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CHAPTER OPENING PHOTO: A vortex ring: The complex, three-dimensional structure of a smoke ring is indi-
cated in this cross-sectional view. 1Smoke in air.2 3Photograph courtesy of R. H. Magarvey and C. S.
MacLatchy 1Ref. 42.4

Lear n in g  Ob je c t ive s

After completing this chapter, you should be able to:

■ discuss the differences between the Eulerian and Lagrangian descriptions of
fluid motion.

■ identify various flow characteristics based on the velocity field.

■ determine the streamline pattern and acceleration field given a velocity field.

■ discuss the differences between a system and control volume.

■ apply the Reynolds transport theorem and the material derivative.

In this chapter we will discuss various aspects of fluid motion without being concerned with the
actual forces necessary to produce the motion. That is, we will consider the kinematics of the
motion—the velocity and acceleration of the fluid, and the description and visualization of its motion.
The analysis of the specific forces necessary to produce the motion 1the dynamics of the motion2
will be discussed in detail in the following chapters. A wide variety of useful information can be
gained from a thorough understanding of fluid kinematics. Such an understanding of how to describe
and observe fluid motion is an essential step to the complete understanding of fluid dynamics.

Fluid KinematicsFluid Kinematics

V4.1 Streaklines

In general, fluids flow. That is, there is a net motion of molecules from one point in space to another
point as a function of time. As is discussed in Chapter 1, a typical portion of fluid contains so
many molecules that it becomes totally unrealistic 1except in special cases2 for us to attempt to
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account for the motion of individual molecules. Rather, we employ the continuum hypothesis and
consider fluids to be made up of fluid particles that interact with each other and with their
surroundings. Each particle contains numerous molecules. Thus, we can describe the flow of a fluid
in terms of the motion of fluid particles rather than individual molecules. This motion can be
described in terms of the velocity and acceleration of the fluid particles.

The infinitesimal particles of a fluid are tightly packed together 1as is implied by the continuum
assumption2. Thus, at a given instant in time, a description of any fluid property 1such as density,
pressure, velocity, and acceleration2 may be given as a function of the fluid’s location. This
representation of fluid parameters as functions of the spatial coordinates is termed a field
representation of the flow. Of course, the specific field representation may be different at different
times, so that to describe a fluid flow we must determine the various parameters not only as a
function of the spatial coordinates 1x, y, z, for example2 but also as a function of time, t. Thus, to
completely specify the temperature, T, in a room we must specify the temperature field,

throughout the room 1from floor to ceiling and wall to wall2 at any time of the
day or night.

Shown in the margin figure is one of the most important fluid variables, the velocity field,

where u, and w are the x, y, and z components of the velocity vector. By definition, the velocity
of a particle is the time rate of change of the position vector for that particle. As is illustrated in
Fig. 4.1, the position of particle A relative to the coordinate system is given by its position vector,

which 1if the particle is moving2 is a function of time. The time derivative of this position gives
the velocity of the particle, By writing the velocity for all of the particles we can
obtain the field description of the velocity vector 

Since the velocity is a vector, it has both a direction and a magnitude. The magnitude of V,
denoted is the speed of the fluid. 1It is very common in practicalV � 0V 0 � 1u2 � v2 � w221�2,

V � V1x, y, z, t2.
drA�dt � VA.

rA,

v,

V � u1x, y, z, t2 î � v1x, y, z, t2ĵ � w1x, y, z, t2k̂

T � T 1x, y, z, t2,
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Follow those particles Superimpose two photographs of a
bouncing ball taken a short time apart and draw an arrow between
the two images of the ball. This arrow represents an approxima-
tion of the velocity (displacement/time) of the ball. The particle
image velocimeter (PIV) uses this technique to provide the in-
stantaneous velocity field for a given cross section of a flow. The
flow being studied is seeded with numerous micron-sized parti-
cles which are small enough to follow the flow yet big enough to
reflect enough light to be captured by the camera. The flow is

illuminated with a light sheet from a double-pulsed laser. A digi-
tal camera captures both light pulses on the same image frame,
allowing the movement of the particles to be tracked. By using
appropriate computer software to carry out a pixel-by-pixel inter-
rogation of the double image, it is possible to track the motion of
the particles and determine the two components of velocity in the
given cross section of the flow. By using two cameras in a stereo-
scopic arrangement it is possible to determine all three compo-
nents of velocity. (See Problem 4.62.)

V4.2 Velocity field

V4.3 Cylinder-
velocity vectors

situations to call V velocity rather than speed, i.e., “the velocity of the fluid is 12 mZs.”2 As is
discussed in the next section, a change in velocity results in an acceleration. This acceleration may
be due to a change in speed and/or direction.
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GIVEN A velocity field is given by 
where and are constants. /V0

V � 1V0�/2 1� xî � yĵ 2

SOLUTION

Velocity Field Representation

indicating that the flow is directed away from the ori-
gin along the y axis and toward the origin along the x axis as
shown in Fig. E4.1a.

By determining V and for other locations in the x–y plane, the
velocity field can be sketched as shown in the figure. For example,
on the line the velocity is at angle relative to the x axis

At the origin so that
This point is a stagnation point. The farther from the origin

the fluid is, the faster it is flowing 1as seen from Eq. 12. By careful
consideration of the velocity field it is possible to determine consid-
erable information about the flow.

COMMENT The velocity field given in this example approxi-
mates the flow in the vicinity of the center of the sign shown in
Fig. E4.1c. When wind blows against the sign, some air flows
over the sign, some under it, producing a stagnation point as indi-
cated.

V � 0.
x � y � 01tan u � v�u � �y�x � �12.

a 45°y � x

u

1if V0 7 02

E XAMPLE 4.1

The x, y, and z components of the velocity are given by
and so that the fluid speed, V, is

(1)

The speed is at any location on the circle of radius centered
at the origin as shown in Fig. E4.1a. (Ans)

The direction of the fluid velocity relative to the x axis is given
in terms of as shown in Fig. E4.1b. For this flow

Thus, along the x axis we see that so that
or Similarly, along the y axis we ob-

tain so that or Also, for we
find while for we have V � 1V0y�/2 ĵ,x � 0V � 1�V0 x�/2 î,

y � 0u � 270°.u � 90°tan u � �q
1x � 02u � 180°.u � 0°

tan u � 0,1y � 02

tan u �
v
u
�

V0 y�/
�V0 x�/

�
y

�x

1v�u2u � arctan

3 1x2 � y221�2 � / 4
/V � V0

V � 1u2 � v2 � w221�2 � V0

/
 1x 2 � y 221� 2

w � 0u � �V0 x�/, v � V0 y�/,

FIND At what location in the flow field is the speed equal to
Make a sketch of the velocity field for by drawing ar-

rows representing the fluid velocity at representative locations.
x � 0V0?

θ
V

u

(b)

v

(c)
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The figure in the margin shows the velocity field (i.e., velocity vectors) for flow past two
square bars. It is possible to obtain much qualitative and quantitative information for complex
flows by using plots such as this.

4.1.1 Eulerian and Lagrangian Flow Descriptions

There are two general approaches in analyzing fluid mechanics problems 1or problems in other
branches of the physical sciences, for that matter2. The first method, called the Eulerian method,
uses the field concept introduced above. In this case, the fluid motion is given by completely
prescribing the necessary properties 1pressure, density, velocity, etc.2 as functions of space and time.
From this method we obtain information about the flow in terms of what happens at fixed points
in space as the fluid flows through those points.

A typical Eulerian representation of the flow is shown by the figure in the margin which
involves flow past a row of turbine blades as occurs in a jet engine. The pressure field is indicated
by using a contour plot showing lines of constant pressure, with grey shading indicating the intensity
of the pressure.

The second method, called the Lagrangian method, involves following individual fluid
particles as they move about and determining how the fluid properties associated with these particles
change as a function of time. That is, the fluid particles are “tagged” or identified, and their
properties determined as they move.

The difference between the two methods of analyzing fluid flow problems can be seen in the
example of smoke discharging from a chimney, as is shown in Fig. 4.2. In the Eulerian method one
may attach a temperature-measuring device to the top of the chimney 1point 02 and record the
temperature at that point as a function of time. At different times there are different fluid particles
passing by the stationary device. Thus, one would obtain the temperature, T, for that location

and as a function of time. That is, The use of numerous
temperature-measuring devices fixed at various locations would provide the temperature field,

The temperature of a particle as a function of time would not be known unless the
location of the particle were known as a function of time.

In the Lagrangian method, one would attach the temperature-measuring device to a particular
fluid particle 1particle A2 and record that particle’s temperature as it moves about. Thus, one would
obtain that particle’s temperature as a function of time, The use of many such measuring
devices moving with various fluid particles would provide the temperature of these fluid particles
as a function of time. The temperature would not be known as a function of position unless the
location of each particle were known as a function of time. If enough information in Eulerian form
is available, Lagrangian information can be derived from the Eulerian data—and vice versa.

Example 4.1 provides an Eulerian description of the flow. For a Lagrangian description we
would need to determine the velocity as a function of time for each particle as it flows along from
one point to another.

In fluid mechanics it is usually easier to use the Eulerian method to describe a flow—in
either experimental or analytical investigations. There are, however, certain instances in which the
Lagrangian method is more convenient. For example, some numerical fluid mechanics calculations
are based on determining the motion of individual fluid particles 1based on the appropriate
interactions among the particles2, thereby describing the motion in Lagrangian terms. Similarly, in

TA � TA1t2.

T � T1x, y, z, t2.

T � T 1x0, y0, z0, t2.z � z021x � x0, y � y0,
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F I G U R E  4.2 Eulerian and
Lagrangian descriptions of temperature of a
flowing fluid.
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some experiments individual fluid particles are “tagged” and are followed throughout their motion,
providing a Lagrangian description. Oceanographic measurements obtained from devices that flow
with the ocean currents provide this information. Similarly, by using X-ray opaque dyes it is possible
to trace blood flow in arteries and to obtain a Lagrangian description of the fluid motion. A
Lagrangian description may also be useful in describing fluid machinery 1such as pumps and
turbines2 in which fluid particles gain or lose energy as they move along their flow paths.

Another illustration of the difference between the Eulerian and Lagrangian descriptions can
be seen in the following biological example. Each year thousands of birds migrate between their
summer and winter habitats. Ornithologists study these migrations to obtain various types of
important information. One set of data obtained is the rate at which birds pass a certain location on
their migration route 1birds per hour2. This corresponds to an Eulerian description—“flowrate” at a
given location as a function of time. Individual birds need not be followed to obtain this information.
Another type of information is obtained by “tagging” certain birds with radio transmitters and
following their motion along the migration route. This corresponds to a Lagrangian description—
“position” of a given particle as a function of time.

4.1.2 One-, Two-, and Three-Dimensional Flows

Generally, a fluid flow is a rather complex three-dimensional, time-dependent phenomenon—
In many situations, however, it is possible to make simplifying

assumptions that allow a much easier understanding of the problem without sacrificing needed
accuracy. One of these simplifications involves approximating a real flow as a simpler one- or two-
dimensional flow.

In almost any flow situation, the velocity field actually contains all three velocity components
1u, and w, for example2. In many situations the three-dimensional flow characteristics are
important in terms of the physical effects they produce. (See the photograph at the beginning of
Chapter 4.) For these situations it is necessary to analyze the flow in its complete three-dimensional
character. Neglect of one or two of the velocity components in these cases would lead to considerable
misrepresentation of the effects produced by the actual flow.

The flow of air past an airplane wing provides an example of a complex three-dimensional
flow. A feel for the three-dimensional structure of such flows can be obtained by studying Fig. 4.3,
which is a photograph of the flow past a model wing; the flow has been made visible by using a
flow visualization technique.

In many situations one of the velocity components may be small 1in some sense2 relative to
the two other components. In situations of this kind it may be reasonable to neglect the smaller
component and assume two-dimensional flow. That is, where u and are functions
of x and y 1and possibly time, t2.

It is sometimes possible to further simplify a flow analysis by assuming that two of the
velocity components are negligible, leaving the velocity field to be approximated as a one-
dimensional flow field. That is, As we will learn from examples throughout the remainder
of the book, although there are very few, if any, flows that are truly one-dimensional, there are

V � uî.

vV � uî � vĵ,

v,

V � V1x, y, z, t2 � uî � vĵ � wk̂.
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Most flow fields
are actually three-
dimensional.

F I G U R E  4.3
Flow visualization of the
complex three-dimensional
flow past a model wing.
(Photograph by M. R. Head.)

V4.4 Follow the par-
ticles (experiment)

V4.5 Follow the par-
ticles (computer)

V4.6 Flow past a
wing



many flow fields for which the one-dimensional flow assumption provides a reasonable
approximation. There are also many flow situations for which use of a one-dimensional flow field
assumption will give completely erroneous results.

4.1.3 Steady and Unsteady Flows

In the previous discussion we have assumed steady flow—the velocity at a given point in space does
not vary with time, In reality, almost all flows are unsteady in some sense. That is, the
velocity does vary with time. It is not difficult to believe that unsteady flows are usually more difficult
to analyze 1and to investigate experimentally2 than are steady flows. Hence, considerable simplicity
often results if one can make the assumption of steady flow without compromising the usefulness of
the results. Among the various types of unsteady flows are nonperiodic flow, periodic flow, and truly
random flow. Whether or not unsteadiness of one or more of these types must be included in an
analysis is not always immediately obvious.

