to
obtain these values accurately. For example, an accurate measurement of static pressure requires
that none of the fluid’s kinetic energy be converted into a pressure rise at the point of



measurement. This requires a smooth hole with no burrs or imperfections. As indicated in
Fig. 3.8, such imperfections can cause the measured pressure to be greater or less than the ac-
tual static pressure.

Also, the pressure along the surface of an object varies from the stagnation pressure at
its stagnation point to values that may be less than the free stream static pressure. A typical
pressure variation for a Pitot-static tube is indicated in Fig. 3.9. Clearly it is important that
the pressure taps be properly located to ensure that the pressure measured is actually the static
pressure.

In practice it is often difficult to align the Pitot-static tube directly into the flow direction. Any
misalignment will produce a nonsymmetrical flow field that may introduce errors. Typically, yaw
angles up to 12 to 1depending on the particular probe design2 give results that are less than 1%
in error from the perfectly aligned results. Generally it is more difficult to measure static pressure
than stagnation pressure.

One method of determining the flow direction and its speed 1thus the velocity2 is to use a di-
rectional-finding Pitot tube as is illustrated in Fig. 3.10. Three pressure taps are drilled into a small
circular cylinder, fitted with small tubes, and connected to three pressure transducers. The cylinder
is rotated until the pressures in the two side holes are equal, thus indicating that the center hole
points directly upstream. The center tap then measures the stagnation pressure. The two side holes
are located at a specific angle so that they measure the static pressure. The speed is
then obtained from 

The above discussion is valid for incompressible flows. At high speeds, compressibility be-
comes important 1the density is not constant2 and other phenomena occur. Some of these ideas are
discussed in Section 3.8, while others 1such as shockwaves for supersonic Pitot-tube applications2
are discussed in Chapter 11.

The concepts of static, dynamic, stagnation, and total pressure are useful in a variety of flow
problems. These ideas are used more fully in the remainder of the book.

V � 321 p2 � p12�r 4 1�2.
1b � 29.5°2

20°
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F I G U R E  3.8 Incor-
rect and correct design of static
pressure taps.

V
p

V
p

V
p

(1)
p1 = p

(1)
p1 < p

(1)
p1 > p

Accurate measure-
ment of static pres-
sure requires great
care.

F I G U R E  3.9 Typical pressure distribution along
a Pitot-static tube.
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F I G U R E  3.10 Cross section
of a directional-finding Pitot-static tube.
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In this section we illustrate various additional applications of the Bernoulli equation. Between any
two points, 112 and 122, on a streamline in steady, inviscid, incompressible flow the Bernoulli equa-
tion can be applied in the form

(3.17)

Obviously if five of the six variables are known, the remaining one can be determined. In many in-
stances it is necessary to introduce other equations, such as the conservation of mass. Such consid-
erations will be discussed briefly in this section and in more detail in Chapter 5.

3.6.1 Free Jets

One of the oldest equations in fluid mechanics deals with the flow of a liquid from a large reservoir.
A modern version of this type of flow involves the flow of coffee from a coffee urn as indicated by
the figure in the margin. The basic principles of this type of flow are shown in Fig. 3.11 where a jet
of liquid of diameter d flows from the nozzle with velocity V . 1A nozzle is a device shaped to ac-
celerate a fluid.2 Application of Eq. 3.17 between points 112 and 122 on the streamline shown gives

We have used the facts that the reservoir is large and open to the atmos-
phere and the fluid leaves as a “free jet” Thus, we obtain

(3.18)

which is the modern version of a result obtained in 1643 by Torricelli 11608–16472, an Italian
physicist.

The fact that the exit pressure equals the surrounding pressure can be seen by ap-
plying as given by Eq. 3.14, across the streamlines between 122 and 142. If the streamlines
at the tip of the nozzle are straight it follows that Since 142 is on the surface of
the jet, in contact with the atmosphere, we have Thus, also. Since 122 is an arbi-
trary point in the exit plane of the nozzle, it follows that the pressure is atmospheric across this
plane. Physically, since there is no component of the weight force or acceleration in the normal
1horizontal2 direction, the pressure is constant in that direction.

Once outside the nozzle, the stream continues to fall as a free jet with zero pressure throughout
and as seen by applying Eq. 3.17 between points 112 and 152, the speed increases according to

where H is the distance the fluid has fallen outside the nozzle.
Equation 3.18 could also be obtained by writing the Bernoulli equation between points 132

and 142 using the fact that Also, since it is far from the nozzle, and from
hydrostatics, p3 � g1h � /2.

V3 � 0z4 � 0, z3 � /.

V � 12g 1h � H2
1p5 � 02

p2 � 0p4 � 0.
p2 � p4.1r � A 2,

F � ma,
1 p2 � 02

V � B2 
gh
r
� 12gh

1p2 � 02.1p1 � 0 gage 2,
1V1 � 02z1 � h, z2 � 0,

gh � 1
2rV

2

p1 �
1
2rV

2
1 � gz1 � p2 �

1
2rV

2
2 � gz2

3.6 Examples of Use of the Bernoulli Equation

V

F I G U R E  3.11
Vertical flow from a tank.

(2) (4)

(1)

(3)

V

d

(5)

 H

�

h z

(2)

V3.9 Flow from a
tank

The exit pressure
for an incompress-
ible fluid jet is
equal to the sur-
rounding pressure.



As learned in physics or dynamics and illustrated in the figure in the margin, any object
dropped from rest that falls through a distance h in a vacuum will obtain the speed 
the same as the water leaving the spout of the watering can shown in the figure in the margin. This
is consistent with the fact that all of the particle’s potential energy is converted to kinetic energy,
provided viscous 1friction2 effects are negligible. In terms of heads, the elevation head at point 112
is converted into the velocity head at point 122. Recall that for the case shown in Fig. 3.11 the pres-
sure is the same 1atmospheric2 at points 112 and 122.

For the horizontal nozzle of Fig. 3.12a, the velocity of the fluid at the centerline, will be
slightly greater than that at the top, and slightly less than that at the bottom, due to the dif-
ferences in elevation. In general, as shown in Fig. 3.12b and we can safely use the center-
line velocity as a reasonable “average velocity.”

If the exit is not a smooth, well-contoured nozzle, but rather a flat plate as shown in Fig. 3.13,
the diameter of the jet, will be less than the diameter of the hole, This phenomenon, called
a vena contracta effect, is a result of the inability of the fluid to turn the sharp corner indi-
cated by the dotted lines in the figure.

Since the streamlines in the exit plane are curved the pressure across them is
not constant. It would take an infinite pressure gradient across the streamlines to cause the
fluid to turn a “sharp” corner The highest pressure occurs along the centerline at 122
and the lowest pressure, is at the edge of the jet. Thus, the assumption of uni-
form velocity with straight streamlines and constant pressure is not valid at the exit plane. It
is valid, however, in the plane of the vena contracta, section a–a. The uniform velocity as-
sumption is valid at this section provided as is discussed for the flow from the nozzle
shown in Fig. 3.12.

The vena contracta effect is a function of the geometry of the outlet. Some typical configu-
rations are shown in Fig. 3.14 along with typical values of the experimentally obtained contrac-
tion coefficient, where and are the areas of the jet at the vena contracta and the
area of the hole, respectively.

AhAjCc � Aj�Ah,

dj � h,

p1 � p3 � 0,
1r � 02.

1r 6 A 2,

90°
dh.dj,

d � h
V3,V1,

V2,

V � 12gh,
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V = 0

V =  2gh

h

h

(1)

(2)
V = √2gh

F I G U R E  3.12 Horizontal flow from a tank. F I G U R E  3.13 Vena 
contracta effect for a sharp-edged orifice.

h
d

(1)

(2)

(3)

(a)

dj

dh
(2)

(1)

(3)
a

a

h

d

(b)
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Cotton candy, glass wool, and steel wool Although cotton candy
and glass wool insulation are made of entirely different materials
and have entirely different uses, they are made by similar processes.
Cotton candy, invented in 1897, consists of sugar fibers. Glass wool,
invented in 1938, consists of glass fibers. In a cotton candy machine,
sugar is melted and then forced by centrifugal action to flow through
numerous tiny orifices in a spinning “bowl.” Upon emerging, the
thin streams of liquid sugar cool very quickly and become solid
threads that are collected on a stick or cone. Making glass wool in-

sulation is somewhat more complex, but the basic process is similar.
Liquid glass is forced through tiny orifices and emerges as very fine
glass streams that quickly solidify. The resulting intertwined flexible
fibers, glass wool, form an effective insulation material because the
tiny air “cavities” between the fibers inhibit air motion. Although
steel wool looks similar to cotton candy or glass wool, it is made by
an entirely different process. Solid steel wires are drawn over special
cutting blades which have grooves cut into them so that long, thin
threads of steel are peeled off to form the matted steel wool.

The diameter of a
fluid jet is often
smaller than that of
the hole from
which it flows.



3.6.2 Confined Flows

In many cases the fluid is physically constrained within a device so that its pressure cannot be pre-
scribed a priori as was done for the free jet examples above. Such cases include nozzles and pipes
of variable diameter for which the fluid velocity changes because the flow area is different from
one section to another. For these situations it is necessary to use the concept of conservation of
mass 1the continuity equation2 along with the Bernoulli equation. The derivation and use of this
equation are discussed in detail in Chapters 4 and 5. For the needs of this chapter we can use a
simplified form of the continuity equation obtained from the following intuitive arguments. Con-
sider a fluid flowing through a fixed volume 1such as a syringe2 that has one inlet and one outlet
as shown in Fig. 3.15a. If the flow is steady so that there is no additional accumulation of fluid
within the volume, the rate at which the fluid flows into the volume must equal the rate at which
it flows out of the volume 1otherwise, mass would not be conserved2.

The mass flowrate from an outlet, 1slugsZs or kgZs2, is given by where Q
is the volume flowrate. If the outlet area is A and the fluid flows across this area 1normal to the area2
with an average velocity V, then the volume of the fluid crossing this area in a time interval is 
equal to that in a volume of length and cross-sectional area A 1see Fig. 3.15b2. Hence, the vol-
ume flowrate 1volume per unit time2 is Thus, To conserve mass, the inflow rate
must equal the outflow rate. If the inlet is designated as 112 and the outlet as 122, it follows that 
Thus, conservation of mass requires

If the density remains constant, then and the above becomes the continuity equation for
incompressible flow

(3.19)

For example, if as shown by the figure in the margin the outlet flow area is one-half the size of the
inlet flow area, it follows that the outlet velocity is twice that of the inlet velocity, since

A1V1 � A2V2, or Q1 � Q2

r1 � r2,

r1A1V1 � r2A2V2

m
#

1 � m
#

2.
m
#
� rVA.Q � VA.

V dt
VA dt,dt

1ft3�s or m3�s2m
#
� rQ,m

#
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dh

dj

CC = 0.61

CC = 0.61
CC = 0.50

CC = 1.0

CC = Aj /Ah = (dj /dh)
2

(a) Knife edge (b) Well rounded

(c) Sharp edge (d) Re-entrant

F I G U R E  3.14 Typical flow patterns and contraction coefficients
for various round exit configurations. (a) Knife edge, (b) Well rounded, (c) Sharp
edge, (d) Re-entrant.

The continuity
equation states that
mass cannot be cre-
ated or destroyed.

A2

Q

V2 = 2V1

V1

A1 = 2A2 (1)



GIVEN A stream of refreshing beverage of diameter d� 0.01 m
flows steadily from the cooler of diameter D � 0.20 m as shown
in Figs. E3.7a and b.

FIND Determine the flowrate, Q, from the bottle into the
cooler if the depth of beverage in the cooler is to remain constant
at h� 0.20 m

Flow from a Tank—GravityE XAMPLE 3.7

3.6 Examples of Use of the Bernoulli Equation 113

V1

(1)

Volume = V1   t A1

V2

(2)

Volume = V2   t A2

Same parcel at t =   tFluid parcel at t = 0

V1   tδ

δ δV2    t

δ

δ

V1

V2

(2)

(1)

F I G U R E  3.15 (a) Flow through a syringe. (b) Steady flow into
and out of a volume.

(a) (b)

d = 0.01 m

h = 0.20 m
D = 0.20 m

(1)

(2)

(3)

Q

1.10

1.05

1.00
0 0.2 0.4 0.6 0.8

d/D

Q/Q0

(c)

(0.05, 1.000003)

F I G U R E  E3.7

The use of the Bernoulli equation and the flowrate equation 1continuity equa-
tion2 is demonstrated by Example 3.7.
V2 � A1V1�A2 � 2V1.



The fact that a kinetic energy change is often accompanied by a change in pressure is shown
by Example 3.8.

114 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

For steady, inviscid, incompressible flow, the Bernoulli equation
applied between points 112 and 122 is

(1)

With the assumptions that and Eq. 1
becomes

(2)

Although the liquid level remains constant 1 constant2, there is an
average velocity, across section 112 because of the flow from the
tank. From Eq. 3.19 for steady incompressible flow, conservation of
mass requires where Thus, or

Hence,

(3)

Equations 1 and 3 can be combined to give

Thus,

(Ans) � 1.56 � 10�4 m3�s

 Q � A1V1 � A2V2 �
p

4
 10.01 m2211.98 m�s2

V2 � B
2gh

1 � 1d�D24 � B
219.81 m�s22 10.20 m2
1 � 10.01 m�0.20 m24

� 1.98 m�s

V1 � a d

D
b

2

V2

p

4
 D2V1 �

p

4
 d2V2

A1V1 � A2V2,Q � AV.Q1 � Q2,

V1,
h �

1
2V 2

1 � gh � 1
2V 2

2

z2 � 0,p1 � p2 � 0, z1 � h,

p1 �
1
2rV

2
1 � gz1 � p2 �

1
2rV

2
2 � gz2

COMMENTS Note that this problem was solved using
points (1) and (2) located at the free surface and the exit of the
pipe, respectively. Although this was convenient (because most
of the variables are known at those points), other points could be
selected and the same result would be obtained. For example,
consider points (1) and (3) as indicated in Fig. E3.7b. At (3), lo-
cated sufficiently far from the tank exit, V3� 0 and z3 � z2 � 0.
Also, p3 � h since the pressure is hydrostatic sufficiently far
from the exit. Use of this information in the Bernoulli equation
applied between (1) and (3) gives the exact same result as ob-
tained using it between (1) and (2). The only difference is that
the elevation head, z1 � h, has been interchanged with the pres-
sure head at (3), p3/  � h. 