An example of a nonperiodic, unsteady flow is that produced by turning off a faucet to stop
the flow of water. Usually this unsteady flow process is quite mundane and the forces developed
as a result of the unsteady effects need not be considered. However, if the water is turned off
suddenly 1as with the electrically operated valve in a dishwasher shown in the figure in the margin2,
the unsteady effects can become important [as in the “water hammer” effects made apparent by
the loud banging of the pipes under such conditions 1Ref. 12].

In other flows the unsteady effects may be periodic, occurring time after time in basically
the same manner. The periodic injection of the air–gasoline mixture into the cylinder of an
automobile engine is such an example. The unsteady effects are quite regular and repeatable in a
regular sequence. They are very important in the operation of the engine.

0V�0t � 0.
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New pulsed liquid-jet scalpel High-speed liquid-jet cutters are
used for cutting a wide variety of materials such as leather
goods, jigsaw puzzles, plastic, ceramic, and metal. Typically,
compressed air is used to produce a continuous stream of water
that is ejected from a tiny nozzle. As this stream impacts the ma-
terial to be cut, a high pressure (the stagnation pressure) is pro-
duced on the surface of the material, thereby cutting the mater-
ial. Such liquid-jet cutters work well in air, but are difficult to
control if the jet must pass through a liquid as often happens in

surgery. Researchers have developed a new pulsed jet cutting
tool that may allow surgeons to perform microsurgery on tissues
that are immersed in water. Rather than using a steady water jet,
the system uses unsteady flow. A high-energy electrical dis-
charge inside the nozzle momentarily raises the temperature of
the microjet to approximately . This creates a rapidly
expanding vapor bubble in the nozzle and expels a tiny fluid jet
from the nozzle. Each electrical discharge creates a single, brief
jet, which makes a small cut in the material.

10,000 °C

In many situations the unsteady character of a flow is quite random. That is, there is no
repeatable sequence or regular variation to the unsteadiness. This behavior occurs in turbulent
flow and is absent from laminar flow. The “smooth” flow of highly viscous syrup onto a pancake
represents a “deterministic” laminar flow. It is quite different from the turbulent flow observed in
the “irregular” splashing of water from a faucet onto the sink below it. The “irregular” gustiness
of the wind represents another random turbulent flow. The differences between these types of
flows are discussed in considerable detail in Chapters 8 and 9.

It must be understood that the definition of steady or unsteady flow pertains to the behavior
of a fluid property as observed at a fixed point in space. For steady flow, the values of all fluid
properties 1velocity, temperature, density, etc.2 at any fixed point are independent of time. However,
the value of those properties for a given fluid particle may change with time as the particle flows
along, even in steady flow. Thus, the temperature of the exhaust at the exit of a car’s exhaust pipe
may be constant for several hours, but the temperature of a fluid particle that left the exhaust pipe
five minutes ago is lower now than it was when it left the pipe, even though the flow is steady.

4.1.4 Streamlines, Streaklines, and Pathlines

Although fluid motion can be quite complicated, there are various concepts that can be used to
help in the visualization and analysis of flow fields. To this end we discuss the use of streamlines,

V4.7 Flow types

V4.8 Jupiter red
spot



streaklines, and pathlines in flow analysis. The streamline is often used in analytical work while
the streakline and pathline are often used in experimental work.

A streamline is a line that is everywhere tangent to the velocity field. If the flow is steady,
nothing at a fixed point 1including the velocity direction2 changes with time, so the streamlines
are fixed lines in space. (See the photograph at the beginning of Chapter 6.) For unsteady flows
the streamlines may change shape with time. Streamlines are obtained analytically by integrating
the equations defining lines tangent to the velocity field. As illustrated in the margin figure, for
two-dimensional flows the slope of the streamline, must be equal to the tangent of the
angle that the velocity vector makes with the x axis or

(4.1)

If the velocity field is known as a function of x and y 1and t if the flow is unsteady2, this equation
can be integrated to give the equation of the streamlines.

For unsteady flow there is no easy way to produce streamlines experimentally in the laboratory.
As discussed below, the observation of dye, smoke, or some other tracer injected into a flow can provide
useful information, but for unsteady flows it is not necessarily information about the streamlines.

dy

dx
�
v
u

dy�dx,
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V4.9 Streamlines

GIVEN Consider the two-dimensional steady flow discussed
in Example 4.1, V � 1V0�/2 1�xî � yĵ 2.

SOLUTION

F I G U R E  E4.2

Streamlines for a Given Velocity Field

y

4

–4

2

0
2 x

C = 1

C = –1

C = 4

C = –4

C = 9

C = –9
–2

4

E XAMPLE 4.2

Since 

and (1)

it follows that streamlines are given by solution of the equation

in which variables can be separated and the equation integrated to
give

or

Thus, along the streamline

(Ans)

By using different values of the constant C, we can plot various
lines in the x–y plane—the streamlines. The streamlines for 
are plotted in Fig. E4.2. A comparison of this figure with Fig.
E4.1a illustrates the fact that streamlines are lines tangent to the
velocity field.

COMMENT Note that a flow is not completely specified by
the shape of the streamlines alone. For example, the streamlines
for the flow with have the same shape as those for the
flow with . However, the direction of the flow is op-
posite for these two cases. The arrows in Fig. E4.2 representing the
flow direction are correct for since, from Eq. 1,

and That is, the flow is from right to left. For
the arrows are reversed. The flow is from left to right.V0�/ � �10
v � 10y.u � �10x

V0�/ � 10

V0�/ � �10
V0�/ � 10

x � 0

xy � C,  where C is a constant

ln y � �ln x � constant

�  dy

y
� ��  dx

x

dy

dx
�
v
u
�
1V0�/2y
�1V0�/2x � �

y

x

v � 1V0�/2yu � 1�V0�/2x

FIND Determine the streamlines for this flow.



A streakline consists of all particles in a flow that have previously passed through a common
point. Streaklines are more of a laboratory tool than an analytical tool. They can be obtained by
taking instantaneous photographs of marked particles that all passed through a given location in
the flow field at some earlier time. Such a line can be produced by continuously injecting marked
fluid 1neutrally buoyant smoke in air, or dye in water2 at a given location 1Ref. 22. (See Fig. 9.1.)
If the flow is steady, each successively injected particle follows precisely behind the previous one,
forming a steady streakline that is exactly the same as the streamline through the injection point.

For unsteady flows, particles injected at the same point at different times need not follow the
same path. An instantaneous photograph of the marked fluid would show the streakline at that instant,
but it would not necessarily coincide with the streamline through the point of injection at that particular
time nor with the streamline through the same injection point at a different time 1see Example 4.32.

The third method used for visualizing and describing flows involves the use of pathlines. A
pathline is the line traced out by a given particle as it flows from one point to another. The pathline
is a Lagrangian concept that can be produced in the laboratory by marking a fluid particle 1dying
a small fluid element2 and taking a time exposure photograph of its motion. (See the photograph
at the beginning of Chapter 7)
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V4.10 Streaklines
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Air bridge spanning the oceans It has long been known that
large quantities of material are transported from one location to
another by airborne dust particles. It is estimated that 2 billion
metric tons of dust are lifted into the atmosphere each year.
Most of these particles settle out fairly rapidly, but significant
amounts travel large distances. Scientists are beginning to un-
derstand the full impact of this phenomena—it is not only the
tonnage transported, but the type of material transported that is
significant. In addition to the mundane inert material we all
term “dust,” it is now known that a wide variety of hazardous

materials and organisms are also carried along these literal
particle paths. Satellite images reveal the amazing rate by
which desert soils and other materials are transformed into air-
borne particles as a result of storms that produce strong winds.
Once the tiny particles are aloft, they may travel thousands of
miles, crossing the oceans and eventually being deposited on
other continents. For the health and safety of all, it is important
that we obtain a better understanding of the air bridges that
span the oceans and also understand the ramification of such
material transport.

If the flow is steady, the path taken by a marked particle 1a pathline2 will be the same as the line
formed by all other particles that previously passed through the point of injection 1a streakline2. For
such cases these lines are tangent to the velocity field. Hence, pathlines, streamlines, and streaklines
are the same for steady flows. For unsteady flows none of these three types of lines need be the same
1Ref. 32. Often one sees pictures of “streamlines” made visible by the injection of smoke or dye into
a flow as is shown in Fig. 4.3. Actually, such pictures show streaklines rather than streamlines. However,
for steady flows the two are identical; only the nomenclature is incorrectly used.

For steady flow,
streamlines, streak-
lines, and pathlines
are the same.

GIVEN Water flowing from the oscillating slit shown in Fig.
E4.3a produces a velocity field given by 

where and are constants. Thus, the y com-
ponent of velocity remains constant and the x component
of velocity at coincides with the velocity of the oscillating
sprinkler head at y � 0 4 .3u � u0 sin1vt2

y � 0
1v � v02

vu0, v0,y�v02 4 î � v0 ĵ,
V � u0 sin 3v1t �

SOLUTION

Comparison of Streamlines, Pathlines, and StreaklinesE XAMPLE 4.3

(a) Since and it follows from
Eq. 4.1 that streamlines are given by the solution of

dy

dx
�
v
u
�

v0

u0 sin 3v1t � y�v02 4

v � v0u � u0 sin 3v1t � y�v02 4

FIND 1a2 Determine the streamline that passes through the ori-
gin at at 1b2 Determine the pathline of the parti-
cle that was at the origin at at 1c2 Discuss the
shape of the streakline that passes through the origin.

t � p�2.t � 0;
t � p�2v.t � 0;

in which the variables can be separated and the equation inte-
grated 1for any given time t2 to give

u0�  sin cv at � y

v0

b d  dy � v0�  dx,
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or

(1)

where C is a constant. For the streamline at that passes
through the origin the value of C is obtained
from Eq. 1 as Hence, the equation for this
streamline is

(2) (Ans)

Similarly, for the streamline at that passes through the
origin, Eq. 1 gives  Thus, the equation for this streamline is

or

(3) (Ans)

COMMENT These two streamlines, plotted in Fig. E4.3b, are
not the same because the flow is unsteady. For example, at the ori-
gin the velocity is at and

at Thus, the angle of the streamline
passing through the origin changes with time. Similarly, the shape
of the entire streamline is a function of time.

(b) The pathline of a particle 1the location of the particle as a
function of time2 can be obtained from the velocity field and
the definition of the velocity. Since and 
we obtain

The y equation can be integrated 1since constant2 to give the
y coordinate of the pathline as

(4)

where is a constant. With this known dependence, the
x equation for the pathline becomes

dx

dt
� u0 sin cv at � v0 t � C1

v0
b d � �u0 sin aC1 v

v0
b

y � y1t2C1

y � v0 t � C1

v0 �

dx

dt
� u0 sin cv at � y

v0
b d  and 

dy

dt
� v0

v � dy�dtu � dx�dt

t � p�2v.V � u0î � v0 ĵ
t � 0V � v0 ĵ1x � y � 02

x �
u0

v
 sin avy

v0

b

x �
u0

v
 cos cv a p

2v
�

y

v0
b d � u0

v
 cos ap

2
�
vy

v0
b

C � 0.
t � p�2v

x �
u0

v
 c cos avy

v0

b � 1 d

C � u0v0�v.
1x � y � 02,

t � 0

u01v0�v2 cos cv at � y

v0
b d � v0 x � C

This can be integrated to give the x component of the pathline as

(5)

where is a constant. For the particle that was at the origin
at time Eqs. 4 and 5 give Thus,

the pathline is

(6) (Ans)

Similarly, for the particle that was at the origin at Eqs.
4 and 5 give and Thus, the path-
line for this particle is

(7)

The pathline can be drawn by plotting the locus of values
for or by eliminating the parameter t from Eq. 7 to give

(8) (Ans)

COMMENT The pathlines given by Eqs. 6 and 8, shown in
Fig. E4.3c, are straight lines from the origin 1rays2. The pathlines
and streamlines do not coincide because the flow is unsteady.

(c) The streakline through the origin at time is the locus of
particles at that previously passed through the ori-
gin. The general shape of the streaklines can be seen as follows.
Each particle that flows through the origin travels in a straight line
1pathlines are rays from the origin2, the slope of which lies between

as shown in Fig. E4.3d. Particles passing through the ori-
gin at different times are located on different rays from the origin
and at different distances from the origin. The net result is that a
stream of dye continually injected at the origin 1a streakline2would
have the shape shown in Fig. E4.3d. Because of the unsteadiness,
the streakline will vary with time, although it will always have the
oscillating, sinuous character shown. 

COMMENT Similar streaklines are given by the stream of
water from a garden hose nozzle that oscillates back and forth in
a direction normal to the axis of the nozzle.

In this example neither the streamlines, pathlines, nor streaklines
coincide. If the flow were steady, all of these lines would be the
same.