In this example we have not neglected the kinetic energy of
the water in the tank If the tank diameter is large com-
pared to the jet diameter Eq. 3 indicates that 
and the assumption that would be reasonable. The error
associated with this assumption can be seen by calculating the
ratio of the flowrate assuming denoted Q, to that as-
suming denoted This ratio, written as

is plotted in Fig. E3.7c. With it follows that
and the error in assuming is less than

1%. For this example with d/D� 0.01 m/0.20 m � 0.05, it follows
that Q/Q0 � 1.000003. Thus, it is often reasonable to assume
V1 � 0.

V1 � 01 6 Q�Q0 � 1.01,
0 6 d�D 6 0.4

Q

Q0
�

V2

V2 0 D�A �
22gh� 31 � 1d�D24 4

22gh
�

1

21 � 1d�D24

Q0.V1 � 0,
V1 q 0,

V1 � 0
V1 � V21D ! d2,

1V1 q 02.

SOLUTION

GIVEN Air flows steadily from a tank, through a hose of di-
ameter and exits to the atmosphere from a nozzle of
diameter as shown in Fig. E3.8. The pressure in the
tank remains constant at 3.0 kPa 1gage2 and the atmospheric con-
ditions are standard temperature and pressure.

FIND Determine the flowrate and the pressure in the hose.

d � 0.01 m
D � 0.03 m,

SOLUTION

Flow from a Tank—Pressure

With the assumption that 1horizontal hose2,
1large tank2, and 1free jet2, this becomes

V3 � B
2p1

r

p3 � 0
V1 � 0z1 � z2 � z3

E XAMPLE 3.8

If the flow is assumed steady, inviscid, and incompressible, we
can apply the Bernoulli equation along the streamline from (1) to
(2) to (3) as

 � p3 �
1
2rV

2
3 � gz3

 p1 �
1
2rV

2
1 � gz1 � p2 �

1
2rV

2
2 � gz2

p1 = 3.0  kPa

(1)
Air

D = 0.03 m

(2) (3)

d = 0.01 m

Q

F I G U R E  E3.8



In many situations the combined effects of kinetic energy, pressure, and gravity are important.
Example 3.9 illustrates this.

3.6 Examples of Use of the Bernoulli Equation 115

and

(1)

The density of the air in the tank is obtained from the perfect gas
law, using standard absolute pressure and temperature, as

Thus, we find that

or

(Ans)

The pressure within the hose can be obtained from Eq. 1 and
the continuity equation 1Eq. 3.192

Hence,

 � a0.01 m

0.03 m
b

2

169.0 m�s2 � 7.67 m�s

 V2 � A3V3 �A2 � a d

D
b

2

V3

A2V2 � A3V3

 � 0.00542 m3�s

 Q � A3 V3 �
p

4
 d 2 V3 �

p

4
 10.01 m22 169.0 m�s2

V3 � B
213.0 � 103 N�m22

1.26 kg�m3 � 69.0 m�s

 � 1.26 kg�m3

�
103 N�kN

1286.9 N ^ m�kg ^ K2 115 � 2732K

 � 3 13.0 � 1012 kN�m2 4
 r �

p1

RT1

p2 � p1 �
1
2rV

2
2

and from Eq. 1

(Ans)

COMMENTS Note that the value of is determined strictly by
the value of 1and the assumptions involved in the Bernoulli equa-
tion2, independent of the “shape” of the nozzle. The pressure head
within the tank,

is converted to the velocity head at the exit,
Although we used gage

pressure in the Bernoulli equation we had to use
absolute pressure in the perfect gas law when calculating the
density.

In the absence of viscous effects the pressure throughout the
hose is constant and equal to Physically, the decreases in
pressure from to to accelerate the air and increase its
kinetic energy from zero in the tank to an intermediate value in
the hose and finally to its maximum value at the nozzle exit.
Since the air velocity in the nozzle exit is nine times that in the
hose, most of the pressure drop occurs across the nozzle

and 
Since the pressure change from 112 to 132 is not too great 

i.e., in terms of absolute pressure 
it follows from the perfect gas law that the density change

is also not significant. Hence, the incompressibility assumption is
reasonable for this problem. If the tank pressure were consider-
ably larger or if viscous effects were important, the above results
would be incorrect.

0.03 4 ,
1p1 � p32�p1 � 3.0�101 �3

p3 � 02.N�m2,1p1 � 3000 N�m2, p2 � 2963

p3p2p1

p2.

1p3 � 02,
169.0 m�s22� 12 � 9.81 m�s22 � 243 m.

V 22�2g �243 m,
p1�g � 13.0 kPa2� 19.81 m�s22 11.26 kg�m32  �

p1

V3

 � 13000 � 37.12N�m2 � 2963 N�m2

 p2 � 3.0 � 103 N�m2 � 1
2 11.26 kg�m32 17.67 m�s22

F l u i d s  i n  t h e  N e w s

Hi-tech inhaler The term inhaler often brings to mind a treat-
ment for asthma or bronchitis. Work is underway to develop a
family of inhalation devices that can do more than treat respira-
tory ailments. They will be able to deliver medication for
diabetes and other conditions by spraying it to reach the blood-
stream through the lungs. The concept is to make the spray
droplets fine enough to penetrate to the lungs’ tiny sacs, the
alveoli, where exchanges between blood and the outside world
take place. This is accomplished by use of a laser-machined
nozzle containing an array of very fine holes that cause the

liquid to divide into a mist of micron-scale droplets. The device
fits the hand and accepts a disposable strip that contains the
medicine solution sealed inside a blister of laminated plastic and
the nozzle. An electrically actuated piston drives the liquid from
its reservoir through the nozzle array and into the respiratory
system. To take the medicine, the patient breathes through the
device and a differential pressure transducer in the inhaler
senses when the patient’s breathing has reached the best condi-
tion for receiving the medication. At that point, the piston is au-
tomatically triggered.

GIVEN Water flows through a pipe reducer as is shown in Fig.
E3.9. The static pressures at 112 and 122 are measured by the in-
verted U-tube manometer containing oil of specific gravity, SG,
less than one.

Flow in a Variable Area PipeE XAMPLE 3.9

FIND Determine the manometer reading, h.



In general, an increase in velocity is accompanied by a decrease in pressure. For example,
the velocity of the air flowing over the top surface of an airplane wing is, on the average, faster
than that flowing under the bottom surface. Thus, the net pressure force is greater on the bottom
than on the top—the wing generates a lift.

If the differences in velocity are considerable, the differences in pressure can also be con-
siderable. For flows of gases, this may introduce compressibility effects as discussed in Section
3.8 and Chapter 11. For flows of liquids, this may result in cavitation, a potentially dangerous sit-
uation that results when the liquid pressure is reduced to the vapor pressure and the liquid “boils.”

As discussed in Chapter 1, the vapor pressure, pv, is the pressure at which vapor bubbles form
in a liquid. It is the pressure at which the liquid starts to boil. Obviously this pressure depends on
the type of liquid and its temperature. For example, water, which boils at at standard
atmospheric pressure, 14.7 psia, boils at if the pressure is 0.507 psia. That is, psia
at and psia at 1See Tables B.1 and B.2.2

One way to produce cavitation in a flowing liquid is noted from the Bernoulli equation. If the
fluid velocity is increased 1for example, by a reduction in flow area as shown in Fig. 3.162 the pres-
sure will decrease. This pressure decrease 1needed to accelerate the fluid through the constriction2
can be large enough so that the pressure in the liquid is reduced to its vapor pressure. A simple ex-
ample of cavitation can be demonstrated with an ordinary garden hose. If the hose is “kinked,” a
restriction in the flow area in some ways analogous to that shown in Fig. 3.16 will result. The water
velocity through this restriction will be relatively large. With a sufficient amount of restriction the
sound of the flowing water will change—a definite “hissing” sound is produced. This sound is a
result of cavitation.

212 °F.pv � 14.780 °F
pv � 0.50780 °F

212 °F
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SOLUTION

COMMENT The difference in elevation, was not
needed because the change in elevation term in the Bernoulli
equation exactly cancels the elevation term in the manometer
equation. However, the pressure difference, depends on
the angle because of the elevation, in Eq. 1. Thus, for a
given flowrate, the pressure difference, as measured by a
pressure gage would vary with but the manometer reading, h,
would be independent of u.

u,
p1 � p2,

z1 � z2,u,
p1 � p2,

z1 � z2,

With the assumptions of steady, inviscid, incompressible flow, the
Bernoulli equation can be written as

The continuity equation 1Eq. 3.192 provides a second relationship
between and if we assume the velocity profiles are uniform
at those two locations and the fluid incompressible:

By combining these two equations we obtain

(1)

This pressure difference is measured by the manometer and can
be determined by using the pressure–depth ideas developed in
Chapter 2. Thus,

or

(2)

As discussed in Chapter 2, this pressure difference is neither
merely nor 

Equations 1 and 2 can be combined to give the desired result
as follows:

or since 

(Ans)h � 1Q�A222 
1 � 1A2�A122
2g11 � SG2

V2 � Q�A2

11 � SG2gh �
1

2
 rV 2

2  c1 � a
A2

A1
b

2

d

g1h � z1 � z22.gh

p1 � p2 � g1z2 � z12 � 11 � SG2gh

p1 � g 1z2 � z12 � g/ � gh � SG gh � g/ � p2

p1 � p2 � g1z2 � z12 � 1
2rV

2
2 31 � 1A2�A122 4

Q � A1V1 � A2V2

V2V1

p1 �
1
2rV

2
1 � gz1 � p2 �

1
2rV

2
2 � gz2

F I G U R E  E3.9

�

γ
(1)

z2 – z1

(2)

Water θ

D1

D2

h

SG

V3.10 Venturi
channel

Cavitation occurs
when the pressure
is reduced to the
vapor pressure.



In such situations boiling occurs 1though the temperature need not be high2, vapor bubbles form,
and then they collapse as the fluid moves into a region of higher pressure 1lower velocity2. This process
can produce dynamic effects 1imploding2 that cause very large pressure transients in the vicinity of the
bubbles. Pressures as large as 100,000 psi 1690 MPa2 are believed to occur. If the bubbles collapse close
to a physical boundary they can, over a period of time, cause damage to the surface in the cavitation
area. Tip cavitation from a propeller is shown in Fig. 3.17. In this case the high-speed rotation of the
propeller produced a corresponding low pressure on the propeller. Obviously, proper design and
use of equipment are needed to eliminate cavitation damage.
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F I G U R E  3.16 Pressure
variation and cavitation in a variable
area pipe.

Q

p

(Absolute
pressure)

(1) (2) (3)

Small Q

Moderate Q

Large Q Incipient cavitation

pv

0 x

Cavitation can
cause damage to
equipment.

F I G U R E  3.17 Tip cavitation from a propeller. (Photograph
courtesy of Garfield Thomas Water Tunnel, Pennsylvania State University.)

GIVEN A liquid can be siphoned from a container as shown in
Fig. E3.10a provided the end of the tube, point (3), is below the
free surface in the container, point (1), and the maximum elevation
of the tube, point (2), is “not too great.” Consider water at 60° F
being siphoned from a large tank through a constant diameter hose

Siphon and CavitationE XAMPLE 3.10

as shown in Fig. E3.10b. The end of the siphon is 5 ft below the
bottom of the tank, and the atmospheric pressure is 14.7 psia.

FIND Determine the maximum height of the hill, H, over which
the water can be siphoned without cavitation occurring.



118 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

SOLUTION

By using the fluid properties listed in Table 1.5 and repeating
the calculations for various fluids, the results shown in
Fig. E3.10c are obtained. The value of H is a function of both the
specific weight of the fluid, , and its vapor pressure, .pvg

If the flow is steady, inviscid, and incompressible we can apply
the Bernoulli equation along the streamline from 112 to 122 to 132 as
follows:

(1)

With the tank bottom as the datum, we have 
and Also, 1large tank2, 1open tank2,

1free jet2, and from the continuity equation or
because the hose is constant diameter, Thus, the speed of
the fluid in the hose is determined from Eq. 1 to be

Use of Eq. 1 between points 112 and 122 then gives the pressure 
at the top of the hill as

(2)

From Table B.1, the vapor pressure of water at is
0.256 psia. Hence, for incipient cavitation the lowest pressure in
the system will be psia. Careful consideration of Eq. 2
and Fig. E3.10b will show that this lowest pressure will occur at
the top of the hill. Since we have used gage pressure at point 112

we must use gage pressure at point 122 also. Thus,
psi and Eq. 2 gives

or

(Ans)

For larger values of H, vapor bubbles will form at point 122 and the
siphon action may stop.

COMMENTS Note that we could have used absolute pres-
sure throughout 1 psia and psia2 and ob-
tained the same result. The lower the elevation of point 132, the
larger the flowrate and, therefore, the smaller the value of H al-
lowed.

We could also have used the Bernoulli equation between 122
and 132, with to obtain the same value of H. In this case
it would not have been necessary to determine by use of the
Bernoulli equation between 112 and 132.

The above results are independent of the diameter and length
of the hose 1provided viscous effects are not important2. Proper
design of the hose 1or pipe2 is needed to ensure that it will not col-
lapse due to the large pressure difference 1vacuum2 between the
inside and outside of the hose.