�v0�u0

1t 6 02t � 0
t � 0

y �
v0

u0
 x

t � 0
x1t2, y1t2

x � u0 at � p2vb and y � v0 at � p2vb

C2 � �pu0�2v.�pv0�2vC1 �
t � p�2v,

x � 0 and y � v0 
t

C1 � C2 � 0.t � 0,1x � y � 02
C2

x � � c u0 sin aC1v

v0
b d t � C2

0

y

x

Oscillating
sprinkler head

Q

(a)

2  v0/π ω

  v0/π ωt = 0

t =   /2  ωπ

Streamlines
through origin

y

–2u0/ω 2u0/ω x0

(b) F I G U R E  E4.3(a), (b)



As indicated in the previous section, we can describe fluid motion by either 112 following individual
particles 1Lagrangian description2 or 122 remaining fixed in space and observing different particles
as they pass by 1Eulerian description2. In either case, to apply Newton’s second law we
must be able to describe the particle acceleration in an appropriate fashion. For the infrequently
used Lagrangian method, we describe the fluid acceleration just as is done in solid body dynamics—

for each particle. For the Eulerian description we describe the acceleration field as a
function of position and time without actually following any particular particle. This is analogous
to describing the flow in terms of the velocity field, rather than the velocity for
particular particles. In this section we will discuss how to obtain the acceleration field if the velocity
field is known.

The acceleration of a particle is the time rate of change of its velocity. For unsteady flows
the velocity at a given point in space 1occupied by different particles2 may vary with time, giving
rise to a portion of the fluid acceleration. In addition, a fluid particle may experience an acceleration
because its velocity changes as it flows from one point to another in space. For example, water
flowing through a garden hose nozzle under steady conditions 1constant number of gallons per
minute from the hose2 will experience an acceleration as it changes from its relatively low velocity
in the hose to its relatively high velocity at the tip of the nozzle.

4.2.1 The Material Derivative

Consider a fluid particle moving along its pathline as is shown in Fig. 4.4. In general, the particle’s
velocity, denoted for particle A, is a function of its location and the time. That is,

VA � VA1rA, t2 � VA 3xA1t2, yA1t2, zA1t2, t 4
VA

V � V 1x, y, z, t2,

a � a 1t2

1F � ma2
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xx

y

t = 0

Pathlines of
particles at origin

at time t

v0/u0

–1 10

(c) (d)

0

t =   /2π ω Pathline

v0

u0

Streaklines
through origin

at time t

y

F I G U R E  E4.3(c), (d)

4.2 The Acceleration Field

Acceleration is the
time rate of change
of velocity for a
given particle.

F I G U R E  4.4
Velocity and position of particle A
at time t.

Particle A at
time t

rA

VA(rA, t)

Particle path

z

x

y

wA(rA, t)

uA(rA, t)

vA(rA, t)

zA(t)
xA(t)

yA(t)

V4.11 Pathlines



where and define the location of the moving particle. By
definition, the acceleration of a particle is the time rate of change of its velocity. Since the velocity
may be a function of both position and time, its value may change because of the change in time
as well as a change in the particle’s position. Thus, we use the chain rule of differentiation to obtain
the acceleration of particle A, denoted as

(4.2)

Using the fact that the particle velocity components are given by 
and Eq. 4.2 becomes

Since the above is valid for any particle, we can drop the reference to particle A and obtain the
acceleration field from the velocity field as

(4.3)

This is a vector result whose scalar components can be written as

(4.4)

and

where and are the x, y, and z components of the acceleration.
The above result is often written in shorthand notation as

where the operator

(4.5)

is termed the material derivative or substantial derivative. An often-used shorthand notation for
the material derivative operator is

(4.6)

The dot product of the velocity vector, V, and the gradient operator,
1a vector operator2 provides a convenient notation for the spatial derivative terms

appearing in the Cartesian coordinate representation of the material derivative. Note that the notation
represents the operator 

The material derivative concept is very useful in analysis involving various fluid parameters,
not just the acceleration. The material derivative of any variable is the rate at which that variable
changes with time for a given particle 1as seen by one moving along with the fluid—the Lagrangian
description2. For example, consider a temperature field associated with a given
flow, like the flame shown in the figure in the margin. It may be of interest to determine the time
rate of change of temperature of a fluid particle 1particle A2 as it moves through this temperature

T � T1x, y, z, t2

V  § 1 2 � u0 1 2�0x � v0 1 2�0y � w0 1 2�0z.V  §
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The material deriv-
ative is used to de-
scribe time rates of
change for a given
particle.



field. If the velocity, is known, we can apply the chain rule to determine the rate
of change of temperature as

This can be written as

As in the determination of the acceleration, the material derivative operator, appears.D1 2�Dt,

DT

Dt
�
0T

0t
� u 
0T

0x
� v 

0T

0y
� w 

0T

0z
 �
0T

0t
� V  §T

dTA

dt
�
0TA

0t
�
0TA

0x
 
dxA

dt
�
0TA

0y
 
dyA

dt
�
0TA

0z
 
dzA

dt

V � V 1x, y, z, t2,
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GIVEN An incompressible, inviscid fluid flows steadily past a
ball of radius R, as shown in Fig. E4.4a. According to a more ad-
vanced analysis of the flow, the fluid velocity along streamline 
A–B is given by

where is the upstream velocity far ahead of the sphere. 

FIND Determine the acceleration experienced by fluid parti-
cles as they flow along this streamline.

V0

V � u1x2 î � V0 a1 � R3

x3 b î

SOLUTION

Acceleration along a StreamlineE XAMPLE 4.4

A x

y

V0VV

(a)

B

A B

(b)

–0.2

–0.4

–0.6

x/xx R//

–1–2–3

ax_______
(V0VV 2/R// )

F I G U R E  E4.4

Along streamline A–B there is only one component of velocity
so that from Eq. 4.3

or

Since the flow is steady the velocity at a given point in space does
not change with time. Thus, With the given velocity dis-
tribution along the streamline, the acceleration becomes

or

(Ans)

COMMENTS Along streamline and
the acceleration has only an x component and it is negative

1a deceleration2. Thus, the fluid slows down from its upstream
y � 02

A–B 1�q � x � �R

ax � �31V 0 
2�R2 

1 � 1R�x23
1x�R24

ax � u 
0u

0x
� V0 a1 � R3

x3 b V0 3R31�3x�42 4

0u�0t � 0.

ax �
0u

0t
� u 
0u

0x
,  ay � 0,  az � 0

a �
0V

0t
� u 
0V

0x
� a 0u
0t
� u 

0u

0x
b î

1v � w � 02

velocity of at to its stagnation point velocity of
at the “nose” of the ball. The variation of along

streamline is shown in Fig. E4.4b. It is the same result as is
obtained in Example 3.1 by using the streamwise component of
the acceleration, The maximum deceleration occurs
at and has a value of Note
that this maximum deceleration increases with increasing velocity
and decreasing size. As indicated in the following table, typical val-
ues of this deceleration can be quite large. For example, the

value for a pitched baseball is a decel-
eration approximately 1500 times that of gravity.
ax,max � �4.08 � 104 ft�s2

ax,max � �0.610 V0
2�R.x � �1.205R

ax � V 0V�0s.

A–B
axx � �R,V � 0

x � �qV � V0î



4.2.2 Unsteady Effects

As is seen from Eq. 4.5, the material derivative formula contains two types of terms—those
involving the time derivative and those involving spatial derivatives 
and The time derivative portions are denoted as the local derivative. They represent
effects of the unsteadiness of the flow. If the parameter involved is the acceleration, that portion
given by is termed the local acceleration. For steady flow the time derivative is zero
throughout the flow field and the local effect vanishes. Physically, there is no change
in flow parameters at a fixed point in space if the flow is steady. There may be a change of those
parameters for a fluid particle as it moves about, however.

If a flow is unsteady, its parameter values 1velocity, temperature, density, etc.2 at any location
may change with time. For example, an unstirred cup of coffee will cool down in time
because of heat transfer to its surroundings. That is,
Similarly, a fluid particle may have nonzero acceleration as a result of the unsteady effect of the flow.
Consider flow in a constant diameter pipe as is shown in Fig. 4.5. The flow is assumed to be spatially
uniform throughout the pipe. That is, at all points in the pipe. The value of the acceleration
depends on whether is being increased, or decreased, Unless is
independent of time 1 constant2 there will be an acceleration, the local acceleration term. Thus,
the acceleration field, is uniform throughout the entire flow, although it may vary with
time 1 need not be constant2. The acceleration due to the spatial variations of velocity 1

etc.2 vanishes automatically for this flow, since and That is,

4.2.3 Convective Effects

The portion of the material derivative 1Eq. 4.52 represented by the spatial derivatives is termed
the convective derivative. It represents the fact that a flow property associated with a fluid
particle may vary because of the motion of the particle from one point in space where the
parameter has one value to another point in space where its value is different. For example,
the water velocity at the inlet of the garden hose nozzle shown in the figure in the margin is
different (both in direction and speed) than it is at the exit. This contribution to the time rate
of change of the parameter for the particle can occur whether the flow is steady or unsteady.

a �
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0t
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0y
� w 

0V

0z
�
0V
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a � 0V0�0t î,
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In general, for fluid particles on streamlines other than 
all three components of the acceleration and will be
nonzero.

az21ax, ay,
A–B,

Object

Rising weather 
balloon 1 4.0

Soccer ball 20 0.80
Baseball 90 0.121
Tennis ball 100 0.104
Golf ball 200 0.070 �3.49 � 105

�5.87 � 104

�4.08 � 104

�305
�0.153

ax,max 1ft�s22R 1ft 2V0 1ft�s2

The local derivative
is a result of the un-
steadiness of the
flow.

V4.12 Unsteady
flow

F I G U R E  4.5 Uniform, unsteady
flow in a constant diameter pipe.

V0(t)

V0(t)

x

V2 > V1

V1



It is due to the convection, or motion, of the particle through space in which there is a gradient
in the parameter value. That portion of the acceleration

given by the term is termed the convective acceleration.
As is illustrated in Fig. 4.6, the temperature of a water particle changes as it flows through

a water heater. The water entering the heater is always the same cold temperature and the water
leaving the heater is always the same hot temperature. The flow is steady. However, the temperature,
T, of each water particle increases as it passes through the heater— Thus,
because of the convective term in the total derivative of the temperature. That is, but

1where x is directed along the streamline2, since there is a nonzero temperature gradient
along the streamline. A fluid particle traveling along this nonconstant temperature path 
at a specified speed 1u2 will have its temperature change with time at a rate of 
even though the flow is steady 

The same types of processes are involved with fluid accelerations. Consider flow in a variable
area pipe as shown in Fig. 4.7. It is assumed that the flow is steady and one-dimensional with
velocity that increases and decreases in the flow direction as indicated. As the fluid flows from
section 112 to section 122, its velocity increases from to Thus, even though 1steady
flow2, fluid particles experience an acceleration given by 1convective acceleration2.
For it is seen that so that —the fluid accelerates. For 
it is seen that so that —the fluid decelerates. This acceleration and deceleration
are shown in the figure in the margin. If the amount of acceleration precisely balances
the amount of deceleration even though the distances between and and and are not the
same.

The concept of the material derivative can be used to determine the time rate of change of
any parameter associated with a particle as it moves about. Its use is not restricted to fluid mechanics
alone. The basic ingredients needed to use the material derivative concept are the field description
of the parameter, and the rate at which the particle moves through that field,
V � V 1x, y, z, t2.

P � P1x, y, z, t2,

x2x3x1x2

V1 � V3,
ax 6 00u�0x 6 0

x2 6 x 6 x3,ax 7 00u�0x 7 0x1 6 x 6 x2,
ax � u 0u�0x

0V�0t � 0V2.V1

10T�0t � 02.
DT�Dt � u 0T�0x

10T�0x q 02
u 0T�0x q 0

0T�0t � 0,
DT�Dt q 0Tout 7 Tin.

1V  § 2V
3§ 1 2 � 0 1 2�0x î � 0 1 2�0y ĵ � 0 1 2�0z k̂4
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F I G U R E  4.6 Steady-state
operation of a water heater. (Photo courtesy
of American Water Heater Company.)
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F I G U R E  4.7 Uniform, steady flow in a variable
area pipe.

x

u = V3 = V1 < V2

x3

x2x1

u = V2 > V1
u = V1

u

x0

ax

x0

The convective de-
rivative is a result
of the spatial varia-
tion of the flow.



4.2 The Acceleration Field 161

GIVEN Consider the steady, two-dimensional flow field dis-
cussed in Example 4.2. 

Acceleration from a Given Velocity Field

FIND Determine the acceleration field for this flow.

E XAMPLE 4.5

SOLUTION

Also, the acceleration vector is oriented at an angle from the x
axis, where

This is the same angle as that formed by a ray from the origin to
point Thus, the acceleration is directed along rays from the
origin and has a magnitude proportional to the distance from the
origin. Typical acceleration vectors 1from Eq. 22 and velocity vec-
tors 1from Example 4.12 are shown in Fig. E4.5 for the flow in the
first quadrant. Note that a and V are not parallel except along the
x and y axes 1a fact that is responsible for the curved pathlines of
the flow2, and that both the acceleration and velocity are zero at
the origin An infinitesimal fluid particle placed pre-
cisely at the origin will remain there, but its neighbors 1no matter
how close they are to the origin2 will drift away.

1x � y � 02.