V2

V2 � V3,

p1 � 14.7p2 � 0.256

H � 28.2 ft

� 162.4 lb�ft32 115 � H2ft � 1
2 11.94 slugs�ft32 135.9 ft�s22

1�14.4 lb�in.22 1144 in.2�ft22
p2 � 0.256 � 14.7 � �14.4
1p1 � 02,

p � 0.256

60 °F

 � g1z1 � z22 � 1
2rV

2
2

 p2 � p1 �
1
2rV

2
1 � gz1 �

1
2rV

2
2 � gz2

p2

 � 35.9 ft�s � V2

 V3 � 22g1z1 � z32 � 22132.2 ft�s22 315 � 1�52 4  ft

V2 � V3.
A2V2 � A3V3,p3 � 0

p1 � 0V1 � 0z3 � �5 ft.
z1 � 15 ft, z2 � H,

 � p3 �
1
2rV

2
3 � gz3

 p1 �
1
2rV

2
1 � gz1 � p2 �

1
2rV

2
2 � gz2

(2)

(3)

(1)

Water

(1)

(2)

(3)
5 ft

H

15 ft
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3.6.3 Flowrate Measurement

Many types of devices using principles involved in the Bernoulli equation have been developed
to measure fluid velocities and flowrates. The Pitot-static tube discussed in Section 3.5 is an
example. Other examples discussed below include devices to measure flowrates in pipes and



conduits and devices to measure flowrates in open channels. In this chapter we will consider
“ideal” flow meters—those devoid of viscous, compressibility, and other “real-world” effects.
Corrections for these effects are discussed in Chapters 8 and 10. Our goal here is to understand
the basic operating principles of these simple flow meters.

An effective way to measure the flowrate through a pipe is to place some type of restric-
tion within the pipe as shown in Fig. 3.18 and to measure the pressure difference between the
low-velocity, high-pressure upstream section 112, and the high-velocity, low-pressure downstream
section 122. Three commonly used types of flow meters are illustrated: the orifice meter, the noz-
zle meter, and the Venturi meter. The operation of each is based on the same physical principles—
an increase in velocity causes a decrease in pressure. The difference between them is a matter of
cost, accuracy, and how closely their actual operation obeys the idealized flow assumptions.

We assume the flow is horizontal steady, inviscid, and incompressible between
points 112 and 122. The Bernoulli equation becomes

1The effect of nonhorizontal flow can be incorporated easily by including the change in elevation,
in the Bernoulli equation.2

If we assume the velocity profiles are uniform at sections 112 and 122, the continuity equation
1Eq. 3.192 can be written as

where is the small flow area at section 122. Combination of these two equations re-
sults in the following theoretical flowrate

(3.20)

Thus, as shown by the figure in the margin, for a given flow geometry and the flowrate
can be determined if the pressure difference, is measured. The actual measured flowrate,

will be smaller than this theoretical result because of various differences between the “real
world” and the assumptions used in the derivation of Eq. 3.20. These differences 1which are quite
consistent and may be as small as 1 to 2% or as large as 40%, depending on the geometry used2 can
be accounted for by using an empirically obtained discharge coefficient as discussed in Section 8.6.1.

Qactual,
p1 � p2,

A221A1

Q � A2 B
21p1 � p22

r 31 � 1A2�A122 4

1A2 6 A12A2

Q � A1V1 � A2V2

z1 � z2,

p1 �
1
2rV

2
1 � p2 �

1
2rV

2
2

1z1 � z22,
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F I G U R E  3.18 Typical devices
for measuring flowrate in pipes.

(1) (2)

(1) (2)

Venturi

Nozzle

Orifice

The flowrate varies
as the square root
of the pressure dif-
ference across the
flow meter.

Q

∆p = p1 – p2

Q ~   ∆p



Other flow meters based on the Bernoulli equation are used to measure flowrates in open chan-
nels such as flumes and irrigation ditches. Two of these devices, the sluice gate and the sharp-crested
weir, are discussed below under the assumption of steady, inviscid, incompressible flow. These and
other open-channel flow devices are discussed in more detail in Chapter 10.

Sluice gates like those shown in Fig. 3.19a are often used to regulate and measure the flowrate
in open channels. As indicated in Fig. 3.19b, the flowrate, Q, is a function of the water depth up-
stream, the width of the gate, b, and the gate opening, a. Application of the Bernoulli equation
and continuity equation between points 112 and 122 can provide a good approximation to the actual
flowrate obtained. We assume the velocity profiles are uniform sufficiently far upstream and down-
stream of the gate.

z1,
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GIVEN Kerosene flows through the Venturi
meter shown in Fig. E3.11a with flowrates between 0.005 and

FIND Determine the range in pressure difference,
needed to measure these flowrates.

p1 � p2,

0.050 m3�s.

1SG � 0.852

Venturi MeterE XAMPLE 3.11

D1 = 0.1 m

(1)
(2)

0.005 m3/s < Q < 0.050 m3/s

D2 = 0.06 m

Kerosene, SG = 0.85

Q

F I G U R E  E3.11a

F I G U R E  E3.11b

SOLUTION

results presented here are independent of the particular flow
meter geometry—an orifice, nozzle, or Venturi meter 1see
Fig. 3.182.

It is seen from Eq. 3.20 that the flowrate varies as the
square root of the pressure difference. Hence, as indicated by
the numerical results and shown in Fig. E3.11b, a 10-fold in-
crease in flowrate requires a 100-fold increase in pressure dif-
ference. This nonlinear relationship can cause difficulties when
measuring flowrates over a wide range of values. Such mea-
surements would require pressure transducers with a wide
range of operation. An alternative is to use two flow meters in
parallel—one for the larger and one for the smaller flowrate
ranges.

If the flow is assumed to be steady, inviscid, and incompressible,
the relationship between flowrate and pressure is given by Eq.
3.20. This can be rearranged to give

With the density of the flowing fluid

and the area ratio

the pressure difference for the smallest flowrate is

Likewise, the pressure difference for the largest flowrate is

Thus,

(Ans)

COMMENTS These values represent the pressure differ-
ences for inviscid, steady, incompressible conditions. The ideal

1.16 kPa � p1 � p2 � 116 kPa

 � 1.16 � 105 N�m2 � 116 kPa

 p1 � p2 � 10.052218502 11 � 0.3622
2 3 1p�42 10.0622 4 2

 � 1160 N�m2 � 1.16 kPa

 p1 � p2 � 10.005 m3�s221850 kg�m32 11 � 0.3622
2 3 1p�42 10.06 m22 4 2

0.36A2�A1� 1D2�D122� 10.06 m�0.10 m22�

r � SG rH2O � 0.8511000 kg�m32 � 850 kg�m3

p1 � p2 �
Q2r 31 � 1A2�A122 4

2 A2
2

p 1
– p

2
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Thus, we apply the Bernoulli equation between points on the free surfaces at 112 and 122 to
give

Also, if the gate is the same width as the channel so that A1 � bz1 and A2 � bz2, the continuity
equation gives

With the fact that these equations can be combined and rearranged to give the flowrate
as

(3.21)

In the limit of this result simply becomes

This limiting result represents the fact that if the depth ratio, is large, the kinetic energy of
the fluid upstream of the gate is negligible and the fluid velocity after it has fallen a distance

is approximately 
The results of Eq. 3.21 could also be obtained by using the Bernoulli equation between points

132 and 142 and the fact that and since the streamlines at these sections are straight.
In this formulation, rather than the potential energies at 112 and 122, we have the pressure contri-
butions at 132 and 142. 

The downstream depth, not the gate opening, a, was used to obtain the result of Eq. 3.21.
As was discussed relative to flow from an orifice 1Fig. 3.142, the fluid cannot turn a sharp cor-
ner. A vena contracta results with a contraction coefficient, less than 1. Typically is
approximately 0.61 over the depth ratio range of For larger values of the
value of increases rapidly.Cc

a�z10 6 a�z1 6 0.2.
CcCc � z2�a,

90°
z2,

p4 � gz2p3 � gz1

V2 � 12gz1.1z1 � z22 � z1

z1�z2,

Q � z2b12gz1

z1 ! z2

Q � z2b B
2g1z1 � z22
1 � 1z2�z122

p1 � p2 � 0,

Q � A1V1 � bV1z1 � A2V2 � bV2z2

p1 �
1
2rV

2
1 � gz1 � p2 �

1
2rV

2
2 � gz2
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Sluice gate
width = b

(1)

(2)

(4)(3)

V1

z1

a

V2

z2

(b)(a)

Sluice gates

b

aQ

F I G U R E  3.19 Sluice gate geometry. (Photograph courtesy of Plasti-Fab, Inc.)

The flowrate under
a sluice gate de-
pends on the water
depths on either
side of the gate.

GIVEN Water flows under the sluice gate shown in Fig. E3.12a. FIND Determine the approximate flowrate per unit width of
the channel.

Sluice GateE XAMPLE 3.12



Another device used to measure flow in an open channel is a weir. A typical rectangular,
sharp-crested weir is shown in Fig. 3.20. For such devices the flowrate of liquid over the top of
the weir plate is dependent on the weir height, the width of the channel, b, and the head, H,
of the water above the top of the weir. Application of the Bernoulli equation can provide a sim-
ple approximation of the flowrate expected for these situations, even though the actual flow is
quite complex.

Between points 112 and 122 the pressure and gravitational fields cause the fluid to accelerate
from velocity to velocity At 112 the pressure is while at 122 the pressure is essen-
tially atmospheric, Across the curved streamlines directly above the top of the weir plate
1section a–a2, the pressure changes from atmospheric on the top surface to some maximum value
within the fluid stream and then to atmospheric again at the bottom surface. This distribution is
indicated in Fig. 3.20. Such a pressure distribution, combined with the streamline curvature and
gravity, produces a rather nonuniform velocity profile across this section. This velocity distribu-
tion can be obtained from experiments or a more advanced theory.

p2 � 0.
p1 � gh,V2.V1

Pw,
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SOLUTION

flowrate is not directly proportional to the flow depth. Thus,
for example, if during flood conditions the upstream depth dou-
bled from , the flowrate per unit width of
the channel would not double, but would increase only from

.4.61 m2�s to 6.67 m2�s

z1 � 5 m to z1 � 10 m

Under the assumptions of steady, inviscid, incompressible flow,
we can apply Eq. 3.21 to obtain the flowrate per unit width,
as

In this instance m and so the ratio
and we can assume that the contraction co-

efficient is approximately Thus,
and we obtain the flowrate

(Ans)

COMMENT If we consider and neglect the kinetic
energy of the upstream fluid, we would have

In this case the difference in Q with or without including is not
too significant because the depth ratio is fairly large

Thus, it is often reasonable to
neglect the kinetic energy upstream from the gate compared to
that downstream of it.

By repeating the calculations for various flow depths, , the
results shown in Fig. E3.12b are obtained. Note that the

z1

1z1�z2 � 5.0�0.488 � 10.22.

V1

 � 4.83 m2�s

 
Q

b
� z2 12gz1 � 0.488 m 2219.81 m�s22 15.0 m2

z1 ! z2

 � 4.61 m2�s

 
Q

b
� 10.488 m2 B

219.81 m�s22 15.0 m � 0.488 m2
1 � 10.488 m�5.0 m22

10.80 m2 � 0.488 m
z2 � Cca � 0.61Cc � 0.61.

a�z1 � 0.16 6 0.20,
a � 0.80 mz1 � 5.0

Q

b
� z2 B

2g1z1 � z22
1 � 1z2�z122

Q�b,

Q

5.0 m

6.0 m
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F I G U R E  E3.12a

F I G U R E  E3.12b
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F I G U R E  3.20
Rectangular, sharp-crested weir geometry.
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For now, we will take a very simple approach and assume that the weir flow is similar in
many respects to an orifice-type flow with a free streamline. In this instance we would expect the
average velocity across the top of the weir to be proportional to and the flow area for this
rectangular weir to be proportional to Hb. Hence, it follows that

where is a constant to be determined.
Simple use of the Bernoulli equation has provided a method to analyze the relatively com-

plex flow over a weir. The correct functional dependence of Q on H has been obtained 
as indicated by the figure in the margin), but the value of the coefficient is unknown. Even a
more advanced analysis cannot predict its value accurately. As is discussed in Chapter 10, exper-
iments are used to determine the value of C1.

C1

1Q  H3�2,

C1

Q � C1Hb 12gH � C1b 12g H3�2

12gH
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GIVEN Water flows over a triangular weir, as is shown in Fig.
E3.13. 

FIND Based on a simple analysis using the Bernoulli equation,
determine the dependence of the flowrate on the depth H. If the
flowrate is when estimate the flowrate when the
depth is increased to H � 3H0.

H � H0,Q0

WeirE XAMPLE 3.13

SOLUTION

(Ans)

COMMENT Note that for a triangular weir the flowrate is
proportional to whereas for the rectangular weir discussed
above, it is proportional to The triangular weir can be accu-
rately used over a wide range of flowrates.

H3�2.
H5�2,

 � 15.6

 
Q3H0

QH0

 �
C2 tan 1u�22  12g 13H025�2
C2 tan 1u�22  12g 1H025�2

With the assumption that the flow is steady, inviscid, and incom-
pressible, it is reasonable to assume from Eq. 3.18 that the aver-
age speed of the fluid over the triangular notch in the weir plate is
proportional to Also, the flow area for a depth of H is
H The combination of these two ideas gives

(Ans)

where is an unknown constant to be determined experimentally.
Thus, an increase in the depth by a factor of three 1from to
2 results in an increase of the flowrate by a factor of3H0

H0

C2

 Q � AV � H2 tan 
u

2
 1C2 12gH2 � C2 tan 

u

2
12g H5�2

3H tan 1u�22 4 .
12gH.

Q ~ H3/2

Q

H

H H

H tan _
2
θ

θ

F I G U R E  E3.13

The hydraulic
grade line and en-
ergy line are graph-
ical forms of the
Bernoulli equation.

As was discussed in Section 3.4, the Bernoulli equation is actually an energy equation repre-
senting the partitioning of energy for an inviscid, incompressible, steady flow. The sum of the
various energies of the fluid remains constant as the fluid flows from one section to another. A
useful interpretation of the Bernoulli equation can be obtained through the use of the concepts
of the hydraulic grade line 1HGL2 and the energy line 1EL2. These ideas represent a geometri-
cal interpretation of a flow and can often be effectively used to better grasp the fundamental
processes involved.