1x, y2.

tan u �
ay

ax
�

y

x

u

In general, the acceleration is given by

(1)

where the velocity is given by so that
and For steady two-

dimensional and flow, Eq. l becomes

Hence, for this flow the acceleration is given by

or

(Ans)

COMMENTS The fluid experiences an acceleration in both
the x and y directions. Since the flow is steady, there is no local
acceleration—the fluid velocity at any given point is constant in
time. However, there is a convective acceleration due to the
change in velocity from one point on the particle’s pathline to an-
other. Recall that the velocity is a vector—it has both a magnitude
and a direction. In this flow both the fluid speed 1magnitude2 and
flow direction change with location 1see Fig. E4.1a2.

For this flow the magnitude of the acceleration is constant on
circles centered at the origin, as is seen from the fact that

(2)0a 0 � 1ax
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GIVEN A fluid flows steadily through a two-dimensional nozzle
of length as shown in Fig. E4.6a. The nozzle shape is given by

y�/ � ; 0.5� 31 � 1x�/2 4
/

The Material Derivative

If viscous and gravitational effects are negligible, the velocity
field is approximately

(1)u � V0�1 � x�/�, v � �V0y�/

E XAMPLE 4.6

F I G U R E  E4.5

V
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y
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and the pressure field is

where V0 and p0 are the velocity and pressure at the origin,
. Note that the fluid speed increases as it flows through

the nozzle. For example, along the center line , at
and at .

FIND Determine, as a function of x and y, the time rate of
change of pressure felt by a fluid particle as it flows through the
nozzle.

x � /V � 2V0x � 0
V � V01y � 02

x � y � 0

p � p0 � �1rV0
2�22 3 1x2 � y22�/2 � 2x�/ 4

SOLUTION

F I G U R E  E4.6a

COMMENT Lines of constant pressure within the nozzle are
indicated in Fig. E4.6b, along with some representative stream-
lines of the flow. Note that as a fluid particle flows along its
streamline, it moves into areas of lower and lower pressure.
Hence, even though the flow is steady, the time rate of change of
the pressure for any given particle is negative. This can be verified
from Eq. (5) which, when plotted in Fig. E4.6c, shows that for any
point within the nozzle .Dp�Dt 6 0

The time rate of change of pressure at any given, fixed point in
this steady flow is zero. However, the time rate of change of pres-
sure felt by a particle flowing through the nozzle is given by the
material derivative of the pressure and is not zero. Thus,

(2)

where the x- and y-components of the pressure gradient can be
written as

(3)

and

(4)

Therefore, by combining Eqs. (1), (2), (3), and (4) we obtain

or

(5) (Ans)
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4.2.4 Streamline Coordinates

In many flow situations it is convenient to use a coordinate system defined in terms of the streamlines
of the flow. An example for steady, two-dimensional flows is illustrated in Fig. 4.8. Such flows
can be described either in terms of the usual x, y Cartesian coordinate system 1or some other system
such as the r, polar coordinate system2 or the streamline coordinate system. In the streamline
coordinate system the flow is described in terms of one coordinate along the streamlines, denoted
s, and the second coordinate normal to the streamlines, denoted n. Unit vectors in these two
directions are denoted by and as shown in the figure. Care is needed not to confuse the coordinate
distance s 1a scalar2 with the unit vector along the streamline direction,

The flow plane is therefore covered by an orthogonal curved net of coordinate lines. At any
point the s and n directions are perpendicular, but the lines of constant s or constant n are not
necessarily straight. Without knowing the actual velocity field 1hence, the streamlines2 it is not
possible to construct this flow net. In many situations appropriate simplifying assumptions can be
made so that this lack of information does not present an insurmountable difficulty. One of the major
advantages of using the streamline coordinate system is that the velocity is always tangent to the s
direction. That is,

This allows simplifications in describing the fluid particle acceleration and in solving the equations
governing the flow.

For steady, two-dimensional flow we can determine the acceleration as

where and are the streamline and normal components of acceleration, respectively, as indicated
by the figure in the margin. We use the material derivative because by definition the acceleration
is the time rate of change of the velocity of a given particle as it moves about. If the streamlines
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� as ŝ� ann̂

V � V ŝ
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V4.13 Streamline
coordinates

F I G U R E  4.8
Streamline coordinate system
for two-dimensional flow.
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are curved, both the speed of the particle and its direction of flow may change from one point to
another. In general, for steady flow both the speed and the flow direction are a function of location—

and For a given particle, the value of s changes with time, but the value
of n remains fixed because the particle flows along a streamline defined by constant. 1Recall
that streamlines and pathlines coincide in steady flow.2 Thus, application of the chain rule gives

or

This can be simplified by using the fact that for steady flow nothing changes with time at a given
point so that both and are zero. Also, the velocity along the streamline is and
the particle remains on its streamline 1 constant2 so that Hence,

The quantity represents the limit as of the change in the unit vector along the
streamline, per change in distance along the streamline, The magnitude of is constant
1 it is a unit vector2, but its direction is variable if the streamlines are curved. From Fig. 4.9
it is seen that the magnitude of is equal to the inverse of the radius of curvature of the
streamline, at the point in question. This follows because the two triangles shown 1AOB and

2 are similar triangles so that or Similarly, in the
limit the direction of is seen to be normal to the streamline. That is,

Hence, the acceleration for steady, two-dimensional flow can be written in terms of its streamwise
and normal components in the form

(4.7)

The first term, represents the convective acceleration along the streamline and the
second term, represents centrifugal acceleration 1one type of convective acceleration2
normal to the fluid motion. These components can be noted in Fig. E4.5 by resolving the
acceleration vector into its components along and normal to the velocity vector. Note that the unit
vector is directed from the streamline toward the center of curvature. These forms of the
acceleration were used in Chapter 3 and are probably familiar from previous dynamics or physics
considerations.
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F I G U R E  4.9 Relationship between the unit vector along the
streamline, and the radius of curvature of the streamline, .rŝ ,
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As is discussed in Chapter 1, a fluid is a type of matter that is relatively free to move and
interact with its surroundings. As with any matter, a fluid’s behavior is governed by fundamental
physical laws which are approximated by an appropriate set of equations. The application of laws
such as the conservation of mass, Newton’s laws of motion, and the laws of thermodynamics form
the foundation of fluid mechanics analyses. There are various ways that these governing laws can
be applied to a fluid, including the system approach and the control volume approach. By definition,
a system is a collection of matter of fixed identity 1always the same atoms or fluid particles2, which
may move, flow, and interact with its surroundings. A control volume, on the other hand, is a
volume in space 1a geometric entity, independent of mass2 through which fluid may flow.

A system is a specific, identifiable quantity of matter. It may consist of a relatively large
amount of mass 1such as all of the air in the earth’s atmosphere2, or it may be an infinitesimal size
1such as a single fluid particle2. In any case, the molecules making up the system are “tagged” in
some fashion 1dyed red, either actually or only in your mind2 so that they can be continually
identified as they move about. The system may interact with its surroundings by various means 1by
the transfer of heat or the exertion of a pressure force, for example2. It may continually change size
and shape, but it always contains the same mass.

A mass of air drawn into an air compressor can be considered as a system. It changes shape
and size 1it is compressed2, its temperature may change, and it is eventually expelled through the
outlet of the compressor. The matter associated with the original air drawn into the compressor
remains as a system, however. The behavior of this material could be investigated by applying the
appropriate governing equations to this system.

One of the important concepts used in the study of statics and dynamics is that of the free-
body diagram. That is, we identify an object, isolate it from its surroundings, replace its surroundings
by the equivalent actions that they put on the object, and apply Newton’s laws of motion. The body
in such cases is our system—an identified portion of matter that we follow during its interactions
with its surroundings. In fluid mechanics, it is often quite difficult to identify and keep track of a
specific quantity of matter. A finite portion of a fluid contains an uncountable number of fluid
particles that move about quite freely, unlike a solid that may deform but usually remains relatively
easy to identify. For example, we cannot as easily follow a specific portion of water flowing in a
river as we can follow a branch floating on its surface.

We may often be more interested in determining the forces put on a fan, airplane, or
automobile by air flowing past the object than we are in the information obtained by following a
given portion of the air 1a system2 as it flows along. Similarly, for the Space Shuttle launch vehicle
shown in the margin, we may be more interested in determining the thrust produced than we are in
the information obtained by following the highly complex, irregular path of the exhaust plume from
the rocket engine nozzle. For these situations we often use the control volume approach. We identify
a specific volume in space 1a volume associated with the fan, airplane, or automobile, for example2
and analyze the fluid flow within, through, or around that volume. In general, the control volume
can be a moving volume, although for most situations considered in this book we will use only
fixed, nondeformable control volumes. The matter within a control volume may change with time
as the fluid flows through it. Similarly, the amount of mass within the volume may change with
time. The control volume itself is a specific geometric entity, independent of the flowing fluid.

Examples of control volumes and control surfaces 1the surface of the control volume2 are
shown in Fig. 4.10. For case 1a2, fluid flows through a pipe. The fixed control surface consists of
the inside surface of the pipe, the outlet end at section 122, and a section across the pipe at 112. One
portion of the control surface is a physical surface 1the pipe2, while the remainder is simply a surface
in space 1across the pipe2. Fluid flows across part of the control surface, but not across all of it.

Another control volume is the rectangular volume surrounding the jet engine shown in Fig.
4.10b. If the airplane to which the engine is attached is sitting still on the runway, air flows through
this control volume because of the action of the engine within it. The air that was within the engine
itself at time 1a system2 has passed through the engine and is outside of the control volume
at a later time as indicated. At this later time other air 1a different system2 is within the engine.
If the airplane is moving, the control volume is fixed relative to an observer on the airplane, but it

t � t2

t � t1
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Both control vol-
ume and system
concepts can be
used to describe
fluid flow.
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is a moving control volume relative to an observer on the ground. In either situation air flows
through and around the engine as indicated.

The deflating balloon shown in Fig. 4.10c provides an example of a deforming control volume.
As time increases, the control volume 1whose surface is the inner surface of the balloon2 decreases
in size. If we do not hold onto the balloon, it becomes a moving, deforming control volume as it
darts about the room. The majority of the problems we will analyze can be solved by using a fixed,
nondeforming control volume. In some instances, however, it will be advantageous, in fact
necessary, to use a moving, deforming control volume.

In many ways the relationship between a system and a control volume is similar to the relationship
between the Lagrangian and Eulerian flow description introduced in Section 4.1.1. In the system or
Lagrangian description, we follow the fluid and observe its behavior as it moves about. In the control
volume or Eulerian description we remain stationary and observe the fluid’s behavior at a fixed location.
1If a moving control volume is used, it virtually never moves with the system—the system flows
through the control volume.2 These ideas are discussed in more detail in the next section.

All of the laws governing the motion of a fluid are stated in their basic form in terms of a
system approach. For example, “the mass of a system remains constant,” or “the time rate of change
of momentum of a system is equal to the sum of all the forces acting on the system.” Note the word
system, not control volume, in these statements. To use the governing equations in a control volume
approach to problem solving, we must rephrase the laws in an appropriate manner. To this end we
introduce the Reynolds transport theorem in the following section.
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F I G U R E  4.10 Typical control volumes: (a) fixed control volume, (b) fixed or moving
control volume, (c) deforming control volume.
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We are sometimes interested in what happens to a particular part of the fluid as it moves about.
Other times we may be interested in what effect the fluid has on a particular object or volume in
space as fluid interacts with it. Thus, we need to describe the laws governing fluid motion using
both system concepts 1consider a given mass of the fluid2 and control volume concepts 1consider
a given volume2. To do this we need an analytical tool to shift from one representation to the other.
The Reynolds transport theorem provides this tool.

All physical laws are stated in terms of various physical parameters. Velocity, acceleration, mass,
temperature, and momentum are but a few of the more common parameters. Let B represent any of
these 1or other2 fluid parameters and b represent the amount of that parameter per unit mass. That is,

where m is the mass of the portion of fluid of interest. For example, as shown by the figure in the
margin, if the mass, it follows that The mass per unit mass is unity. If 
the kinetic energy of the mass, then the kinetic energy per unit mass. The parameters B
and b may be scalars or vectors. Thus, if the momentum of the mass, then 1The
momentum per unit mass is the velocity.2

The parameter B is termed an extensive property and the parameter b is termed an intensive
property. The value of B is directly proportional to the amount of the mass being considered,
whereas the value of b is independent of the amount of mass. The amount of an extensive property
that a system possesses at a given instant, can be determined by adding up the amount associated
with each fluid particle in the system. For infinitesimal fluid particles of size and mass r dV�,dV�

Bsys,

b � V.B � mV,
b � V 2�2,

B � mV 2�2,b � 1.B � m,

B � mb
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this summation 1in the limit of 2 takes the form of an integration over all the particles in
the system and can be written as

The limits of integration cover the entire system—a 1usually2 moving volume. We have used the
fact that the amount of B in a fluid particle of mass is given in terms of b by 

Most of the laws governing fluid motion involve the time rate of change of an extensive property
of a fluid system—the rate at which the momentum of a system changes with time, the rate at which
the mass of a system changes with time, and so on. Thus, we often encounter terms such as

(4.8)

To formulate the laws into a control volume approach, we must obtain an expression for the time
rate of change of an extensive property within a control volume, not within a system. This can
be written as

(4.9)

where the limits of integration, denoted by cv, cover the control volume of interest. Although Eqs.
4.8 and 4.9 may look very similar, the physical interpretation of each is quite different.
Mathematically, the difference is represented by the difference in the limits of integration. Recall
that the control volume is a volume in space 1in most cases stationary, although if it moves it need
not move with the system2. On the other hand, the system is an identifiable collection of mass that
moves with the fluid 1indeed it is a specified portion of the fluid2. We will learn that even for those
instances when the control volume and the system momentarily occupy the same volume in space,
the two quantities and need not be the same. The Reynolds transport theorem
provides the relationship between the time rate of change of an extensive property for a system
and that for a control volume—the relationship between Eqs. 4.8 and 4.9.
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GIVEN Fluid flows from the fire extinguisher tank shown in
Fig. E4.7a. 