For steady, inviscid, incompressible flow the total energy remains constant along a stream-
line. The concept of “head” was introduced by dividing each term in Eq. 3.7 by the specific weight,

to give the Bernoulli equation in the following form

(3.22)
p

g
�

V 2

2g
� z � constant on a streamline � H

g � rg,
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Each of the terms in this equation has the units of length 1feet or meters2 and represents a certain
type of head. The Bernoulli equation states that the sum of the pressure head, the velocity head,
and the elevation head is constant along a streamline. This constant is called the total head, H.

The energy line is a line that represents the total head available to the fluid. As shown in
Fig. 3.21, the elevation of the energy line can be obtained by measuring the stagnation pressure
with a Pitot tube. 1A Pitot tube is the portion of a Pitot-static tube that measures the stagnation
pressure. See Section 3.5.2 The stagnation point at the end of the Pitot tube provides a measure-
ment of the total head 1or energy2 of the flow. The static pressure tap connected to the piezometer
tube shown, on the other hand, measures the sum of the pressure head and the elevation head,

This sum is often called the piezometric head. The static pressure tap does not measure
the velocity head.

According to Eq. 3.22, the total head remains constant along the streamline 1provided the as-
sumptions of the Bernoulli equation are valid2. Thus, a Pitot tube at any other location in the flow
will measure the same total head, as is shown in the figure. The elevation head, velocity head, and
pressure head may vary along the streamline, however.

The locus of elevations provided by a series of Pitot tubes is termed the energy line, EL.
The locus provided by a series of piezometer taps is termed the hydraulic grade line, HGL. Un-
der the assumptions of the Bernoulli equation, the energy line is horizontal. If the fluid veloc-
ity changes along the streamline, the hydraulic grade line will not be horizontal. If viscous effects
are important 1as they often are in pipe flows2, the total head does not remain constant due to a
loss in energy as the fluid flows along its streamline. This means that the energy line is no longer
horizontal. Such viscous effects are discussed in Chapters 5 and 8.

The energy line and hydraulic grade line for flow from a large tank are shown in Fig. 3.22.
If the flow is steady, incompressible, and inviscid, the energy line is horizontal and at the eleva-
tion of the liquid in the tank 1since the fluid velocity in the tank and the pressure on the surface

p�g � z.
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V2/2g

p/�
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F I G U R E  3.21 Representation of the energy line and the
hydraulic grade line.
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F I G U R E  3.22 The energy line
and hydraulic grade line for flow from a tank.
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are zero2. The hydraulic grade line lies a distance of one velocity head, below the energy
line. Thus, a change in fluid velocity due to a change in the pipe diameter results in a change in
the elevation of the hydraulic grade line. At the pipe outlet the pressure head is zero 1gage2 so the
pipe elevation and the hydraulic grade line coincide.

The distance from the pipe to the hydraulic grade line indicates the pressure within the pipe,
as is shown in Fig. 3.23. If the pipe lies below the hydraulic grade line, the pressure within the
pipe is positive 1above atmospheric2. If the pipe lies above the hydraulic grade line, the pressure is
negative 1below atmospheric2. Thus, a scale drawing of a pipeline and the hydraulic grade line can
be used to readily indicate regions of positive or negative pressure within a pipe.

V2�2g,
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For flow below
(above) the hy-
draulic grade line,
the pressure is
positive (negative).

F I G U R E  3.23
Use of the energy line and the
hydraulic grade line.
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p < 0
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z

V2
__
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GIVEN Water is siphoned from the tank shown in Fig. E3.14
through a hose of constant diameter. A small hole is found in the
hose at location 112 as indicated.

FIND When the siphon is used, will water leak out of the hose,
or will air leak into the hose, thereby possibly causing the siphon
to malfunction?

Energy Line and Hydraulic Grade LineE XAMPLE 3.14

SOLUTION

COMMENT In practice, viscous effects may be quite impor-
tant, making this simple analysis 1horizontal energy line2 incor-
rect. However, if the hose is “not too small diameter,” “not too
long,” the fluid “not too viscous,” and the flowrate “not too large,”
the above result may be very accurate. If any of these assumptions
are relaxed, a more detailed analysis is required 1see Chapter 82. If
the end of the hose were closed so that the flowrate were zero, the
hydraulic grade line would coincide with the energy line
1 throughout2, the pressure at 112 would be greater than
atmospheric, and water would leak through the hole at 112.
V 2�2g � 0

Whether air will leak into or water will leak out of the hose de-
pends on whether the pressure within the hose at 112 is less than or
greater than atmospheric. Which happens can be easily determined
by using the energy line and hydraulic grade line concepts. With
the assumption of steady, incompressible, inviscid flow it follows
that the total head is constant—thus, the energy line is horizontal.

Since the hose diameter is constant, it follows from the continuity
equation that the water velocity in the hose is con-
stant throughout. Thus, the hydraulic grade line is a constant dis-
tance, below the energy line as shown in Fig. E3.14. Since the
pressure at the end of the hose is atmospheric, it follows that the hy-
draulic grade line is at the same elevation as the end of the hose out-
let. The fluid within the hose at any point above the hydraulic grade
line will be at less than atmospheric pressure.

(Ans)
Thus, air will leak into the hose through

the hole at point 112.

V 2�2g,

1AV � constant2

F I G U R E  E3.14

Valve
HGL with valve open

HGL with valve closed and
EL with valve open or closed

(1)

V2__
2g p_

γ
z

The above discussion of the hydraulic grade line and the energy line is restricted to ideal sit-
uations involving inviscid, incompressible flows. Another restriction is that there are no “sources”
or “sinks” of energy within the flow field. That is, there are no pumps or turbines involved. Al-
terations in the energy line and hydraulic grade line concepts due to these devices are discussed in
Chapters 5 and 8.
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The Bernoulli
equation can be
modified for com-
pressible flows.

∆p ~  V2

V

∆p

Proper use of the Bernoulli equation requires close attention to the assumptions used in its de-
rivation. In this section we review some of these assumptions and consider the consequences of
incorrect use of the equation.

3.8.1 Compressibility Effects

One of the main assumptions is that the fluid is incompressible. Although this is reasonable for
most liquid flows, it can, in certain instances, introduce considerable errors for gases.

In the previous section, we saw that the stagnation pressure, , is greater than the static
pressure, , by an amount provided that the density remains con-
stant. If this dynamic pressure is not too large compared with the static pressure, the density change
between two points is not very large and the flow can be considered incompressible. However, since
the dynamic pressure varies as the error associated with the assumption that a fluid is incom-
pressible increases with the square of the velocity of the fluid, as indicated by the figure in the mar-
gin. To account for compressibility effects we must return to Eq. 3.6 and properly integrate the term

when is not constant.
A simple, although specialized, case of compressible flow occurs when the temperature of a

perfect gas remains constant along the streamline—isothermal flow. Thus, we consider 
where T is constant. 1In general, p, and T will vary.2 For steady, inviscid, isothermal flow, Eq.
3.6 becomes

where we have used The pressure term is easily integrated and the constant of integration
evaluated if and are known at some location on the streamline. The result is

(3.23)

Equation 3.23 is the inviscid, isothermal analog of the incompressible Bernoulli equation. In the
limit of small pressure difference, with and Eq. 3.23
reduces to the standard incompressible Bernoulli equation. This can be shown by use of the ap-
proximation for small The use of Eq. 3.23 in practical applications is restricted by
the inviscid flow assumption, since 1as is discussed in Section 11.52 most isothermal flows are ac-
companied by viscous effects.

A much more common compressible flow condition is that of isentropic 1constant entropy2
flow of a perfect gas. Such flows are reversible adiabatic processes—“no friction or heat transfer”—
and are closely approximated in many physical situations. As discussed fully in Chapter 11, for
isentropic flow of a perfect gas the density and pressure are related by where k is the
specific heat ratio and C is a constant. Hence, the integral of Eq. 3.6 can be evaluated
as follows. The density can be written in terms of the pressure as so that Eq. 3.6
becomes

The pressure term can be integrated between points 112 and 122 on the streamline and the constant
C evaluated at either point or to give the following:

 � a k

k � 1
b ap2

r2
�

p1

r1
b

 C1�k�
p2

p1

 p
�1�k dp � C1�k a k

k � 1
b 3p1k�12�k

2 � p1k�12�k
1 4

C1�k � p2
1�k�r221C1�k � p1

1�k�r1

C1�k �  p�1�k dp �
1

2
 V 2 � gz � constant

r � p1�kC�1�k
F  dp�r

p�rk � C,

e.ln11 � e2 � e

e � 1p1�p2 � 1 � 1p1 � p22�p2 � 1 � e,

V 2
1

2g
� z1 �

RT
g

 ln ap1

p2
b � V 2

2

2g
� z2

V1z1, p1,
r � p�RT.

RT �  dp

p
�

1

2
 V 2 � gz � constant

r,
p � rRT,

rF  dp�r

V 2,

¢p � pstag � pstatic � rV
2�2,pstatic

pstag
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Thus, the final form of Eq. 3.6 for compressible, isentropic, steady flow of a perfect gas is

(3.24)

The similarities between the results for compressible isentropic flow 1Eq. 3.242 and incompressible
isentropic flow 1the Bernoulli equation, Eq. 3.72 are apparent. The only differences are the factors
of that multiply the pressure terms and the fact that the densities are different 
In the limit of “low-speed flow” the two results are exactly the same, as is seen by the following.

We consider the stagnation point flow of Section 3.5 to illustrate the difference between the
incompressible and compressible results. As is shown in Chapter 11, Eq. 3.24 can be written in
dimensionless form as

(3.25)

where 112 denotes the upstream conditions and 122 the stagnation conditions. We have assumed
and have denoted as the upstream Mach number—the ratio of the

fluid velocity to the speed of sound,
A comparison between this compressible result and the incompressible result is perhaps most

easily seen if we write the incompressible flow result in terms of the pressure ratio and the Mach
number. Thus, we divide each term in the Bernoulli equation, by and use the
perfect gas law, to obtain

Since this can be written as

(3.26)

Equations 3.25 and 3.26 are plotted in Fig. 3.24. In the low-speed limit of both of the
results are the same. This can be seen by denoting and using the binomial expan-
sion, where to write Eq. 3.25 as

For this compressible flow result agrees with Eq. 3.26. The incompressible and com-
pressible equations agree to within about 2% up to a Mach number of approximately 
For larger Mach numbers the disagreement between the two results increases.

Ma1 � 0.3.
Ma1 � 1

p2 � p1

p1
�

kMa2
1

2
 a1 � 1

4
 Ma2

1 �
2 � k

24
 Ma4

1 � pb  1compressible 2

n � k� 1k � 12,11 � e~2n � 1 � ne~ � n1n � 12 e~2�2 � p,
1k� 12Ma1

2�2� e~
Ma1S 0,

p2 � p1

p1
�

kMa2
1

2
  1incompressible 2

Ma1 � V1�1kRT1

p2 � p1

p1
�

V 2
1

2RT1

p1 � rRT1,
p1rV1

2�2 � p1 � p2,

c1 � 1kRT1.
Ma1 � V1�c1z1 � z2, V2 � 0,

p2 � p1

p1
� c a1 � k � 1

2
 Ma2

1b
k�k�1

� 1 d  1compressible 2

1r1 q r22.3k� 1k � 12 4

a k

k � 1
b 

p1

r1
�

V 2
1

2
� gz1 � a k

k � 1
b 

p2

r2
�

V 2
2

2
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F I G U R E  3.24 Pressure
ratio as a function of Mach number
for incompressible and compressible
(isentropic) flow.
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Incompressible
(Eq. 3.26)

Compressible
(Eq. 3.25)

k = 1.4

For small Mach
numbers the com-
pressible and in-
compressible
results are nearly
the same.



3.8.2 Unsteady Effects

Another restriction of the Bernoulli equation 1Eq. 3.72 is the assumption that the flow is steady. For
such flows, on a given streamline the velocity is a function of only s, the location along the stream-
line. That is, along a streamline For unsteady flows the velocity is also a function of
time, so that along a streamline Thus when taking the time derivative of the velocity
to obtain the streamwise acceleration, we obtain rather than just 
as is true for steady flow. For steady flows the acceleration is due to the change in velocity re-
sulting from a change in position of the particle 1the term2, whereas for unsteady flow
there is an additional contribution to the acceleration resulting from a change in velocity with
time at a fixed location 1the term2. These effects are discussed in detail in Chapter 4. The
net effect is that the inclusion of the unsteady term, does not allow the equation of motion
to be easily integrated 1as was done to obtain the Bernoulli equation2 unless additional assump-
tions are made.

The Bernoulli equation was obtained by integrating the component of Newton’s second law
1Eq. 3.52 along the streamline. When integrated, the acceleration contribution to this equation, the

0V�0t,
0V�0t

V 0V�0s

as � V 0V�0sas � 0V�0t � V 0V�0s
V � V1s, t2.
V � V1s2.
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GIVEN The jet shown in Fig. E3.15 flies at Mach 0.82 at an
altitude of 10 km in a standard atmosphere.

FIND Determine the stagnation pressure on the leading edge
of its wing if the flow is incompressible; and if the flow is com-
pressible isentropic.

SOLUTION

F I G U R E  E3.15 (Photograph courtesy of
Pure stock/superstock.)

Compressible Flow—Mach Number

lift and drag on the airplane; see Chapter 92 is approximately
times greater according to the compressible

flow calculations. This may be very significant. As discussed in
Chapter 11, for Mach numbers greater than 1 1supersonic flow2
the differences between incompressible and compressible results
are often not only quantitative but also qualitative.

Note that if the airplane were flying at Mach 0.30 1rather than
0.822 the corresponding values would be for
incompressible flow and for compressible
flow. The difference between these two results is about 2%.

p2 � p1 � 1.707 kPa
p2 � p1 � 1.670 kPa

14.7�12.5 � 1.18

E XAMPLE 3.15

From Tables 1.8 and C.2 we find that 1abs2,
and Thus, if we as-

sume incompressible flow, Eq. 3.26 gives

or

(Ans)

On the other hand, if we assume isentropic flow, Eq. 3.25 gives

or

(Ans)

COMMENT We see that at Mach 0.82 compressibility effects
are of importance. The pressure 1and, to a first approximation, the

p2 � p1 � 0.555 126.5 kPa2 � 14.7 kPa

 � 0.555

 
p2 � p1

p1
� e c 1 � 11.4 � 12

2
 10.8222 d

1.4�11.4�12
� 1f

p2 � p1 � 0.471126.5 kPa2 � 12.5 kPa

p2 � p1

p1
�

kMa2
1

2
� 1.4 

10.8222
2
� 0.471

k � 1.4.r � 0.414 kg�m3,T1 � �49.9 °C,
p1 � 26.5 kPa

Thus, a “rule of thumb” is that the flow of a perfect gas may be considered as incompress-
ible provided the Mach number is less than about 0.3. In standard air 

this corresponds to a speed of At
higher speeds, compressibility may become important.

V1 � Ma1c1 � 0.311117 ft�s2 � 335 ft�s � 228 mi�hr.1117 ft�s2
c1 � 1kRT1 �1T1 � 59 °F,

The Bernoulli
equation can be
modified for un-
steady flows.



term, gave rise to the kinetic energy term in the Bernoulli equation. If the steps leading
to Eq. 3.5 are repeated with the inclusion of the unsteady effect the following is
obtained:

For incompressible flow this can be easily integrated between points 112 and 122 to give

(3.27)

Equation 3.27 is an unsteady form of the Bernoulli equation valid for unsteady, incompressible,
inviscid flow. Except for the integral involving the local acceleration, it is identical to the
steady Bernoulli equation. In general, it is not easy to evaluate this integral because the variation
of along the streamline is not known. In some situations the concepts of “irrotational flow”
and the “velocity potential” can be used to simplify this integral. These topics are discussed in
Chapter 6.

0V�0t

0V�0t,

p1 �
1

2
 rV 2

1 � gz1 � r�
s2

s1

 
0V

0t
 ds � p2 �

1

2
 rV 2

2 � gz2  1along a streamline 2

r 
0V

0t
 ds � dp �

1

2
 rd1V 22 � g dz � 0  1along a streamline 2

10V�0t q 02
1
2 rd1V 22
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GIVEN An incompressible, inviscid liquid is placed in a verti-
cal, constant diameter U-tube as indicated in Fig. E3.16. When
released from the nonequilibrium position shown, the liquid
column will oscillate at a specific frequency. 

FIND Determine this frequency.

SOLUTION

F I G U R E  E3.16

Unsteady Flow—U-Tube

which has the solution 
The values of the constants and depend on the

initial state 1velocity and position2 of the liquid at Thus, the
liquid oscillates in the tube with a frequency

(Ans)

COMMENT This frequency depends on the length of the col-
umn and the acceleration of gravity 1in a manner very similar to
the oscillation of a pendulum2. The period of this oscillation 1the
time required to complete an oscillation2 is t0 � 2p1/�2g.

v � 22g�/

t � 0.
C2C1112g�/ t2.

z1t2 � C1 sin112g�/ t2 � C2 cos

g

(1)

V1

(2)

V2

�

z

z

Open
tube

Equilibrium
position

= 0

E XAMPLE 3.16

The frequency of oscillation can be calculated by use of Eq. 3.27
as follows. Let points 112 and 122 be at the air–water interfaces of
the two columns of the tube and correspond to the equilib-
rium position of these interfaces. Hence, and if

then In general, z is a function of time,
For a constant diameter tube, at any instant in time the fluid speed
is constant throughout the tube, and the integral
representing the unsteady effect in Eq. 3.27 can be written as

where is the total length of the liquid column as shown in the
figure. Thus, Eq. 3.27 can be written as

Since and this can be written as the second-
order differential equation describing simple harmonic motion

d 2z

dt 

2 �
2g

/
 z � 0

g � rg,V � dz�dt

g1�z2 � r/ dV

dt
� gz

/

�
s2

s1

 
0V

0t
 ds �

dV

dt �
s2

s1

 ds � / 
dV

dt

V1 � V2 � V,

z � z1t2.z1 � �z.z2 � z,
p1 � p2 � 0

z � 0

V3.11 Oscillations
in a U-tube

In a few unsteady flow cases, the flow can be made steady by an appropriate selection of the
coordinate system. Example 3.17 illustrates this.



Some unsteady flows may be treated as “quasisteady” and solved approximately by using the
steady Bernoulli equation. In these cases the unsteadiness is “not too great” 1in some sense2, and the
steady flow results can be applied at each instant in time as though the flow were steady. The slow
draining of a tank filled with liquid provides an example of this type of flow.

3.8.3 Rotational Effects

Another of the restrictions of the Bernoulli equation is that it is applicable along the streamline. Ap-
plication of the Bernoulli equation across streamlines 1i.e., from a point on one streamline to a point
on another streamline2 can lead to considerable errors, depending on the particular flow conditions in-
volved. In general, the Bernoulli constant varies from streamline to streamline. However, under certain
restrictions this constant is the same throughout the entire flow field. Example 3.18 illustrates this fact.
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GIVEN A submarine moves through seawater at a
depth of 50 m with velocity as shown in Fig. E3.17. 

FIND Determine the pressure at the stagnation point 122.

V0 � 5.0 m�s
1SG � 1.032

SOLUTION

F I G U R E  E3.17

Unsteady or Steady Flow

(Ans)

similar to that discussed in Example 3.2.

COMMENT If the submarine were accelerating,
the flow would be unsteady in either of the above coordinate sys-
tems and we would be forced to use an unsteady form of the
Bernoulli equation.

0V0 �0t q 0,

 � 518 kPa

 � 112,900 � 505,0002 N�m2

(1) (2)

h = 50 m

V0 = 5 m/s

x

γ

E XAMPLE 3.17

In a coordinate system fixed to the ground, the flow is unsteady.
For example, the water velocity at 112 is zero with the submarine
in its initial position, but at the instant when the nose, 122, reaches
point 112 the velocity there becomes Thus,

and the flow is unsteady. Application of the steady
Bernoulli equation between 112 and 122 would give the incorrect
result that According to this result the static
pressure is greater than the stagnation pressure—an incorrect use
of the Bernoulli equation.

We can either use an unsteady analysis for the flow 1which is
outside the scope of this text2 or redefine the coordinate system so
that it is fixed on the submarine, giving steady flow with respect
to this system. The correct method would be

 � 19.80 � 103 N�m32 11.032 150 m2
 p2 �

rV 2
1

2
� gh � 3 11.032 110002 kg�m3 4  15.0 m�s22�2

“p1 � p2 � rV
2
0�2.”

0V1�0t q 0
V1 � �V0 î.

Care must be used
in applying the
Bernoulli equation
across streamlines.

GIVEN Consider the uniform flow in the channel shown in
Fig. E3.18a. The liquid in the vertical piezometer tube is sta-
tionary.

FIND Discuss the use of the Bernoulli equation between
points 112 and 122, points 132 and 142, and points 142 and 152.

Use of Bernoulli Equation across Streamlines

(3)

(5)

(1)

(4)

(2)

V0

V0

p1 = p0

h

(a)

(b)z = h

z = 0

p5 = 0

H

Fluid particles spin

E XAMPLE 3.18

F I G U R E  E3.18

SOLUTION

If the flow is steady, inviscid, and incompressible, Eq. 3.7 written
between points 112 and 122 gives

 � constant � C12

 p1 �
1
2rV

2
1 � gz1 � p2 �

1
2rV

2
2 � gz2



As is suggested by Example 3.18, if the flow is “irrotational” 1i.e., the fluid particles do not
“spin” as they move2, it is appropriate to use the Bernoulli equation across streamlines. However,
if the flow is “rotational” 1fluid particles “spin”2, use of the Bernoulli equation is restricted to flow
along a streamline. The distinction between irrotational and rotational flow is often a very subtle
and confusing one. These topics are discussed in more detail in Chapter 6. A thorough discussion
can be found in more advanced texts 1Ref. 32.

3.8.4 Other Restrictions

Another restriction on the Bernoulli equation is that the flow is inviscid. As is discussed in Section
3.4, the Bernoulli equation is actually a first integral of Newton’s second law along a streamline. This
general integration was possible because, in the absence of viscous effects, the fluid system consid-
ered was a conservative system. The total energy of the system remains constant. If viscous effects
are important the system is nonconservative 1dissipative2 and energy losses occur. A more detailed
analysis is needed for these cases. Such material is presented in Chapter 5.

The final basic restriction on use of the Bernoulli equation is that there are no mechanical
devices 1pumps or turbines2 in the system between the two points along the streamline for which
the equation is applied. These devices represent sources or sinks of energy. Since the Bernoulli
equation is actually one form of the energy equation, it must be altered to include pumps or tur-
bines, if these are present. The inclusion of pumps and turbines is covered in Chapters 5 and 12.

In this chapter we have spent considerable time investigating fluid dynamic situations gov-
erned by a relatively simple analysis for steady, inviscid, incompressible flows. Many flows can
be adequately analyzed by use of these ideas. However, because of the rather severe restrictions
imposed, many others cannot. An understanding of these basic ideas will provide a firm founda-
tion for the remainder of the topics in this book.
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Since and it follows that 
and the Bernoulli constant for this streamline, is given by

Along the streamline from 132 to 142we note that 
and As was shown in Example 3.5, application of

across the streamline 1Eq. 3.122 gives be-
cause the streamlines are straight and horizontal. The above facts
combined with the Bernoulli equation applied between 132 and 142
show that and that the Bernoulli constant along this
streamline is the same as that along the streamline between
112 and 122. That is, or

Similar reasoning shows that the Bernoulli constant is the same
for any streamline in Fig. E3.18. Hence,

p � 1
2rV

2 � gz � constant throughout the flow

p3 �
1
2rV

2
3 � gz3 � p4 �

1
2rV

2
4 � gz4 � C34 � C12

C34 � C12,

p3 � p4

p3 � p1 � ghF � ma
z3 � z4 � h.

V3 � V4 � V0

C12 �
1
2rV

2
0 � p0

C12,
p0p1 � p2 �z1 � z2 � 0,V1 � V2 � V0 Again from Example 3.5 we recall that

If we apply the Bernoulli equation across streamlines from 142 to
152, we obtain the incorrect result The cor-
rect result is 

From the above we see that we can apply the Bernoulli equation
across streamlines 112–122 and 132–142 1i.e., 2 but not across
streamlines from 142 to 152. The reason for this is that while the flow
in the channel is “irrotational,” it is “rotational” between the flowing
fluid in the channel and the stationary fluid in the piezometer tube.
Because of the uniform velocity profile across the channel, it is seen
that the fluid particles do not rotate or “spin” as they move. The flow
is “irrotational.” However, as seen in Fig. E3.18b, there is a very thin
shear layer between 142 and 152 in which adjacent fluid particles in-
teract and rotate or “spin.” This produces a “rotational” flow. A more
complete analysis would show that the Bernoulli equation cannot be
applied across streamlines if the flow is “rotational” 1see Chapter 62.

C12 � C34

H � p4�g.
“H � p4�g � V 2

4�2g.”

p4 � p5 � gH � gH

V3.12 Flow over a
cavity

In this chapter, several aspects of the steady flow of an inviscid, incompressible fluid are discussed.
Newton’s second law, , is applied to flows for which the only important forces are those
due to pressure and gravity (weight)—viscous effects are assumed negligible. The result is the often-
used Bernoulli equation, which provides a simple relationship among pressure, elevation, and veloc-
ity variations along a streamline. A similar but less often used equation is also obtained to describe
the variations in these parameters normal to a streamline.

The concept of a stagnation point and the corresponding stagnation pressure is introduced
as are the concepts of static, dynamic, and total pressure and their related heads.

F � ma

3.9 Chapter Summary and Study Guide

The Bernoulli
equation is not
valid for flows that
involve pumps or
turbines.



Several applications of the Bernoulli equation are discussed. In some flow situations, such
as the use of a Pitot-static tube to measure fluid velocity or the flow of a liquid as a free jet
from a tank, a Bernoulli equation alone is sufficient for the analysis. In other instances, such
as confined flows in tubes and flow meters, it is necessary to use both the Bernoulli equation
and the continuity equation, which is a statement of the fact that mass is conserved as fluid
flows.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed, you should be able to

write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

explain the origin of the pressure, elevation, and velocity terms in the Bernoulli equation
and how they are related to Newton’s second law of motion.

apply the Bernoulli equation to simple flow situations, including Pitot-static tubes, free jet
flows, confined flows, and flow meters.

use the concept of conservation of mass (the continuity equation) in conjunction with the
Bernoulli equation to solve simple flow problems.

apply Newton’s second law across streamlines for appropriate steady, inviscid, incompress-
ible flows.

use the concepts of pressure, elevation, velocity, and total heads to solve various flow prob-
lems.

explain and use the concepts of static, stagnation, dynamic, and total pressures.

use the energy line and the hydraulic grade line concepts to solve various flow problems.

explain the various restrictions on use of the Bernoulli equation.