FIND Discuss the differences between and if B
represents mass.

dBcv�dtdBsys�dt

SOLUTION
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Time Rate of Change for a System and a Control VolumeE XAMPLE 4.7
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4.4.1 Derivation of the Reynolds Transport Theorem

A simple version of the Reynolds transport theorem relating system concepts to control volume
concepts can be obtained easily for the one-dimensional flow through a fixed control volume such
as the variable area duct section shown in Fig. 4.11a. We consider the control volume to be that
stationary volume within the duct between sections 112 and 122 as indicated in Fig. 4.11b. The system
that we consider is that fluid occupying the control volume at some initial time t. A short time
later, at time the system has moved slightly to the right. The fluid particles that coincided
with section 122 of the control surface at time t have moved a distance to the right,
where is the velocity of the fluid as it passes section 122. Similarly, the fluid initially at section
112 has moved a distance where is the fluid velocity at section 112. We assume the
fluid flows across sections 112 and 122 in a direction normal to these surfaces and that and are
constant across sections 112 and 122.

As is shown in Fig. 4.11c, the outflow from the control volume from time t to is denoted
as volume II, the inflow as volume I, and the control volume itself as CV. Thus, the system at time
t consists of the fluid in section CV; that is, At time the system
consists of the same fluid that now occupies sections That is,
at time The control volume remains as section CV for all time.t � dt.

“SYS � CV � I � II”1CV � I2 � II.
t � dt“SYS � CV” at time t.

t � dt

V2V1

V1d/1 � V1 dt,
V2

d/2 � V2 dt
t � dt,
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Physically these represent the time rate of change of mass within
the system and the time rate of change of mass within the control
volume, respectively. We choose our system to be the fluid within
the tank at the time the valve was opened and the control
volume to be the tank itself as shown in Fig. E4.7b. A short time
after the valve is opened, part of the system has moved outside of
the control volume as is shown in Fig. E4.7c. The control volume
remains fixed. The limits of integration are fixed for the control
volume; they are a function of time for the system.

Clearly, if mass is to be conserved 1one of the basic laws gov-
erning fluid motion2, the mass of the fluid in the system is con-
stant, so that

On the other hand, it is equally clear that some of the fluid has left the
control volume through the nozzle on the tank. Hence, the amount of
mass within the tank 1the control volume2 decreases with time, or
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6 0
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� 0

1t � 02

The actual numerical value of the rate at which the mass in the
control volume decreases will depend on the rate at which the fluid
flows through the nozzle 1i.e., the size of the nozzle and the speed
and density of the fluid2. Clearly the meanings of and

are different. For this example, Other
situations may have dBcv�dt � dBsys �dt.

dBcv�dt 6 dBsys �dt.dBcv�dt
dBsys �dt
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If B is an extensive parameter of the system, then the value of it for the system at time
t is

since the system and the fluid within the control volume coincide at this time. Its value at time
is

Thus, the change in the amount of B in the system in the time interval divided by this time
interval is given by

By using the fact that at the initial time t we have this ungainly expression may
be rearranged as follows.

(4.10)

In the limit the left-hand side of Eq. 4.10 is equal to the time rate of change of B for the
system and is denoted as We use the material derivative notation, to denote this
time rate of change to emphasize the Lagrangian character of this term. 1Recall from Section 4.2.1
that the material derivative, of any quantity P represents the time rate of change of that
quantity associated with a given fluid particle as it moves along.2 Similarly, the quantity 
represents the time rate of change of property B associated with a system 1a given portion of fluid2
as it moves along.

In the limit the first term on the right-hand side of Eq. 4.10 is seen to be the time
rate of change of the amount of B within the control volume

(4.11)

The third term on the right-hand side of Eq. 4.10 represents the rate at which the extensive parameter
B flows from the control volume, across the control surface. As indicated by the figure in the
margin, during the time interval from to the volume of fluid that flows across section
122 is given by Thus, the amount of B within region II, the outflow
region, is its amount per unit volume, times the volume

where and are the constant values of b and across section 122. Thus, the rate at which this
property flows from the control volume, is given by

(4.12)

Similarly, the inflow of B into the control volume across section 112 during the time interval
corresponds to that in region I and is given by the amount per unit volume times the volume,

Hence,

where and are the constant values of b and across section 112. Thus, the rate of inflow of
the property B into the control volume, is given by

(4.13)B
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If we combine Eqs. 4.10, 4.11, 4.12, and 4.13 we see that the relationship between the time
rate of change of B for the system and that for the control volume is given by

(4.14)

or

(4.15)

This is a version of the Reynolds transport theorem valid under the restrictive assumptions
associated with the flow shown in Fig. 4.11—fixed control volume with one inlet and one outlet
having uniform properties 1density, velocity, and the parameter b2 across the inlet and outlet with
the velocity normal to sections 112 and 122. Note that the time rate of change of B for the system
1the left-hand side of Eq. 4.15 or the quantity in Eq. 4.82 is not necessarily the same as the rate
of change of B within the control volume 1the first term on the right-hand side of Eq. 4.15 or the
quantity in Eq. 4.92. This is true because the inflow rate and the outflow rate 
of the property B for the control volume need not be the same.
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The time derivative
associated with a
system may be dif-
ferent from that for
a control volume.

GIVEN Consider again the flow from the fire extinguisher
shown in Fig. E4.7. Let the extensive property of interest be the
system mass 1 the system mass, or 2.b � 1B � m,

Use of the Reynolds Transport TheoremE XAMPLE 4.8

FIND Write the appropriate form of the Reynolds transport
theorem for this flow.

SOLUTION

The physical interpretation of this result is that the rate at which
the mass in the tank decreases in time is equal in magnitude but
opposite to the rate of flow of mass from the exit, Note
the units for the two terms of Eq. 2 1kgZs or slugsZs2. Note that
if there were both an inlet and an outlet to the control volume
shown in Fig. E4.7, Eq. 2 would become

(3)

In addition, if the flow were steady, the left-hand side of Eq. 3
would be zero 1the amount of mass in the control would be con-
stant in time2 and Eq. 3 would become

This is one form of the conservation of mass principle discussed in
Sect. 3.6.2—the mass flowrates into and out of the control volume
are equal. Other more general forms are discussed in Chapter 5.
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Again we take the control volume to be the fire extinguisher, and
the system to be the fluid within it at time For this case
there is no inlet, section 112, across which the fluid flows into the
control volume There is, however, an outlet, section 122.
Thus, the Reynolds transport theorem, Eq. 4.15, along with Eq.
4.9 with can be written as

(1) (Ans)

COMMENT If we proceed one step further and use the basic
law of conservation of mass, we may set the left-hand side of this
equation equal to zero 1the amount of mass in a system is con-
stant2 and rewrite Eq. 1 in the form
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Equation 4.15 is a simplified version of the Reynolds transport theorem. We will now derive
it for much more general conditions. A general, fixed control volume with fluid flowing through
it is shown in Fig. 4.12. The flow field may be quite simple 1as in the above one-dimensional flow
considerations2, or it may involve a quite complex, unsteady, three-dimensional situation such as
the flow through a human heart as illustrated by the figure in the margin. In any case we again
consider the system to be the fluid within the control volume at the initial time t. A short time
later a portion of the fluid 1region II2 has exited from the control volume and additional fluid
1region I, not part of the original system2 has entered the control volume.
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We consider an extensive fluid property B and seek to determine how the rate of change of B
associated with the system is related to the rate of change of B within the control volume at any
instant. By repeating the exact steps that we did for the simplified control volume shown in Fig.
4.11, we see that Eq. 4.14 is valid for the general case also, provided that we give the correct
interpretation to the terms and In general, the control volume may contain more 1or less2
than one inlet and one outlet. A typical pipe system may contain several inlets and outlets as are
shown in Fig. 4.13. In such instances we think of all inlets grouped together 
and all outlets grouped together at least conceptually.

The term represents the net flowrate of the property B from the control volume. Its
value can be thought of as arising from the addition 1integration2 of the contributions through
each infinitesimal area element of size on the portion of the control surface dividing region
II and the control volume. This surface is denoted As is indicated in Fig. 4.14, in time 
the volume of fluid that passes across each area element is given by where

is the height 1normal to the base, 2 of the small volume element, and is the
angle between the velocity vector and the outward pointing normal to the surface, Thus,
since the amount of the property B carried across the area element in the time
interval is given by

The rate at which B is carried out of the control volume across the small area element denoted
is
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F I G U R E  4.12 Control volume
and system for flow through an arbitrary, fixed
control volume.
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By integrating over the entire outflow portion of the control surface, we obtain

The quantity is the component of the velocity normal to the area element From the
definition of the dot product, this can be written as Hence, an alternate form of
the outflow rate is

(4.16)

In a similar fashion, by considering the inflow portion of the control surface, as shown
in Fig. 4.15, we find that the inflow rate of B into the control volume is

(4.17)

We use the standard notation that the unit normal vector to the control surface, points out from the
control volume. Thus, as is shown in Fig. 4.16, for outflow regions 1the normal
component of V is positive; 2. For inflow regions 1the normal component
of V is negative; 2. The value of is, therefore, positive on the portions of the
control surface and negative on the portions. Over the remainder of the control surface, there is
no inflow or outflow, leading to on those portions. On such portions either 
1the fluid “sticks” to the surface2 or 1the fluid “slides”along the surface without crossing it2
1see Fig. 4.162. Therefore, the net flux 1flowrate2 of parameter B across the entire control surface is

(4.18)

where the integration is over the entire control surface.
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By combining Eqs. 4.14 and 4.18 we obtain

This can be written in a slightly different form by using so that

(4.19)

Equation 4.19 is the general form of the Reynolds transport theorem for a fixed, nondeforming
control volume. Its interpretation and use are discussed in the following sections.

4.4.2 Physical Interpretation

The Reynolds transport theorem as given in Eq. 4.19 is widely used in fluid mechanics 1and other
areas as well2. At first it appears to be a rather formidable mathematical expression—perhaps one
to be steered clear of if possible. However, a physical understanding of the concepts involved will
show that it is a rather straightforward, relatively easy-to-use tool. Its purpose is to provide a link
between control volume ideas and system ideas.

The left side of Eq. 4.19 is the time rate of change of an arbitrary extensive parameter of a
system. This may represent the rate of change of mass, momentum, energy, or angular momentum
of the system, depending on the choice of the parameter B.

Because the system is moving and the control volume is stationary, the time rate of change
of the amount of B within the control volume is not necessarily equal to that of the system. The first
term on the right side of Eq. 4.19 represents the rate of change of B within the control volume as
the fluid flows through it. Recall that b is the amount of B per unit mass, so that is the amount
of B in a small volume Thus, the time derivative of the integral of throughout the control
volume is the time rate of change of B within the control volume at a given time.

The last term in Eq. 4.19 1an integral over the control surface2 represents the net flowrate of
the parameter B across the entire control surface. As illustrated by the figure in the margin, over a
portion of the control surface this property is being carried out of the control volume 
over other portions it is being carried into the control volume Over the remainder of
the control surface there is no transport of B across the surface since because either

or V is parallel to the surface at those locations. The mass flowrate through area
element given by is positive for outflow 1efflux2 and negative for inflow 1influx2.
Each fluid particle or fluid mass carries a certain amount of B with it, as given by the product of
B per unit mass, b, and the mass. The rate at which this B is carried across the control surface is
given by the area integral term of Eq. 4.19. This net rate across the entire control surface may be
negative, zero, or positive depending on the particular situation involved.

4.4.3 Relationship to Material Derivative

In Section 4.2.1 we discussed the concept of the material derivative 
The physical interpretation of this derivative is that it

provides the time rate of change of a fluid property 1temperature, velocity, etc.2 associated with a
particular fluid particle as it flows. The value of that parameter for that particle may change because
of unsteady effects [the term] or because of effects associated with the particle’s motion
[the term].

Careful consideration of Eq. 4.19 indicates the same type of physical interpretation for the
Reynolds transport theorem. The term involving the time derivative of the control volume integral
represents unsteady effects associated with the fact that values of the parameter within the control
volume may change with time. For steady flow this effect vanishes—fluid flows through the control
volume but the amount of any property, B, within the control volume is constant in time. The term
involving the control surface integral represents the convective effects associated with the flow of the
system across the fixed control surface. The sum of these two terms gives the rate of change of the
parameter B for the system. This corresponds to the interpretation of the material derivative,
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in which the sum of the unsteady effect and the convective effect
gives the rate of change of a parameter for a fluid particle. As is discussed in Section 4.2, the material
derivative operator may be applied to scalars 1such as temperature2 or vectors 1such as velocity2. This
is also true for the Reynolds transport theorem. The particular parameters of interest, B and b, may
be scalars or vectors.