Some of the important equations in this chapter are:

Streamwise and normal 
acceleration (3.1)

Force balance along a streamline
for steady inviscid flow

(3.6)

The Bernoulli equation (3.7)

Pressure gradient normal to 
streamline for inviscid flow in (3.10b)
absence of gravity

Force balance normal to a 
streamline for steady, inviscid, (3.12)
incompressible flow

Velocity measurement for a 
Pitot-static tube

(3.16)

Free jet (3.18)

Continuity equation (3.19)

Flow meter equation (3.20)

Sluice gate equation (3.21)

Total head (3.22) 
p
g
�

V2

2g
� z � constant on a streamline � H

 Q � z2b B
2g1z1 � z22
1 � 1z2�z122

 Q � A2 B
21p1 � p22

r 31 � 1A2�A122 4

 A1V1 � A2V2, or Q1 � Q2

 V � B2 
gh

r
� 12gh

 V � 22 1p3 � p42�r

 p � r�V
2

r
 dn � gz � constant across the streamline

 
0p

0n
� �

rV2

r

 p � 1
2rV

2 � gz � constant along streamline

 �dp

r
�

1

2
 V2 � gz � C 1along a streamline 2

 as � V 
0V

0s
, an �

V2

r
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steady flow
streamline
Bernoulli equation
elevation head
pressure head
velocity head
static pressure
dynamic pressure
stagnation point
stagnation pressure
total pressure
Pitot-static tube 
free jet 
volume flowrate 
continuity equation 
cavitation
flow meter 
hydraulic grade line 
energy line
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Problems 133

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Problems

Q
V(x)

(1)
(2)

 = 3 ft

x

F I G U R E  P3.3

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems des-
ignated with a 1†2 are “open-ended” problems and require crit-
ical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 3.2 F� ma along a Streamline

3.1 Obtain a photograph/image of a situation which can be ana-
lyzed by use of the Bernoulli equation. Print this photo and write
a brief paragraph that describes the situation involved.

3.2 Air flows steadily along a streamline from point (1) to point (2)
with negligible viscous effects. The following conditions are mea-
sured: At point (1) z1 � 2 m and p1 � 0 kPa; at point (2) z2 � 10
m, p2 � 20 N/m2, and V2 � 0. Determine the velocity at point (1).

3.3 Water flows steadily through the variable area horizontal pipe
shown in Fig. P3.3. The centerline velocity is given by 

where x is in feet. Viscous effects are neglected.
(a) Determine the pressure gradient, 1as a function of x2
needed to produce this flow. (b) If the pressure at section 112 is
50 psi, determine the pressure at 122 by 1i2 integration of the pres-
sure gradient obtained in (a), 1ii2 application of the Bernoulli
equation.

0p�0x,
1011 � x2 î  ft�s,

V �

front of the object and is the upstream velocity. (a) Determine
the pressure gradient along this streamline. (b) If the upstream
pressure is integrate the pressure gradient to obtain the pres-
sure p 1x2 for (c) Show from the result of part (b) that
the pressure at the stagnation point is as
expected from the Bernoulli equation.

p0 � rV
2
0 �2,1x � �a2

�A � x � �a.
p0,

V0

3.4 Repeat Problem 3.3 if the pipe is vertical with the flow down.

3.5 An incompressible fluid with density flows steadily past
the object shown in Video V3.7 and Fig. P3.5. The fluid velocity
along the horizontal dividing streamline is found
to be where a is the radius of curvature of theV � V0 11 � a�x2,

1�A � x � �a2
r

Dividing
streamline

Stagnation
point

V0

po a
x

x = 0

F I G U R E  P3.5

(2)

(1) 10 ft

30�

F I G U R E  P3.7

3.6 What pressure gradient along the streamline, , is required
to accelerate water in a horizontal pipe at a rate of ?

3.7 A fluid with a specific weight of 100 lb/ft3 and negligible vis-
cous effects flows in the pipe shown in Fig. P3.7. The pressures at
points (1) and (2) are 400 lb/ft2 and 900 lb/ft2, respectively. The
velocities at points (1) and (2) are equal. Is the fluid accelerating
uphill, downhill, or not accelerating? Explain.

30 m�s2
dp�ds

3.8 What pressure gradient along the streamline, , is required
to accelerate water upward in a vertical pipe at a rate of 
What is the answer if the flow is downward?

3.9 Consider a compressible fluid for which the pressure and
density are related by where n and are constants. In-
tegrate the equation of motion along the streamline, Eq. 3.6, to

C0p�rn � C0,

30 ft�s2?
dp�ds
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obtain the “Bernoulli equation” for this compressible flow as

3.10 An incompressible fluid flows steadily past a circular cylin-
der as shown in Fig. P3.10. The fluid velocity along the dividing
streamline is found to be 
where a is the radius of the cylinder and is the upstream ve-
locity. (a) Determine the pressure gradient along this streamline.
(b) If the upstream pressure is integrate the pressure gradient
to obtain the pressure p 1x2 for (c) Show from
the result of part (b) that the pressure at the stagnation
point is as expected from the Bernoulli
equation.

p0 rV 2
0 2,1x a2

x a.
p0,

V0

V V0 11 a2 x22,1 x a2

3n 1n 12 4p r V 2 2 gz constant.

3.16 Water in a container and air in a tornado flow in horizontal
circular streamlines of radius r and speed V as shown in Video
V3.6 and Fig. P3.16. Determine the radial pressure gradient,
needed for the following situations: (a) The fluid is water with

and (b) The fluid is air with and
V 200 mph.

r 300 ftV 0.8 ft s.r 3 in.

0p 0r,

F I G U R E  P3.10

x = 0

Stagnation
point

Dividing
streamline

a

x
V0

p0

F I G U R E  P3.15

(1)

2 ft

20 ft

g

z

P1 = 25 psi

V = V(z)

a

a

3.11 Consider a compressible liquid that has a constant bulk mod-
ulus. Integrate along a streamline to obtain the equiva-
lent of the Bernoulli equation for this flow. Assume steady, inviscid
flow.

Section 3.3 F � ma Normal to a Streamline

3.12 Obtain a photograph/image of a situation in which Newton’s
second law applied across the streamlines (as given by Eq. 3.12)
is important. Print this photo and write a brief paragrph that de-
scribes the situation involved.

3.13 Air flows along a horizontal, curved streamline with a 20 ft
radius with a speed of 100 ft/s. Determine the pressure gradient
normal to the streamline.

3.14 Water flows around the vertical two-dimensional bend with
circular streamlines and constant velocity as shown in Fig. P3.14.
If the pressure is 40 kPa at point 112, determine the pressures at
points 122 and 132. Assume that the velocity profile is uniform as
indicated.

“F ma”

(1)

(2)

(3)

1 m
2 m

4 m

g

V = 10m/s

F I G U R E  P3.14

*3.15 Water flows around the vertical two-dimensional bend with
circular streamlines as is shown in Fig. P3.15. The pressure at point
112 is measured to be p1 25 psi and the velocity across section
a–a is as indicated in the table. Calculate and plot the pressure
across section a–a of the channel [p  p(z) for ].0 z 2 ft

z (ft) V ( )

0 0
0.2 8.0
0.4 14.3
0.6 20.0
0.8 19.5
1.0 15.6

1.2 8.3
1.4 6.2
1.6 3.7
1.8 2.0
2.0 0

ft s

y

x

r

V

F I G U R E  P3.16

3.17 Air flows smoothly over the hood of your car and up past the
windshield. However, a bug in the air does not follow the same path;
it becomes splattered against the windshield. Explain why this is so.

Section 3.5 Static, Stagnation, Dynamic,
and Total Pressure

3.18 Obtain a photograph/image of a situation in which the con-
cept of the stagnation pressure is important. Print this photo and
write a brief paragraph that describes the situation involved. 

3.19 At a given point on a horizontal streamline in flowing air, the
static pressure is 2.0 psi (i.e., a vacuum) and the velocity is 150 ft/s.
Determine the pressure at a stagnation point on that streamline.
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†3.20 Estimate the maximum pressure on the surface of your car
when you wash it using a garden hose connected to your outside
faucet. List all assumptions and show calculations.

3.21 When an airplane is flying 200 mph at 5000-ft altitude in a
standard atmosphere, the air velocity at a certain point on the wing
is 273 mph relative to the airplane. (a) What suction pressure is de-
veloped on the wing at that point? (b) What is the pressure at the
leading edge (a stagnation point) of the wing?

3.22 Some animals have learned to take advantage of Bernoulli ef-
fect without having read a fluid mechanics book. For example, a
typical prairie dog burrow contains two entrances—a flat front
door, and a mounded back door as shown in Fig. P3.22. When the
wind blows with velocity V0 across the front door, the average ve-
locity  across the back door is greater than V0 because of the mound.
Assume the air velocity across the back door is 1.07V0. For a wind
velocity of 6 m/s, what pressure differences, p1� p2, are generated
to provide a fresh air flow within the burrow?

3.28 (See Fluids in the News article titled “Incorrect raindrop
shape,” Section 3.2.) The speed, V, at which a raindrop falls is a
function of its diameter, D, as shown in Fig. P3.28. For what sized
raindrop will the stagnation pressure be equal to half the internal
pressure caused by surface tension? Recall from Section 1.9 that
the pressure inside a drop is greater than the surround-
ing pressure, where is the surface tension.s

¢p � 4s�D

1.07 V0

(1)
(2)

V0

Q

F I G U R E  P3.22

3.23 A loon is a diving bird equally at home “flying” in the air or
water. What swimming velocity under water will produce a dy-
namic pressure equal to that when it flies in the air at 40 mph?

3.24 A person thrusts his hand into the water while traveling 3 m/s
in a motorboat. What is the maximum pressure on his hand?

3.25 A Pitot-static tube is used to measure the velocity of he-
lium in a pipe. The temperature and pressure are and
25 psia. A water manometer connected to the Pitot-static tube in-
dicates a reading of 2.3 in. Determine the helium velocity. Is it
reasonable to consider the flow as incompressible? Explain.

3.26 An inviscid fluid flows steadily along the stagnation stream-
line shown in Fig. P3.26 and Video V3.7, starting with speed far
upstream of the object. Upon leaving the stagnation point, point
(1), the fluid speed along the surface of the object is assumed to be
given by where is the angle indicated. At what an-
gular position, should a hole be drilled to give a pressure differ-
ence of Gravity is negligible.p1 � p2 � rV

2
0 /2?

u2,
uV � 2 V0 sin u,

V0

40 °F

θ θ2

(2)

(1)

V0

F I G U R E  P3.26

3.27 A water-filled manometer is connected to a Pitot-static tube
to measure a nominal airspeed of 50 ft/s. It is assumed that a change
in the manometer reading of 0.002 in. can be detected. What is the
minimum deviation from the 50 ft/s airspeed that can be detected
by this system? Repeat the problem if the nominal airspeed is 5 ft/s.

F I G U R E  P3.28

30

25

20

15

10

5

0
0 0.05 0.1

D, in.

V
, 
ft

/s

0.15 0.2

3.29 (See Fluids in the News article titled “Pressurized eyes,”
Section 3.5.) Determine the air velocity needed to produce a stag-
nation pressure equal to 10 mm of mercury.

3.30 (See Fluids in the News article titled “Bugged and plugged
Pitot tubes,” Section 3.5.) An airplane’s Pitot tube used to indicate
airspeed is partially plugged by an insect nest so that it measures
60% of the stagnation pressure rather than the actual stagnation
pressure. If the airspeed indicator indicates that the plane is flying
150 mph, what is the actual airspeed?

Section 3.6.1 Free Jets

3.31 Obtain a photograph/image of a situation in which the con-
cept of a free jet is important. Print this photo and write a brief para-
graph that describes the situation involved.

3.32 Water flows through a hole in the bottom of a large, open tank
with a speed of 8 m/s. Determine the depth of water in the tank. Vis-
cous effects are negligible.

3.33 Water flows from the faucet on the first floor of the building
shown in Fig. P3.33 with a maximum velocity of 20 ftZs. For steady

V = 20 ft/s

12 ft

4 ft

4 ft

4 ft

8 ft

F I G U R E  P3.33
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inviscid flow, determine the maximum water velocity from the
basement faucet and from the faucet on the second floor 1assume
each floor is 12 ft tall2.

3.34 The “super soaker” water gun shown in Fig. P3.34 can
shoot more than 30 ft in the horizontal direction. Estimate the
minimum pressure, , needed in the chamber in order to ac-
complish this. List all assumptions and show all calculations.

p1

†

3.39 An inviscid, incompressible liquid flows steadily from the large
pressurized tank shown in Fig. P.3.39. The velocity at the exit is

Determine the specific gravity of the liquid in the tank.40 ft/s.

F I G U R E  P3.34

(1)

F I G U R E  P3.38

Air

20 ft

2 ft

2 in.

6 in.

3.35* An inviscid liquid drains from a large tank through a square
duct of width b as shown in Fig. P3.35. The velocity of the fluid at
the outlet is not precisely uniform because of the difference in ele-
vation across the outlet. If this difference in velocity is negli-
gible. For given b and h, determine as a function of x and integrate
the results to determine the average velocity, V� Q/b2. Plot the ve-
locity distribution, across the outlet if h� 1 and b� 0.1,
0.2, 0.4, 0.6, 0.8, and 1.0 m. How small must b be if the centerline
velocity, at x� b/2, is to be within 3% of the average velocity?v

v � v1x2,
v

b � h,

F I G U R E  P3.35

h

b/2

b

x υ = υ(x)

3.36 Several holes are punched into a tin can as shown in Fig.
P3.36. Which of the figures represents the variation of the water ve-
locity as it leaves the holes? Justify your choice.

(a) (b) (c)

F I G U R E  P3.36

3.37 Water flows from a garden hose nozzle with a velocity of
15 m/s. What is the maximum height that it can reach above the
nozzle?

3.38 Water flows from a pressurized tank, through a 6-in.-diameter
pipe, exits from a 2-in.-diameter nozzle, and rises 20 ft above the
nozzle as shown in Fig. P3.38. Determine the pressure in the tank if
the flow is steady, frictionless, and incompressible.

40 ft/s

10 ft

5 ft

10 psi

Liquid

Air

F I G U R E  P3.39

3.40 Water flows from the tank shown in Fig. P3.40. If viscous ef-
fects are negligible, determine the value of h in terms of H and the
specific gravity, SG, of the manometer fluid.

H

h

SG

F I G U R E  P3.40

3.41 (See Fluids in the News article titled “Armed with a water
jet for hunting,” Section 3.4.) Determine the pressure needed in
the gills of an archerfish if it can shoot a jet of water 1 m vertically
upward. Assume steady, inviscid flow.

Section 3.6.2 Confined Flows (Also see Lab Problems
3.118 and 3.120.)