Thus, both the material derivative and the Reynolds transport theorem equations represent
ways to transfer from the Lagrangian viewpoint 1follow a particle or follow a system2 to the Eulerian
viewpoint 1observe the fluid at a given location in space or observe what happens in the fixed
control volume2. The material derivative 1Eq. 4.52 is essentially the infinitesimal 1or derivative2
equivalent of the finite size 1or integral2 Reynolds transport theorem 1Eq. 4.192.

4.4.4 Steady Effects

Consider a steady flow so that Eq. 4.19 reduces to

(4.20)

In such cases if there is to be a change in the amount of B associated with the system 1nonzero
left-hand side2, there must be a net difference in the rate that B flows into the control volume
compared with the rate that it flows out of the control volume. That is, the integral of over
the inflow portions of the control surface would not be equal and opposite to that over the outflow
portions of the surface.

Consider steady flow through the “black box” control volume that is shown in Fig. 4.17. If
the parameter B is the mass of the system, the left-hand side of Eq. 4.20 is zero 1conservation of
mass for the system as discussed in detail in Section 5.12. Hence, the flowrate of mass into the
box must be the same as the flowrate of mass out of the box because the right-hand side of Eq.
4.20 represents the net flowrate through the control surface. On the other hand, assume the
parameter B is the momentum of the system. The momentum of the system need not be constant.
In fact, according to Newton’s second law the time rate of change of the system momentum equals
the net force, F, acting on the system. In general, the left-hand side of Eq. 4.20 will therefore be
nonzero. Thus, the right-hand side, which then represents the net flux of momentum across the
control surface, will be nonzero. The flowrate of momentum into the control volume need not be
the same as the flux of momentum from the control volume. We will investigate these concepts
much more fully in Chapter 5. They are the basic principles describing the operation of such
devices as jet or rocket engines like the one shown in the figure in the margin.

For steady flows the amount of the property B within the control volume does not change
with time. The amount of the property associated with the system may or may not change with
time, depending on the particular property considered and the flow situation involved. The difference
between that associated with the control volume and that associated with the system is determined
by the rate at which B is carried across the control surface—the term 

4.4.5 Unsteady Effects

Consider unsteady flow so that all terms in Eq. 4.19 must be retained. When they
are viewed from a control volume standpoint, the amount of parameter B within the system may
change because the amount of B within the fixed control volume may change with time
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and because there may be a net nonzero flow of that parameter across
the control surface 1the term2.

For the special unsteady situations in which the rate of inflow of parameter B is exactly
balanced by its rate of outflow, it follows that and Eq. 4.19 reduces to

(4.21)

For such cases, any rate of change in the amount of B associated with the system is equal to the
rate of change of B within the control volume. This can be illustrated by considering flow through
a constant diameter pipe as is shown in Fig. 4.18. The control volume is as shown, and the system
is the fluid within this volume at time We assume the flow is one-dimensional with 
where is a function of time, and that the density is constant. At any instant in time, all
particles in the system have the same velocity. We let system momentum
where m is the system mass, so that the fluid velocity. The magnitude of
the momentum efflux across the outlet [section 122] is the same as the magnitude of the momentum
influx across the inlet [section 112]. However, the sign of the efflux is opposite to that of the influx
since for the outflow and for the inflow. Note that along the sides
of the control volume. Thus, with on section 112, on section 122, and

, we obtain

It is seen that for this special case Eq. 4.21 is valid. The rate at which the momentum of the system
changes with time is the same as the rate of change of momentum within the control volume. If

is constant in time, there is no rate of change of momentum of the system and for this special
case each of the terms in the Reynolds transport theorem is zero by itself.

Consider the flow through a variable area pipe shown in Fig. 4.19. In such cases the fluid
velocity is not the same at section 112 as it is at 122. Hence, the efflux of momentum from the control
volume is not equal to the influx of momentum, so that the convective term in Eq. 4.20 [the integral
of over the control surface] is not zero. These topics will be discussed in considerably
more detail in Chapter 5.
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DBsys

Dt
�
0

0t �cv
 rb dV�

Fcs rbV  n̂ dA � 0,

Fcs rbV  n̂ dA
3 the 0 1Fcv rb dV�2�0t term 4

4.4 The Reynolds Transport Theorem 175

(1)

Control surface

(2)
n = –j^

V0i

V2 = V0(t)

V1 = V0(t) x

y

^

^

n = –i^ ^

n = i^ ^

F I G U R E  4.18 Unsteady
flow through a constant diameter pipe.

y

x

(1)

Control surface

(2)

n = –i^ ^

n = i^ ^V1

V2 < V1

F I G U R E  4.19 Flow
through a variable area pipe.

For some flow situ-
ations, certain por-
tions of the Reynolds
transport theorem
are automatically
zero.



4.4.6 Moving Control Volumes

For most problems in fluid mechanics, the control volume may be considered as a fixed volume
through which the fluid flows. There are, however, situations for which the analysis is simplified
if the control volume is allowed to move or deform. The most general situation would involve a
control volume that moves, accelerates, and deforms. As one might expect, the use of these control
volumes can become fairly complex.

A number of important problems can be most easily analyzed by using a nondeforming
control volume that moves with a constant velocity. Such an example is shown in Fig. 4.20 in
which a stream of water with velocity strikes a vane that is moving with constant velocity 
It may be of interest to determine the force, F, that the water puts on the vane. Such problems
frequently occur in turbines where a stream of fluid 1water or steam, for example2 strikes a series
of blades that move past the nozzle. To analyze such problems it is advantageous to use a moving
control volume. We will obtain the Reynolds transport theorem for such control volumes.

We consider a control volume that moves with a constant velocity as is shown in Fig. 4.21.
The shape, size, and orientation of the control volume do not change with time. The control volume
merely translates with a constant velocity, as shown. In general, the velocity of the control
volume and the fluid are not the same, so that there is a flow of fluid through the moving control
volume just as in the stationary control volume cases discussed in Section 4.4.2. The main difference
between the fixed and the moving control volume cases is that it is the relative velocity, W, that
carries fluid across the moving control surface, whereas it is the absolute velocity, V, that carries
the fluid across the fixed control surface. The relative velocity is the fluid velocity relative to the
moving control volume—the fluid velocity seen by an observer riding along on the control volume.
The absolute velocity is the fluid velocity as seen by a stationary observer in a fixed coordinate
system.

The difference between the absolute and relative velocities is the velocity of the control
volume, or

(4.22)

Since the velocity is a vector, we must use vector addition as is shown in Fig. 4.22 to obtain the
relative velocity if we know the absolute velocity and the velocity of the control volume. Thus, if
the water leaves the nozzle in Fig. 4.20 with a velocity of and the vane has a velocity
of 1the same as the control volume2, it appears to an observer riding on the vane that
the water approaches the vane with a velocity of In general, the absoluteVcv � 80î ft�s.W � V �

V0 � 20î ft�s
V1 � 100î ft�s

V � W � Vcv

Vcv � V � W,

Vcv,
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velocity, V, and the control volume velocity, will not be in the same direction so that the
relative and absolute velocities will have different directions 1see Fig. 4.222.

The Reynolds transport theorem for a moving, nondeforming control volume can be derived
in the same manner that it was obtained for a fixed control volume. As is indicated in Fig. 4.23, the
only difference that needs be considered is the fact that relative to the moving control volume the
fluid velocity observed is the relative velocity, not the absolute velocity. An observer fixed to
the moving control volume may or may not even know that he or she is moving relative to some
fixed coordinate system. If we follow the derivation that led to Eq. 4.19 1the Reynolds transport
theorem for a fixed control volume2, we note that the corresponding result for a moving control
volume can be obtained by simply replacing the absolute velocity, V, in that equation by the relative
velocity, W. Thus, the Reynolds transport theorem for a control volume moving with constant
velocity is given by

(4.23)

where the relative velocity is given by Eq. 4.22.

4.4.7 Selection of a Control Volume

Any volume in space can be considered as a control volume. It may be of finite size or it may be
infinitesimal in size, depending on the type of analysis to be carried out. In most of our cases,
the control volume will be a fixed, nondeforming volume. In some situations we will consider
control volumes that move with constant velocity. In either case it is important that considerable
thought go into the selection of the specific control volume to be used.

The selection of an appropriate control volume in fluid mechanics is very similar to the selection
of an appropriate free-body diagram in dynamics or statics. In dynamics, we select the body in which
we are interested, represent the object in a free-body diagram, and then apply the appropriate governing
laws to that body. The ease of solving a given dynamics problem is often very dependent on the
specific object that we select for use in our free-body diagram. Similarly, the ease of solving a given
fluid mechanics problem is often very dependent on the choice of the control volume used. Only by
practice can we develop skill at selecting the “best” control volume. None are “wrong,” but some are
“much better” than others.

Solution of a typical problem will involve determining parameters such as velocity, pressure,
and force at some point in the flow field. It is usually best to ensure that this point is located on
the control surface, not “buried” within the control volume. The unknown will then appear in the
convective term 1the surface integral2 of the Reynolds transport theorem. If possible, the control
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surface should be normal to the fluid velocity so that the angle as shown by
the figure in the margin2 in the flux terms of Eq. 4.19 will be 0 or This will usually simplify
the solution process.

Figure 4.24 illustrates three possible control volumes associated with flow through a pipe.
If the problem is to determine the pressure at point 112, the selection of the control volume 1a2 is
better than that of 1b2 because point 112 lies on the control surface. Similarly, control volume 1a2 is
better than 1c2 because the flow is normal to the inlet and exit portions of the control volume. None
of these control volumes are wrong—1a2 will be easier to use. Proper control volume selection will
become much clearer in Chapter 5 where the Reynolds transport theorem is used to transform the
governing equations from the system formulation into the control volume formulation, and
numerous examples using control volume ideas are discussed.

180°.
1V  n̂ � V cos uu

178 Chapter 4 ■ Fluid Kinematics

This chapter considered several fundamental concepts of fluid kinematics. That is, various aspects
of fluid motion are discussed without regard to the forces needed to produce this motion. The
concepts of a field representation of a flow and the Eulerian and Lagrangian approaches to
describing a flow are introduced, as are the concepts of velocity and acceleration fields.

The properties of one-, two-, or three-dimensional flows and steady or unsteady flows are
introduced along with the concepts of streamlines, streaklines, and pathlines. Streamlines, which
are lines tangent to the velocity field, are identical to streaklines and pathlines if the flow is steady.
For unsteady flows, they need not be identical.

As a fluid particle moves about, its properties (i.e., velocity, density, temperature) may
change. The rate of change of these properties can be obtained by using the material derivative,
which involves both unsteady effects (time rate of change at a fixed location) and convective
effects (time rate of change due to the motion of the particle from one location to another).

The concepts of a control volume and a system are introduced, and the Reynolds transport
theorem is developed. By using these ideas, the analysis of flows can be carried out using a control
volume (a volume, usually fixed, through which the fluid flows), whereas the governing principles
are stated in terms of a system (a flowing portion of fluid).

The following checklist provides a study guide for this chapter. When your study of the entire
chapter and end-of-chapter exercises has been completed you should be able to

write out meaning of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type in
the text.

understand the concept of the field representation of a flow and the difference between
Eulerian and Lagrangian methods of describing a flow.

explain the differences among streamlines, streaklines, and pathlines.

calculate and plot streamlines for flows with given velocity fields.

use the concept of the material derivative, with its unsteady and convective effects, to deter-
mine time rate of change of a fluid property.

determine the acceleration field for a flow with a given velocity field.

understand the properties of and differences between a system and a control volume.

interpret, physically and mathematically, the concepts involved in the Reynolds transport
theorem.

4.5 Chapter Summary and Study Guide

field representation 
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dimensional flow 
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system 
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Some of the important equations in this chapter are:

Equation for streamlines (4.1)

Acceleration (4.3)

Material derivative (4.6)

Streamwise and normal components 
of acceleration (4.7)

Reynolds transport theorem (restricted form) (4.15)

Reynolds transport theorem (general form) (4.19)

Relative and absolute velocities (4.22)
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Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Problems

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an (*) are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a (†) are “open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 4.1 The Velocity Field

4.1 Obtain a photograph/image that shows a flowing fluid. Print
this photo and write a brief paragraph that describes the flow in
terms of an Eulerian description; a Lagrangian description.

4.2 Obtain a photograph/image of a situation in which the
unsteadiness of the flow is important. Print this photo and write a
brief paragraph that describes the situation involved.

4.3 Obtain a photograph/image of a situation in which a fluid is
flowing. Print this photo and draw in some lines to represent how
you think some streamlines may look. Write a brief paragraph to
describe the acceleration of a fluid particle as it flows along one
of these streamlines.

4.4 The x- and y-components of a velocity field are given by
x and y, where V0 and are constants.

Make a sketch of the velocity field in the first quadrant
by drawing arrows representing the fluid velocity

at representative locations.

4.5 A two-dimensional velocity field is given by and
Determine the equation of the streamline that passes

through the origin. On a graph, plot this streamline.

4.6 The velocity field of a flow is given by 
where x, y, and z are in feet. De-

termine the fluid speed at the origin and on the x
axis 

4.7 A flow can be visualized by plotting the velocity field as
velocity vectors at representative locations in the flow as shown in
Video V4.2 and Fig. E4.1. Consider the velocity field given in 

1y � z � 02.
1x � y � z � 02

15z � 32 î � 1x � 42 ĵ � 4yk̂ ft�s,
V �

v � 1.
u � 1 � y

1x 7 0, y 7 02
�v � �1V0 ��2u � �1V0 ��2



polar coordinates by and This flow approx-
imates a fluid swirling into a sink as shown in Fig. P4.7. Plot the ve-
locity field at locations given by 2, and 3 with 30, 60,
and 90°.

4.8 The velocity field of a flow is given by 
where x and y are in

feet. Determine the fluid speed at points along the x axis; along the
y axis. What is the angle between the velocity vector and the x axis
at points 15, 52, and 10, 52?
4.9 The components of a velocity field are given by 

and . Determine the location of any stagna-
tion points in the flow field.

4.10 The x and y components of velocity for a two-dimensional
flow are and where y is in feet. Determine
the equation for the streamlines and sketch representative stream-
lines in the upper half plane.

4.11 Show that the streamlines for a flow whose velocity compo-
nents are and where c is a constant, are
given by the equation At which point
1points2 is the flow parallel to the y axis? At which point 1points2 is
the fluid stationary?

4.12 A velocity field is given by ,
where u and are in and x and y are in feet. Plot the streamline
that passes through and . Compare this streamline with
the streakline through the origin.

4.13 From time t  0 to t  5 hr radioactive steam is released from
a nuclear power plant accident located at x  1 mile and y
3 miles. The following wind conditions are expected:
mph for hr, mph for hr, and

mph for hr. Draw to scale the expected streakline of
the steam for t  3, 10, and 15 hr. 

*4.14 Consider a ball thrown with initial speed at an angle 
of as shown in Fig. P4.14a. As discussed in beginning physics, if
friction is negligible the path that the ball takes is given by

That is, where and are constants. The path
is a parabola. The pathline for a stream of water leaving a small
nozzle is shown in Fig. P4.14b and Video V4.12. The coordinates
for this water stream are given in the following table. (a) Use the
given data to determine appropriate values for and in the above
equation and, thus, show that these water particles also follow a
parabolic pathline. (b) Use your values of and to determine
the speed of the water, leaving the nozzle.V0,

c2c1

c2c1

c2c1y c1x c2x
2,

y 1tan u2x 3g 12 V0 
2

    cos2 u2 4x 2

u
V0

t 7 10V 5 î
3 6 t 6 10V 15 î 8 ĵ0 6 t 6 3

V 10 î 5 ĵ

y 0x 0
ft sv

V x î x1x 12 1y 12ĵ

x 2y y 3 3 constant.
v 2cxy,u c1x2 y22

v 3 ft s,u 6y ft s

1V 02
w 0v xy 3 16,

u x y,

1x, y2 15, 02,

20y 1x 2 y 221 2
 î 20x 1x 2 y 221  2  ĵ ft s,

V 

u 0,r 1,

vu 10 r.vr 10 r,

4.15 The x and y components of a velocity field are given by
and Determine the equation for the streamlines

of this flow and compare it with those in Example 4.2. Is the flow
in this problem the same as that in Example 4.2? Explain.

4.16 A flow in the x–y plane is given by the following velocity
field: and for ; and

for . Dye is released at the origin
for . (a) Draw the pathlines at for two

particles that were released from the origin—one released at 
and the other released at . (b) On the same graph draw the
streamlines at times and .

4.17 In addition to the customary horizontal velocity components of
the air in the atmosphere 1the “wind”2, there often are vertical air cur-
rents 1thermals2 caused by buoyant effects due to uneven heating of the
air as indicated in Fig. P4.17. Assume that the velocity field in a certain
region is approximated by for 
and for Plot the shape of the streamline that
passes through the origin for values of 1, and 2.

*4.18 Repeat Problem 4.17 using the same information except
that for rather than Use values of

0.1, 0.2, 0.4, 0.6, 0.8, and 1.0.

4.19 As shown in Video V4.6 and Fig. P4.19, a flying airplane
produces swirling flow near the end of its wings. In certain circum-
stances this flow can be approximated by the velocity field

and where K is a constant
depending on various parameters associated with the airplane (i.e.,
its weight, speed) and x and y are measured from the center of the
swirl. (a) Show that for this flow the velocity is inversely propor-
tional to the distance from the origin. That is,
(b) Show that the streamlines are circles.

V K 1x 2 y 221 2.

v Kx 1x 2 y 22,u Ky 1x 2 y 22

u0 v0 0,
u u0.0 y hu u0y h

u0 v0 0.5,
y 7 h.u u0, v 0

0 6 y 6 h,u u0, v v0 11 y h2

t 30 st 10 s
t 20 s

t 0
t 30 st 01x y 02

20 6 t 6 40 sv 0 m s
u 40 6 t 6 20 sv 6 m su 3

v xy2.u x2y
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0 0
0.25 0.13
0.50 0.16
0.75 0.13
1.0 0.00
1.25
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1.75
2.00 1.43

0.90
0.53
0.20
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x0

F I G U R E  P4.17



4.20 (See Fluids in the News article titled “Follow those parti-
cles,” Section 4.1.) Two photographs of four particles in a flow past
a sphere are superposed as shown in Fig. P4.20. The time interval
between the photos is s. The locations of the particles,
as determined from the photos, are shown in the table. (a) Deter-
mine the fluid velocity for these particles. (b) Plot a graph to com-
pare the results of part (a) with the theoretical velocity which is
given by where a is the sphere radius and is
the fluid speed far from the sphere.

4.21 (See Fluids in the News article titled “Winds on Earth and
Mars,” Section 4.1.4.) A 10-ft-diameter dust devil that rotates one
revolution per second travels across the Martian surface (in the x-
direction) with a speed of 5 ft/s. Plot the pathline etched on the sur-
face by a fluid particle 10 ft from the center of the dust devil for
time . The particle position is given by the sum of that
for a stationary swirl cos sin and that
for a uniform velocity where x and y are in
feet and t is in seconds.

Section 4.2 The Acceleration Field

4.22 The x- and y-components of a velocity field are given by
and where V0 and are constants. Plot

the streamlines for this flow and determine the acceleration field.

4.23 A velocity field is given by and where c is
a constant. Determine the x and y components of the acceleration.
At what point 1points2 in the flow field is the acceleration zero?

4.24 Determine the acceleration field for a three-dimensional flow
with velocity components , , and .

†4.25 Estimate the deceleration of a water particle in a raindrop as
it strikes the sidewalk. List all assumptions and show all calcula-
tions.

4.26 The velocity of air in the diverging pipe shown in Fig. P4.26
is given by and where t is in seconds. (a)
Determine the local acceleration at points 112 and 122. (b) Is the av-
erage convective acceleration between these two points negative,
zero, or positive? Explain.

V2 2t ft s,V1 4t ft s

w x yv 4x 2y 2u x

v cy2,u cx2

�v 1V0 �2  y,u 1V0 �2  x

1x 5t, y constant2,
12pt2 412pt2, y 103x 10 

0 t 3 s

V0V V0 11 a3 x 32,

¢t 0.002

4.27 Water flows in a pipe so that its velocity triples every 20 s. At
it has . That is, ft/s. Deter-

mine the acceleration when , and 20 s.

4.28 When a valve is opened, the velocity of water in a certain
pipe is given by and where u is in
ftZs and t is in seconds. Determine the maximum velocity and max-
imum acceleration of the water.

4.29 The velocity of the water in the pipe shown in Fig. P4.29 is
given by and , where t is in seconds.
Determine the local acceleration at points (1) and (2). Is the average
convective acceleration between these two points negative, zero, or
positive? Explain.

4.30 A shock wave is a very thin layer (thickness ) in a high-
speed (supersonic) gas flow across which the flow properties
(velocity, density, pressure, etc.) change from state (1) to state
(2) as shown in Fig. P4.30. If V1  1800 fps, V2  700 fps, and 

10 4 in., estimate the average deceleration of the gas as it
flows across the shock wave. How many g’s deceleration does
this represent?

†4.31 Estimate the average acceleration of water as it travels
through the nozzle on your garden hose. List all assumptions and
show all calculations.

4.32 As a valve is opened, water flows through the diffuser shown
in Fig. P4.32 at an increasing flowrate so that the velocity along the
centerline is given by where

c, and are constants. Determine the acceleration as a function
of x and t. If and what value of c 1other than

2 is needed to make the acceleration zero for any x at 
Explain how the acceleration can be zero if the flowrate is increas-
ing with time.

t 1 s?c 0
/ 5 ft,V0 10 ft s

/u0,
11 x /2 î,V uî V011 e ct 2

/

/

V2 1.0t m sV1 0.50t m s

w 0,v 0,u 1011 e t2,

t 0, 10
V u1t2 î 5 13t 20 2 îu 5 ft st 0
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y

x

v
u
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Particle

1 0.500 0.480
2 0.250 0.232
3 0.140 0.128
4 0.120 0.112

x at t 0.002 s 1ft 2x at t 0 s 1ft 2

t = 0
t = 0.002 s

a = 0.1 ft

y, ft

x, ft
–0.2–0.4
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V1 = 4t ft/s V2 = 2t ft/s

(1)

(2)
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V1 =
0.50t m/s

V2 =
1.0t m/s

(1)
(2)
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Shock wave

V2

V2

V1

V1

V

�

�
x
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4.33 A fluid flows along the x axis with a velocity given by
where x is in feet and t in seconds. (a) Plot the speed

for and (b) Plot the speed for and
(c) Determine the local and convective acceleration. (d)

Show that the acceleration of any fluid particle in the flow is zero.
(e) Explain physically how the velocity of a particle in this unsteady
flow remains constant throughout its motion.

4.34 A hydraulic jump is a rather sudden change in depth of a
liquid layer as it flows in an open channel as shown in Fig. P4.34
and Video V10.12. In a relatively short distance 
the liquid depth changes from to with a corresponding change
in velocity from to If and

estimate the average deceleration of the liquid as it
flows across the hydraulic jump. How many g’s deceleration does
this represent?

4.35 A fluid particle flowing along a stagnation streamline, as
shown in Video V4.9 and Fig. P4.35, slows down as it approaches
the stagnation point. Measurements of the dye flow in the video
indicate that the location of a particle starting on the stagnation
streamline a distance upstream of the stagnation point
at is given approximately by where t is in
seconds and s is in feet. (a) Determine the speed of a fluid
particle as a function of time, as it flows along the
streamline. (b) Determine the speed of the fluid as a function of
position along the streamline, (c) Determine the fluid
acceleration along the streamline as a function of position,

4.36 A nozzle is designed to accelerate the fluid from to 
in a linear fashion. That is, where a and b areV � ax � b,

V2V1

as � as1s2.
V � V1s2.

Vparticle 1t2,
s � 0.6e�0.5t,t � 0

s � 0.6 ft

/ � 0.02 ft,
1.20 ft�s, V2 � 0.30 ft�s,V1 �V2.V1

z2,z1

1thickness � /2

2 � t � 4 s.
x � 7 ftt � 3 s.0 � x � 10 ft

V � 1x�t2 î,

constants. If the flow is constant with at and
at determine the local acceleration, the

convective acceleration, and the acceleration of the fluid at points
112 and 122.
4.37 Repeat Problem 4.36 with the assumption that the flow is not
steady, but at the time when and it is
known that and 

4.38 An incompressible fluid flows past a turbine blade as shown
in Fig. P4.38a and Video V4.9. Far upstream and downstream of
the blade the velocity is . Measurements show that the velocity of
the fluid along streamline near the blade is as indicated in
Fig. P4.38b. Sketch the streamwise component of acceleration,
as a function of distance, s, along the streamline. Discuss the im-
portant characteristics of your result.

*4.39 Air flows steadily through a variable area pipe with a veloc-
ity of where the approximate measured values of

are given in the table. Plot the acceleration as a function of x
for Plot the acceleration if the flowrate is increased
by a factor of N 1i.e., the values of u are increased by a factor of N 2
for 4, 10.

*4.40 As is indicated in Fig. P4.40, the speed of exhaust in a car’s
exhaust pipe varies in time and distance because of the
periodic nature of the engine’s operation and the damping
effect with distance from the engine. Assume that the speed is
given by where 

and Calculate and plot the fluid
acceleration at 1, 2, 3, 4, and 5 ft for 0 � t � p�25 s.x � 0,

v � 50 rad�s.b � 0.2 ft�1,
V0 � 8 fps, a � 0.05,V � V0 31 � ae�bx sin1vt2 4 ,

N � 2,

0 � x � 12 in.
u1x2

V � u1x2 î ft�s,

as,
A–F

V0

0V2�0t � 60 m�s2.0V1�0t � 20 m�s2
V2 � 25 m�s,V1 � 10 m�s

x2 � 1 m,V2 � 25 m�s
x1 � 0V1 � 10 m�s
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Stagnation point, s = 0
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s
V
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C
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V0
V0

V
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0
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s

V0
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x (in.) u (ftZs) x (in.) u (ftZs)

0 10.0 7 20.1
1 10.2 8 17.4
2 13.0 9 13.5
3 20.1 10 11.9
4 28.3 11 10.3
5 28.4 12 10.0
6 25.8 13 10.0



4.41 Water flows over the crest of a dam with speed V as shown in
Fig. P4.41. Determine the speed if the magnitude of the normal ac-
celeration at point (1) is to equal the acceleration of gravity, g.