3.42 Obtain a photograph/image of a situation that involves a con-
fined flow for which the Bernoulli and continuity equations are
important. Print this photo and write a brief paragraph that de-
scribes the situation involved.
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3.43 Air flows steadily through a horizontal 4-in.-diameter pipe and
exits into the atmosphere through a 3-in.-diameter nozzle. The veloc-
ity at the nozzle exit is 150 ft/s. Determine the pressure in the pipe if
viscous effects are negligible.

3.44 A fire hose nozzle has a diameter of in. According to some
fire codes, the nozzle must be capable of delivering at least
250 galZmin. If the nozzle is attached to a 3-in.-diameter hose, what
pressure must be maintained just upstream of the nozzle to deliver
this flowrate?

3.45 Water flowing from the 0.75-in.-diameter outlet shown in
Video V8.14 and Fig. P3.45 rises 2.8 in. above the outlet. Deter-
mine the flowrate.

11
8

Q

2.8 in.

0.75 in.

F I G U R E  P3.45

3.46 Pop (with the same properties as water) flows from a 
4-in.-diameter pop container that contains three holes as shown in
Fig. P3.46 (see Video 3.9). The diameter of each fluid stream is
0.15 in., and the distance between holes is 2 in. If viscous effects
are negligible and quasi-steady conditions are assumed, determine
the time at which the pop stops draining from the top hole. Assume
the pop surface is 2 in. above the top hole when Compare
your results with the time you measure from the video.

t � 0.

Surface at t = 0

2 in. 0.15 in.

2 in.

4 in.

2 in.

F I G U R E  P3.46

Q

10 m

1 m

2 m

p = 50 kPa

F I G U R E  P3.47

3.47 Water (assumed inviscid and incompressible) flows steadily
in the vertical variable-area pipe shown in Fig. P3.47. Determine
the flowrate if the pressure in each of the gages reads 50 kPa..

3.48 Air is drawn into a wind tunnel used for testing automobiles
as shown in Fig. P3.48. (a) Determine the manometer reading, h,
when the velocity in the test section is 60 mph. Note that there is a
1-in. column of oil on the water in the manometer. (b) Determine
the difference between the stagnation pressure on the front of the
automobile and the pressure in the test section.

Wind tunnel

Fan

60 mph

h

Water

Open

1 in.

Oil (SG = 0.9)

F I G U R E  P3.48

3.49 Small-diameter, high-pressure liquid jets can be used to cut
various materials as shown in Fig. P3.49. If viscous effects are negli-
gible, estimate the pressure needed to produce a 0.10-mm-diameter
water jet with a speed of 700 mZs. Determine the flowrate.

0.1 mm

F I G U R E  P3.49

3.50 Water (assumed inviscid and incompressible) flows steadily
with a speed of 10 ft/s from the large tank shown in Fig. P3.50. De-
termine the depth, H, of the layer of light liquid 

that covers the water in the tank.50 lb�ft32
1specific weight �

50 lb/ft3

4 ft
5 ft

10 ft/s

Water

H

F I G U R E  P3.50

3.51 Water flows through the pipe contraction shown in Fig. P3.51.
For the given 0.2-m difference in manometer level, determine the
flowrate as a function of the diameter of the small pipe, D.
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3.52 Water flows through the pipe contraction shown in Fig. P3.52.
For the given 0.2-m difference in the manometer level, determine
the flowrate as a function of the diameter of the small pipe, D.

0.2 m

Q
0.1 m D

F I G U R E  P3.51

0.2 m

Q
0.1 m D

F I G U R E  P3.52

Q
0.1 m

0.2 m

D

F I G U R E  P3.53

3.53 Water flows through the pipe contraction shown in Fig. P3.53.
For the given 0.2-m difference in the manometer level, determine
the flowrate as a function of the diameter of the small pipe, D.

3.54 A 0.15-m-diameter pipe discharges into a 0.10-m-diameter
pipe. Determine the velocity head in each pipe if they are carrying

of kerosene.

3.55 Carbon tetrachloride flows in a pipe of variable diameter with
negligible viscous effects. At point A in the pipe the pressure and
velocity are 20 psi and 30 ft/s, respectively. At location B the pres-
sure and velocity are 23 psi and 14 ft/s. Which point is at the higher
elevation and by how much?

3.56 The circular stream of water from a faucet is observed to ta-
per from a diameter of 20 mm to 10 mm in a distance of 50 cm. De-
termine the flowrate.

3.57 Water is siphoned from the tank shown in Fig. P3.57. The
water barometer indicates a reading of 30.2 ft. Determine the max-
imum value of h allowed without cavitation occurring. Note that
the pressure of the vapor in the closed end of the barometer equals
the vapor pressure.

3.58 As shown in Fig. P3.58, water from a large reservoir flows
without viscous effects through a siphon of diameter D and into a
tank. It exits from a hole in the bottom of the tank as a stream of di-
ameter d. The surface of the reservoir remains H above the bottom

0.12 m3�s

of the tank. For steady-state conditions, the water depth in the tank,
h, is constant. Plot a graph of the depth ratio h/H as a function of the
diameter ratio d/D.

3.59 A smooth plastic, 10-m-long garden hose with an inside diam-
eter of 20 mm is used to drain a wading pool as is shown in Fig. P3.59.
If viscous effects are neglected, what is the flowrate from the pool?

30.2 ft

6 ft

3-in.
diameter

h

Closed end

5-in. diameter

F I G U R E  P3.57

h
H

d

D

F I G U R E  P3.58

0.2 m

0.23 m

F I G U R E  P3.59

8 ft

6-in. diameter

4-in. diameter

(1)

h

V = 16 ft/s

F I G U R E  P3.60

3.60 Water exits a pipe as a free jet and flows to a height h above
the exit plane as shown in Fig. P3.60. The flow is steady, incom-
pressible, and frictionless. (a) Determine the height h. (b) Deter-
mine the velocity and pressure at section (1).
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3.61 Water flows steadily from a large, closed tank as shown in
Fig. P3.61. The deflection in the mercury manometer is 1 in. and
viscous effects are negligible. (a) Determine the volume flowrate.
(b) Determine the air pressure in the space above the surface of the
water in the tank.

8 ft
3-in. diameter

1-ft diameter

Mercury

1 in.

Air

F I G U R E  P3.61

F I G U R E  P3.67

F I G U R E  P3.68

F I G U R E  P3.63

3.62 Blood (SG� 1) flows with a velocity of 0.5 m/s in an artery.
It then enters an aneurysm in the artery (i.e., an area of weakened
and stretched artery walls that cause a ballooning of the vessel)
whose cross-sectional area is 1.8 times that of the artery. Determine
the pressure difference between the blood in the aneurysm and that
in the artery. Assume the flow is steady and inviscid.

3.63 Water flows steadily through the variable area pipe shown in
Fig. P3.63 with negligible viscous effects. Determine the manome-
ter reading, H, if the flowrate is 0.5 m3/s and the density of the
manometer fluid is 600 kg/m3.

H

Area = 0.05 m2 Area = 0.07 m2

Density = 600 kg/m3

3.64 Water flows steadily with negligible viscous effects through
the pipe shown in Fig. P3.64. It is known that the 4-in.-diameter
section of thin-walled tubing will collapse if the pressure within it
becomes less than 10 psi below atmospheric pressure. Determine
the maximum value that h can have without causing collapse of the
tubing.

4-in.-diameter thin-walled tubing

6 in.
h

4 ft

3.65 Helium flows through a 0.30-m-diameter horizontal pipe
with a temperature of and a pressure of 200 kPa (abs) at a rate20 °C

F I G U R E  P3.64

of 0.30 kg/s. If the pipe reduces to 0.25-m-diameter determine the
pressure difference between these two sections. Assume incom-
pressible, inviscid flow.

3.66 Water is pumped from a lake through an 8-in. pipe at a rate of
If viscous effects are negligible, what is the pressure in the

suction pipe 1the pipe between the lake and the pump2 at an eleva-
tion 6 ft above the lake?

3.67 Air flows through a Venturi channel of rectangular cross sec-
tion as shown in Video V3.10 and Fig. P3.67. The constant width of
the channel is 0.06 m and the height at the exit is 0.04 m. Com-
pressibility and viscous effects are negligible. (a) Determine the
flowrate when water is drawn up 0.10 m in a small tube attached
to the static pressure tap at the throat where the channel height is
0.02 m. (b) Determine the channel height, at section (2)
where, for the same flowrate as in part (a), the water is drawn up
0.05 m. (c) Determine the pressure needed at section (1) to pro-
duce this flow.

h2,

10 ft3�s.

Q
Air

0.02m

0.04 m 0.10 m

Water

0.05 m 0.04 m

(2)(1)

b = width = 0.06 m

h2

Free jet

3.68 Water flows steadily from the large open tank shown in Fig.
P3.68. If viscous effects are negligible, determine (a) the flowrate,
Q, and (b) the manometer reading, h.

0.10 m
0.08 m

2 m

4 m

Q

h

Mercury

3.69 Water from a faucet fills a 16-oz glass (volume � 28.9 in.3) in
20 s. If the diameter of the jet leaving the faucet is 0.60 in., what is
the diameter of the jet when it strikes the water surface in the glass
which is positioned 14 in. below the faucet?

3.70 Air flows steadily through a converging–diverging rectangu-
lar channel of constant width as shown in Fig. P3.70 and Video
V3.10. The height of the channel at the exit and the exit velocity
are and respectively. The channel is to be shaped so that the
distance, d, that water is drawn up into tubes attached to static
pressure taps along the channel wall is linear with distance along
the channel. That is, where L is the channel length
and is the maximum water depth (at the minimum channel
height; ). Determine the height, as a function of x and
the other important parameters.

H1x2,x � L
dmax

d � 1dmax�L2 x,

V0,H0



*3.71 The device shown in Fig. P3.71 is used to spray an appro-
priate mixture of water and insecticide. The flowrate from tank A is
to be QA  0.02 gal/min when the water flowrate through the hose
is Q  1 gal/min. Determine the pressure needed at point (1) and
the diameter, D, of the device For the diameter determined above,
plot the ratio of insecticide flowrate to water flowrate as a function
of water flowrate, Q, for gal/min. Can this device be
used to provide a reasonably constant ratio of insecticide to water
regardless of the water flowrate? Explain.

0.1 Q 1

3.74 Air at and 14.7 psia flows into the tank shown in Fig.
P3.74. Determine the flowrate in lbZs, and slugsZs. Assume in-
compressible flow.

ft3 s,
80 °F

3.75 Water flows from a large tank as shown in Fig. P3.75. At-
mospheric pressure is 14.5 psia, and the vapor pressure is 1.60 psia.
If viscous effects are neglected, at what height, h, will cavitation
begin? To avoid cavitation, should the value of be increased or
decreased? To avoid cavitation, should the value of be increased
or decreased? Explain.

D2

D1
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Water

dmax
d

Q
Air

H(x) H0

x = 0x = L

V0

L
x

F I G U R E  P3.70

F I G U R E  P3.74

F I G U R E  P3.75

F I G U R E  P3.71

F I G U R E  P3.72

F I G U R E  P3.73

(1)

D

Q + QA = Q

0.10-in. diameter

0.015-in.
diameter

Insecticide

Water

QA

A

Q

h = 6 in.

SG = 1.0

3.72 If viscous effects are neglected and the tank is large, deter-
mine the flowrate from the tank shown in Fig. P3.72.

Water

Oil,
SG = 0.81

2 m

0.7 m

50-mm
diameter

Oil SG = 0.7

Open

1.2 m

1 m

1.5 m

2 m

Q

0.6-in.
diameter

0.5 in. Hg vacuum

Pump

D3 = 4 in.

D1 = 1 in. D2 = 2 in.

h

3.76 Water flows into the sink shown in Fig. P3.76 and Video
V5.1 at a rate of 2 galZmin. If the drain is closed, the water will
eventually flow through the overflow drain holes rather than over
the edge of the sink. How many 0.4-in.-diameter drain holes are
needed to ensure that the water does not overflow the sink? Neglect
viscous effects.

3.73 Water flows steadily downward in the pipe shown in Fig.
3.73 with negligible losses. Determine the flowrate.



3.78 Water is siphoned from the tank shown in Fig. P3.78. Deter-
mine the flowrate from the tank and the pressures at points 112, 122,
and 132 if viscous effects are negligible.

3.79 Water is siphoned from a large tank and discharges into
the atmosphere through a 2-in.-diameter tube as shown in Fig.
P3.79. The end of the tube is 3 ft below the tank bottom, and vis-
cous effects are negligible. (a) Determine the volume flowrate
from the tank. (b) Determine the maximum height, H, over
which the water can be siphoned without cavitation occurring.
Atmospheric pressure is 14.7 psia, and the water vapor pressure
is 0.26 psia.

3.81 Air flows steadily through the variable area pipe shown in
Fig. P3.81. Determine the flowrate if viscous and compressibility
effects are negligible.

3.82 JP-4 fuel flows through the Venturi meter
shown in Fig. P3.82 with a velocity of 15 ftZs in the 6-in. pipe.
If viscous effects are negligible, determine the elevation, h, of
the fuel in the open tube connected to the throat of the Venturi
meter.

1SG � 0.772
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F I G U R E  P3.77

F I G U R E  P3.78

F I G U R E  P3.80

F I G U R E  P3.81

F I G U R E  P3.79F I G U R E  P3.76

3.77 What pressure, is needed to produce a flowrate of
0.09 from the tank shown in Fig. P3.77?ft3�s

p1,

Q = 2 gal/min

1 in.