4.42 Assume that the streamlines for the wingtip vortices from
an airplane (see Fig. P4.19 and Video V4.6) can be approximated
by circles of radius r and that the speed is where K is a
constant. Determine the streamline acceleration, and the normal
acceleration, for this flow.

4.43 A fluid flows past a sphere with an upstream velocity of
as shown in Fig. P4.43. From a more advanced theory

it is found that the speed of the fluid along the front part of the sphere
is Determine the streamwise and normal components
of acceleration at point A if the radius of the sphere is 

*4.44 For flow past a sphere as discussed in Problem 4.43, plot a graph
of the streamwise acceleration, the normal acceleration, and the
magnitude of the acceleration as a function of for with

and 1.0, and 10 ft. Repeat for At
what point is the acceleration a maximum; a minimum?

*4.45 The velocity components for steady flow through the nozzle
shown in Fig. P4.45 are and v � V0 31 � 1y�/2 4 ,u � �V0 x�/

V0 � 5 ft�s.a � 0.1,V0 � 50 ft�s
0 � u � 90°u

an,as,

a � 0.20 m.
V � 3

2V0 sin u.

V0 � 40 m�s

an,
as,

V � K�r,

where V0 and are constants. Determine the ratio of the magnitude
of the acceleration at point (1) to that at point (2).

*4.46 A fluid flows past a circular cylinder of radius a with an
upstream speed of as shown in Fig. P4.46. A more advanced the-
ory indicates that if viscous effects are negligible, the velocity of the
fluid along the surface of the cylinder is given by 
Determine the streamline and normal components of acceleration
on the surface of the cylinder as a function of a, and and plot
graphs of and for with and

0.10, 1.0, and 10.0 m.

4.47 Determine the x and y components of acceleration for the
flow given in Problem 4.11. If is the particle at point

and accelerating or decelerating? Explain.
Repeat if 

4.48 When flood gates in a channel are opened, water flows
along the channel downstream of the gates with an increasing
speed given by , for , where t
is in seconds. For the speed is a constant .
Consider a location in the curved channel where the radius of
curvature of the streamlines is 50 ft. For determine (a)
the component of acceleration along the streamline, (b) the
component of acceleration normal to the streamline, and (c)
the net acceleration (magnitude and direction). Repeat for

.

4.49 Water flows steadily through the funnel shown in
Fig. P4.49. Throughout most of the funnel the flow is approxi-
mately radial 1along rays from O2 with a velocity of 
where r is the radial coordinate and c is a constant. If the veloc-
ity is 0.4 mZs when determine the acceleration at
points A and B.

4.50 Water flows though the slit at the bottom of a two-
dimensional water trough as shown in Fig. P4.50. Throughout most
of the trough the flow is approximately radial 1along rays from O2
with a velocity of where r is the radial coordinate and c is
a constant. If the velocity is 0.04 mZs when determine
the acceleration at points A and B.

r � 0.1 m,
V � c�r,

r � 0.1 m,

V � c�r 2,

t � 30 s

t � 10 s

V � 12 ft�st 7 20 s
0 � t � 20 sV � 411 � 0.1t2 ft�s

x0 6 0.
y � 0x � x0 7 0

c 7 0,

a � 0.01,
V0 � 10 m�s0 � u � 90°anas

uV0,

V � 2V0 sin u.

V0

/
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V = V0[1 + ae–bx sin(   t)]ω
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aθ
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4.51 Air flows from a pipe into the region between two parallel cir-
cular disks as shown in Fig. P4.51. The fluid velocity in the gap be-
tween the disks is closely approximated by where R is
the radius of the disk, r is the radial coordinate, and is the fluid
velocity at the edge of the disk. Determine the acceleration for

2, or 3 ft if and 

4.52 Air flows into a pipe from the region between a circular disk
and a cone as shown in Fig. P4.52. The fluid velocity in the gap be-
tween the disk and the cone is closely approximated by 
where R is the radius of the disk, r is the radial coordinate, and is
the fluid velocity at the edge of the disk. Determine the acceleration
for and 2 ft if and 

Section 4.2.1 The Material Derivative

4.53 Air flows steadily through a long pipe with a speed of
where x is the distance along the pipe in feet, and u is

in ft/s. Due to heat transfer into the pipe, the air temperature, T, within
the pipe is F. Determine the rate of change of the
temperature of air particles as they flow past the section at x 5 ft.

4.54 A company produces a perishable product in a factory
located at x 0 and sells the product along the distribution route

. The selling price of the product, P, is a function of the
length of time after it was produced, t, and the location at which it
is sold, x. That is, P  P(x, t). At a given location the price of the
product decreases in time (it is perishable) according to 
dollars/hr. In addition, because of shipping costs the price increases
with distance from the factory according to dollars/mi.
If the manufacturer wishes to sell the product for the same 100-dollar

0P 0x 0.2

0P 0t 8

x 7 0

T 300 10x °

u 50 0.5x,

R 2 ft.V0 5 ft sr 0.5

V0

V V0 R2 r2,

R 3 ft.V0 5 ft sr 1,

V0

V V0 R r,

price anywhere along the distribution route, determine how fast he
must travel along the route.

4.55 Assume the temperature of the exhaust in an exhaust pipe can
be approximated by T  T0(1  ae bx) [1  c cos( t)], where T0

100 C, a  3, b  0.03 m 1, c  0.05, and  100 rad/s. If the
exhaust speed is a constant 3 m/s, determine the time rate of change of
temperature of the fluid particles at x  0 and x  4 m when t  0.

4.56 A bicyclist leaves from her home at 9 A.M. and rides to a
beach 40 mi away. Because of a breeze off the ocean, the tempera-
ture at the beach remains throughout the day. At the cyclist’s
home the temperature increases linearly with time, going from

at 9 A.M. to by 1 P.M. The temperature is assumed to
vary linearly as a function of position between the cyclist’s home
and the beach. Determine the rate of change of temperature ob-
served by the cyclist for the following conditions: (a) as she pedals
10 mph through a town 10 mi from her home at 10 A.M.; (b) as she
eats lunch at a rest stop 30 mi from her home at noon; (c) as she ar-
rives enthusiastically at the beach at 1 P.M., pedaling 20 mph.

4.57 The temperature distribution in a fluid is given by
where x and y are the horizontal and vertical coor-

dinates in meters and T is in degrees centigrade. Determine the
time rate of change of temperature of a fluid particle traveling (a)
horizontally with or (b) vertically with 

Section 4.4 The Reynolds Transport Theorem

4.58 Obtain a photograph/image of a situation in which a fluid is
flowing. Print this photo and draw a control volume through which
the fluid flows. Write a brief paragraph that describes how the fluid
flows into and out of this control volume.

4.59 The wind blows through the front door of a house with a speed
of 2 m/s and exits with a speed of 1 m/s through two windows on
the back of the house. Consider the system of interest for this flow
to be the air within the house at time t  0. Draw a simple sketch
of the house and show an appropriate control volume for this flow.
On the sketch, show the position of the system at time t  1 s.

4.60 Water flows through a duct of square cross section as shown
in Fig. P4.60 with a constant, uniform velocity of 
Consider fluid particles that lie along line at time Deter-
mine the position of these particles, denoted by line when

Use the volume of fluid in the region between lines 
A–B and to determine the flowrate in the duct. Repeat the
problem for fluid particles originally along line C–D; along line 
E–F. Compare your three answers.

4.61 Repeat Problem 4.60 if the velocity profile is linear from 0 to
20 mZs across the duct as shown in Fig. P4.61.

A¿ B¿
t 0.20 s.

A¿ B¿,
t 0.A–B
V 20 m s.

v 20 m s.
u 0,u 20 m s, v 0

T 10x 5y,

80 °F60 °F

60 °F

v°
v
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4.62 In the region just downstream of a sluice gate, the water
may develop a reverse flow region as is indicated in Fig. P4.62
and Video V10.9. The velocity profile is assumed to consist of
two uniform regions, one with velocity and the other
with Determine the net flowrate of water across the
portion of the control surface at section 122 if the channel is 20 ft
wide.

4.63 At time the valve on an initially empty 1perfect vac-
uum, 2 tank is opened and air rushes in. If the tank has a vol-
ume of and the density of air within the tank increases as

where b is a constant, determine the time rate of
change of mass within the tank.

†4.64 From calculus, one obtains the following formula 1Leibnitz
rule2 for the time derivative of an integral that contains time in both
the integrand and the limits of the integration:

Discuss how this formula is related to the time derivative of the
total amount of a property in a system and to the Reynolds transport
theorem.

4.65 Water enters the bend of a river with the uniform velocity
profile shown in Fig. P4.65. At the end of the bend there is a re-
gion of separation or reverse flow. The fixed control volume ABCD
coincides with the system at time . Make a sketch to indicate
(a) the system at time and (b) the fluid that has entered and
exited the control volume in that time period.

4.66 A layer of oil flows down a vertical plate as shown in
Fig. P4.66 with a velocity of where 
and h are constants. (a) Show that the fluid sticks to the plate and
that the shear stress at the edge of the layer is zero. (b) De-
termine the flowrate across surface AB. Assume the width of the
plate is b. (Note: The velocity profile for laminar flow in a pipe has
a similar shape. See Video V6.13.)

1x h2
V0V 1V0 h22 12hx x22 ĵ

t 5 s
t 0

d

dt �
x21t2

x11t2
 f 1x, t2dx �

x2

x1

 
0f

0t
 dx f 1x2, t2 

dx2

dt
 f 1x1, t2 

dx1

dt

r r 11 e bt2,
V 0

r 0
t 0

Vb 3 fps.
Va 10 fps

4.67 Water flows in the branching pipe shown in Fig. P4.67 with
uniform velocity at each inlet and outlet. The fixed control volume
indicated coincides with the system at time Make a sketch
to indicate (a) the boundary of the system at time (b) the
fluid that left the control volume during that 0.1-s interval, and (c)
the fluid that entered the control volume during that time interval.

4.68 Two plates are pulled in opposite directions with speeds of
1.0 ft/s as shown in Fig. P4.68. The oil between the plates moves
with a velocity given by ft/s, where y is in feet. The fixed
control volume ABCD coincides with the system at time t  0. Make
a sketch to indicate (a) the system at time t  0.2 s and (b) the fluid
that has entered and exited the control volume in that time period.

4.69 Water is squirted from a syringe with a speed of by
pushing in the plunger with a speed of as shown in
Fig. P4.69. The surface of the deforming control volume consists of
the sides and end of the cylinder and the end of the plunger. The sys-
tem consists of the water in the syringe at when the plunger
is at section 112 as shown. Make a sketch to indicate the control sur-
face and the system when t 0.5 s.

t 0

Vp 0.03 m s
V 5 m s

V 10 y î

t 20.1 s,
t 20 s.
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4.70 Water enters a 5-ft-wide, 1-ft-deep channel as shown in
Fig. P4.70. Across the inlet the water velocity is in the cen-
ter portion of the channel and in the remainder of it. Farther
downstream the water flows at a uniform velocity across
the entire channel. The fixed control volume ABCD coincides
with the system at time Make a sketch to indicate (a) the
system at time and (b) the fluid that has entered and ex-
ited the control volume in that time period.

4.71 Water flows through the 2-m-wide rectangular channel
shown in Fig. P4.71 with a uniform velocity of 3 mZs. (a) Directly
integrate Eq. 4.16 with to determine the mass flowrate 1kgZs2
across section CD of the control volume. (b) Repeat part 1a2 with

where is the density. Explain the physical interpretation
of the answer to part (b).

rb � 1�r,

b � 1

t � 0.5 s
t � 0.

2 ft�s
1 ft�s

6 ft�s

4.72 The wind blows across a field with an approximate velocity
profile as shown in Fig. P4.72. Use Eq. 4.16 with the parameter b
equal to the velocity to determine the momentum flowrate across the
vertical surface which is of unit depth into the paper.

■ Life Long Learning Problems

4.73 Even for the simplest flows it is often not be easy to visually
represent various flow field quantities such as velocity, pressure, or
temperature. For more complex flows, such as those involving three-
dimensional or unsteady effects, it is extremely difficult to “show the
data.” However, with the use of computers and appropriate software,
novel methods are being devised to more effectively illustrate the
structure of a given flow. Obtain information about methods used to
present complex flow data. Summarize your findings in a brief report.

4.74 For centuries people have obtained qualitative and quantita-
tive information about various flow fields by observing the motion
of objects or particles in a flow. For example, the speed of the cur-
rent in a river can be approximated by timing how long it takes a
stick to travel a certain distance. The swirling motion of a tornado
can be observed by following debris moving within the tornado
funnel. Recently various high-tech methods using lasers and
minute particles seeded within the flow have been developed to
measure velocity fields. Such techniques include the laser doppler
anemometer (LDA), the particle image velocimeter (PIV), and oth-
ers. Obtain information about new laser-based techniques for mea-
suring velocity fields. Summarize your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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Plunger

(1)
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