0.4-in. diameter
holes

Stopper

Air

p1

Gasoline

Salt water
SG = 1.1

0.06-ft diameter

3.6 ft

2.0 ft

(1)

(2)
(3)

5 ft
4 ft

0.1 ft

3 ft

H

2-in. diameter

3 ft

9 ft

3.80 Determine the manometer reading, h, for the flow shown in
Fig. P3.80.

h
0.37 m

0.05-m diameter

Free
jet

0.08-m
diameter

0.1 m

Water

0.1 m

0.2 m



3.85 Water, considered an inviscid, incompressible fluid, flows
steadily as shown in Fig. P3.85. Determine h.

3.86 Determine the flowrate through the submerged orifice shown
in Fig. P3.86 if the contraction coefficient is Cc 0.63.

*3.87 An inexpensive timer is to be made from a funnel as indi-
cated in Fig. P3.87. The funnel is filled to the top with water and the
plug is removed at time t  0 to allow the water to run out. Marks
are to be placed on the wall of the funnel indicating the time in 15-s
intervals, from 0 to 3 min (at which time the funnel becomes empty).
If the funnel outlet has a diameter of d  0.1 in., draw to scale the
funnel with the timing marks for funnels with angles of , 45,
and 60°. Repeat the problem if the diameter is changed to 0.05 in.

u 30

142 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

0.8 ft

5 ft

Q A = 50 in.2

A = 20 in.2

Oil
SG = 0.86

SG = 2.5

F I G U R E  P3.84

F I G U R E  P3.85

0.5-ft diameter 1-ft diameter

Q = 4 ft3/s

3 ft

Water

Air
h

d

q

15
30

45
1:00

Plug

1:15

F I G U R E  P3.87

2 ft

0.1 in.

90°

F I G U R E  P3.88

*3.89 A spherical tank of diameter D has a drain hole of diameter
d at its bottom. A vent at the top of the tank maintains atmospheric
pressure at the liquid surface within the tank. The flow is quasi-
steady and inviscid and the tank is full of water initially. Determine
the water depth as a function of time, and plot graphs of
h 1t2 for tank diameters of 1, 5, 10, and 20 ft if 

3.90 When the drain plug is pulled, water flows from a hole in the
bottom of a large, open cylindrical tank. Show that if viscous ef-
fects are negligible and if the flow is assumed to be quasisteady,
then it takes 3.41 times longer to empty the entire tank than it does
to empty the first half of the tank. Explain why this is so.

*3.91 The surface area, A, of the pond shown in Fig. P3.91 varies
with the water depth, h, as shown in the table. At time a valve ist 0

d 1 in.
h h1t2,

F I G U R E  P3.82

V = 15 ft/s

h

6 in.

8 in.
4 in.

JP-4 fuel

6 ft

6 in.

20°

3.83 Repeat Problem 3.82 if the flowing fluid is water rather than
JP-4 fuel.

3.84 Oil flows through the system shown in Fig. P3.84 with negli-
gible losses. Determine the flowrate.

2 ft

6 ft

4 ft

3-in.
diameter

F I G U R E  P3.86

3.88 A long water trough of triangular cross section is formed from
two planks as is shown in Fig. P3.88. A gap of 0.1 in. remains at the
junction of the two planks. If the water depth initially was 2 ft, how
long a time does it take for the water depth to reduce to 1 ft?



3.92 Water flows through a horizontal branching pipe as shown in
Fig. P3.92. Determine the pressure at section (3).

3.93 Water flows through the horizontal branching pipe shown in
Fig. P3.93 at a rate of If viscous effects are negligible, de-
termine the water speed at section 122, the pressure at section 132,
and the flowrate at section 142.

10 ft3�s.

3.94 Water flows from a large tank through a large pipe that splits
into two smaller pipes as shown in Fig. P3.94. If viscous effects are
negligible, determine the flowrate from the tank and the pressure at
point 112.

3.95 An air cushion vehicle is supported by forcing air into the
chamber created by a skirt around the periphery of the vehicle as
shown in Fig. P3.95. The air escapes through the 3-in. clearance be-
tween the lower end of the skirt and the ground (or water). Assume
the vehicle weighs 10,000 lb and is essentially rectangular in shape,
30 by 65 ft. The volume of the chamber is large enough so that the
kinetic energy of the air within the chamber is negligible. Deter-
mine the flowrate, Q, needed to support the vehicle. If the ground
clearance were reduced to 2 in., what flowrate would be needed? If
the vehicle weight were reduced to 5000 lb and the ground clear-
ance maintained at 3 in., what flowrate would be needed?

3.96 Water flows from the pipe shown in Fig. P3.96 as a free jet and
strikes a circular flat plate. The flow geometry shown is axisymmet-
rical. Determine the flowrate and the manometer reading, H.

3.97 Air flows from a hole of diameter 0.03 m in a flat plate as
shown in Fig. P3.97. A circular disk of diameter D is placed a dis-
tance h from the lower plate. The pressure in the tank is maintained
at 1 kPa. Determine the flowrate as a function of h if viscous
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Area A

h

D

3 ft

F I G U R E  P3.91

F I G U R E  P3.92

F I G U R E  P3.95

h (ft) A [acres (1 acre � 43,560 ft2)]

0 0
2 0.3
4 0.5
6 0.8
8 0.9

10 1.1
12 1.5
14 1.8
16 2.4
18 2.8

V1 = 4 m/s
p1 = 400 kPa
A1 = 0.1 m2

V2

V3

p2 = 350 kPa

A3 = 0.07 m2

A2 = 0.02 m2(2)

(3)

(1)

A1 = 1 ft2

Q1 = 10 ft3/s
p1 = 10 psi

A2 = 0.07 ft2

p2 = 5.0 psi

(2)

A3 = 0.2 ft2

V3 = 20 ft /s

(4)

(3)

(1)

F I G U R E  P3.93

F I G U R E  P3.96

7 m

3 m

0.05-m diameter

0.03-m diameter

0.02-m diameter
(1)

F I G U R E  P3.94

Skirt

Fan
Vehicle

3 in.

Q

V

0.2 m

0.01-m
diameter

0.4 mm

0.1-m
diameter

H

Q

Pipe

opened and the pond is allowed to drain through a pipe of diameter D.
If viscous effects are negligible and quasisteady conditions are as-
sumed, plot the water depth as a function of time from when the valve
is opened until the pond is drained for pipe diameters of

and 3.0 ft. Assume at .t � 0h � 18 ftD � 0.5, 1.0, 1.5, 2.0, 2.5,
1t � 02



3.99 Water flows steadily from a nozzle into a large tank as shown
in Fig. P3.99. The water then flows from the tank as a jet of diame-
ter d. Determine the value of d if the water level in the tank remains
constant. Viscous effects are negligible.

3.100 A small card is placed on top of a spool as shown in
Fig. P3.100. It is not possible to blow the card off the spool by
blowing air through the hole in the center of the spool. The harder
one blows, the harder the card “sticks” to the spool. In fact, by
blowing hard enough it is possible to keep the card against the

spool with the spool turned upside down. 1Note: It may be neces-
sary to use a thumb tack to prevent the card from sliding from the
spool.2 Explain this phenomenon.

3.101 Water flows down the sloping ramp shown in Fig. P3.101
with negligible viscous effects. The flow is uniform at sections 112
and 122. For the conditions given, show that three solutions for the
downstream depth, are obtained by use of the Bernoulli and con-
tinuity equations. However, show that only two of these solutions
are realistic. Determine these values.

h2,

3.102 Water flows in a rectangular channel that is 2.0 m wide as
shown in Fig. P3.102. The upstream depth is 70 mm. The water sur-
face rises 40 mm as it passes over a portion where the channel bottom
rises 10 mm. If viscous effects are negligible, what is the flowrate?

*3.103 Water flows up the ramp shown in Fig. P3.103 with negligi-
ble viscous losses. The upstream depth and velocity are maintained at

and Plot a graph of the downstream depth,
as a function of the ramp height, H, for Note that

for each value of H there are three solutions, not all of which are re-
alistic.

0 � H � 2 m.h2,
V1 � 6 m �s.h1 � 0.3 m
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0.23 mQ = 0.50 m3/s

Pipe

Free jet

0.20 m

V

V

0.02 m

Cone

F I G U R E  P3.98

F I G U R E  P3.99

1 ft

3 ft

4 ft

d

0.15-ft diameter

0.1-ft diameter

Q

Card

Spool

F I G U R E  P3.100

V1 = 10 ft/s h1 = 1 ft h2

H = 2 ft V2

F I G U R E  P3.101

F I G U R E  P3.102

F I G U R E  P3.103

Q 10 mm

100 mm

70 mm

V1 = 6 m/s

V2

H

h2

h1 = 0.3 m

effects and elevation changes are assumed negligible and the flow
exits radially from the circumference of the circular disk with uni-
form velocity.

3.98 A conical plug is used to regulate the air flow from the
pipe shown in Fig. P3.98. The air leaves the edge of the cone
with a uniform thickness of 0.02 m. If viscous effects are negli-
gible and the flowrate is determine the pressure
within the pipe.

0.50 m3�s,

F I G U R E  P3.97

p = 1.0 kPa

h

D = 0.15 m

0.03-m diameter

Tank

Plate



3.107 For what flowrate through the Venturi meter of Problem
3.106 will cavitation begin if kPa gage, atmospheric pres-
sure is 101 kPa 1abs2, and the vapor pressure is 3.6 kPa 1abs2?
3.108 What diameter orifice hole, d, is needed if under ideal con-
ditions the flowrate through the orifice meter of Fig. P3.108 is to be
30 galZmin of seawater with The contrac-
tion coefficient is assumed to be 0.63.

p1 � p2 � 2.37 lb�in.2?

p1 � 275

3.109 Water flows over a weir plate (see Video V10.13) which has
a parabolic opening as shown in Fig. P3.109. That is, the opening in
the weir plate has a width where C is a constant. Determine
the functional dependence of the flowrate on the head, Q � Q1H2.

CH1�2,

3.110 A weir (see Video V10.13) of trapezoidal cross section is
used to measure the flowrate in a channel as shown in Fig. P3.110.
If the flowrate is when what flowrate is expected
when H � /?

H � /�2,Q0

3.111 The flowrate in a water channel is sometimes determined by
use of a device called a Venturi flume. As shown in Fig. P3.111, this
device consists simply of a hump on the bottom of the channel. If
the water surface dips a distance of 0.07 m for the conditions
shown, what is the flowrate per width of the channel? Assume the
velocity is uniform and viscous effects are negligible.

3.112 Water flows under the inclined sluice gate shown in
Fig. P3.112. Determine the flowrate if the gate is 8 ft wide.

Section 3.7 The Energy Line and the Hydraulic
Grade Line

3.113 Water flows in a vertical pipe of 0.15-m diameter at a rate of
and a pressure of 200 kPa at an elevation of 25 m. Determine

the velocity head and pressure head at elevations of 20 and 55 m.

3.114 Draw the energy line and the hydraulic grade line for the
flow shown in Problem 3.78.

3.115 Draw the energy line and the hydraulic grade line for the
flow of Problem 3.75.

3.116 Draw the energy line and hydraulic grade line for the flow
shown in Problem 3.64.

Section 3.8 Restrictions on the Use of the Bernoulli
Equation

3.117 Obtain a photograph/image of a flow in which it would not
be appropriate to use the Bernoulli equation. Print this photo and
write a brief paragraph that describes the situation involved.

0.2 m3�s
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Section 3.6.3 Flowrate Measurement (Also see Lab
Problems 3.119 and 3.121.)

3.104 Obtain a photograph/image of a situation that involves some
type of flow meter. Print this photo and write a brief paragraph that
describes the situation involved.

3.105 A Venturi meter with a minimum diameter of 3 in. is to be
used to measure the flowrate of water through a 4-in.-diameter
pipe. Determine the pressure difference indicated by the pressure
gage attached to the flow meter if the flowrate is 0.5 ft3/s and vis-
cous effects are negligible.

3.106 Determine the flowrate through the Venturi meter shown in
Fig. P3.106 if ideal conditions exist.

F I G U R E  P3.108

F I G U R E  P3.109

F I G U R E  P3.112

F I G U R E  P3.110

F I G U R E  P3.111

F I G U R E  P3.106

p1 = 735 kPa p2 = 550 kPa

Q
19 mm31 mm

γ = 9.1 kN/m3

p1 p2

2-in.
diameter

d
Q

Q

CH1/2

H

H

�

30°

0.07 m

0.2 m

1.2 m
V2V1

6 ft

1.6 ft
1 ft

30°



■ Lab Problems

3.118 This problem involves the pressure distribution between
two parallel circular plates. To proceed with this problem, go to Ap-
pendix H which is located on the book’s web site, www.wiley.com/
college/munson.

3.119 This problem involves the calibration of a nozzle-type
flow meter. To proceed with this problem, go to Appendix H which
is located on the book’s web site, www.wiley.com/college/munson.

3.120 This problem involves the pressure distribution in a two-
dimensional channel. To proceed with this problem, go to Appen-
dix H which is located on the book’s web site, www.wiley.com/
college/munson.

3.121 This problem involves the determination of the flowrate un-
der a sluice gate as a function of the water depth. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

■ Life Long Learning Problems

3.122 The concept of the use of a Pitot-static tube to measure the
airspeed of an airplane is rather straightforward. However, the de-
sign and manufacture of reliable, accurate, inexpensive Pitot-static
tube airspeed indicators is not necessarily simple. Obtain informa-
tion about the design and construction of modern Pitot-static tubes.
Summarize your findings in a brief report.

3.123 In recent years damage due to hurricanes has been signifi-
cant, particularly in the southeastern United States. The low baro-
metric pressure, high winds, and high tides generated by hurri-
canes can combine to cause considerable damage. According to
some experts, in the coming years hurricane frequency may in-
crease because of global warming. Obtain information about the
fluid mechanics of hurricanes. Summarize your findings in a brief
report.

3.124 Orifice, nozzle, or Venturi flow meters have been used for a
long time to predict accurately the flowrate in pipes. However, re-
cently there have been several new concepts suggested or used for
such flowrate measurements. Obtain information about new meth-
ods to obtain pipe flowrate information. Summarize your findings
in a brief report.

3.125 Ultra-high-pressure, thin jets of liquids can be used to cut
various materials ranging from leather to steel and beyond. Ob-
tain information about new methods and techniques proposed for
liquid jet cutting and investigate how they may alter various
manufacturing processes. Summarize your findings in a brief
report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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