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CHAPTER OPENING PHOTO: Wind turbine farms (this is the Middelgrunden Offshore Wind Farm in Denmark)
are becoming more common. Finite control volume analysis can be used to estimate the amount of energy
transferred between the moving air and each turbine rotor. (Photograph courtesy of Siemens Wind Power.)

Lear n in g  Ob je c t ive s

After completing this chapter, you should be able to:

■ select an appropriate finite control volume to solve a fluid mechanics problem.

■ apply conservation of mass and energy and Newton’s second law of motion to
the contents of a finite control volume to get important answers.

■ know how velocity changes and energy transfers in fluid flows are related to
forces and torques.

■ understand why designing for minimum loss of energy in fluid flows is so
important.

To solve many practical problems in fluid mechanics, questions about the behavior of the contents
of a finite region in space 1a finite control volume2 are answered. For example, we may be asked
to estimate the maximum anchoring force required to hold a turbojet engine stationary during a
test. Or we may be called on to design a propeller to move a boat both forward and backward. Or
we may need to determine how much power it would take to move natural gas from one location
to another many miles away.

The bases of finite control volume analysis are some fundamental laws of physics, namely,
conservation of mass, Newton’s second law of motion, and the first and second laws of thermody-
namics. While some simplifying approximations are made for practicality, the engineering answers
possible with the estimates of this powerful analysis method have proven valuable in numerous in-
stances.

Conservation of mass is the key to tracking flowing fluid. How much enters and leaves a
control volume can be ascertained.

Finite Control
Volume Analysis

Finite Control
Volume Analysis

Many fluid me-
chanics problems
can be solved by us-
ing control volume
analysis.



Newton’s second law of motion leads to the conclusion that forces can result from or cause
changes in a flowing fluid’s velocity magnitude and/or direction. Moment of force 1torque2 can re-
sult from or cause changes in a flowing fluid’s moment of velocity. These forces and torques can
be associated with work and power transfer.

The first law of thermodynamics is a statement of conservation of energy. The second law
of thermodynamics identifies the loss of energy associated with every actual process. The me-
chanical energy equation based on these two laws can be used to analyze a large variety of steady,
incompressible flows in terms of changes in pressure, elevation, speed, and of shaft work and loss.

Good judgment is required in defining the finite region in space, the control volume, used
in solving a problem. What exactly to leave out of and what to leave in the control volume are im-
portant considerations. The formulas resulting from applying the fundamental laws to the contents
of the control volume are easy to interpret physically and are not difficult to derive and use.

Because a finite region of space, a control volume, contains many fluid particles and even
more molecules that make up each particle, the fluid properties and characteristics are often aver-
age values. In Chapter 6 an analysis of fluid flow based on what is happening to the contents of
an infinitesimally small region of space or control volume through which numerous molecules
simultaneously flow (what we might call a point in space) is considered.  
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5.1.1 Derivation of the Continuity Equation

A system is defined as a collection of unchanging contents, so the conservation of mass principle
for a system is simply stated as

time rate of change of the system mass

or

(5.1)

where the system mass, is more generally expressed as

(5.2)

and the integration is over the volume of the system. In words, Eq. 5.2 states that the system mass
is equal to the sum of all the density-volume element products for the contents of the system.

For a system and a fixed, nondeforming control volume that are coincident at an instant of
time, as illustrated in Fig. 5.1, the Reynolds transport theorem 1Eq. 4.192 with and 
allows us to state that

(5.3)
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5.1 Conservation of Mass—The Continuity Equation

The amount of
mass in a system is
constant.

System Control Volume

(a) (b) (c)

F I G U R E  5.1 System and control volume at three different
instances of time. (a) System and control volume at time . (b) System and
control volume at time t, coincident condition. (c) System and control volume at
time .t � Dt

t � Dt



or

In Eq. 5.3, we express the time rate of change of the system mass as the sum of two control vol-
ume quantities, the time rate of change of the mass of the contents of the control volume,

and the net rate of mass flow through the control surface,

When a flow is steady, all field properties 1i.e., properties at any specified point2 including
density remain constant with time and the time rate of change of the mass of the contents of the
control volume is zero. That is,

The integrand, in the mass flowrate integral represents the product of the compo-
nent of velocity, V, perpendicular to the small portion of control surface and the differential area,
dA. Thus, is the volume flowrate through dA and is the mass flowrate through
dA. Furthermore, as shown in the sketch in the margin, the sign of the dot product is 
for flow out of the control volume and for flow into the control volume since is considered
positive when it points out of the control volume. When all of the differential quantities,
are summed over the entire control surface, as indicated by the integral

the result is the net mass flowrate through the control surface, or

(5.4)

where is the mass flowrate If the integral in Eq. 5.4 is positive, the net flow
is out of the control volume; if the integral is negative, the net flow is into the control volume.

The control volume expression for conservation of mass, which is commonly called the con-
tinuity equation, for a fixed, nondeforming control volume is obtained by combining Eqs. 5.1, 5.2,
and 5.3 to obtain

(5.5)

In words, Eq. 5.5 states that to conserve mass the time rate of change of the mass of the contents
of the control volume plus the net rate of mass flow through the control surface must equal zero.
Actually, the same result could have been obtained more directly by equating the rates of mass flow
into and out of the control volume to the rates of accumulation and depletion of mass within the
control volume 1see Section 3.6.22. It is reassuring, however, to see that the Reynolds transport the-
orem works for this simple-to-understand case. This confidence will serve us well as we develop
control volume expressions for other important principles.

An often-used expression for mass flowrate, through a section of control surface having
area A is
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where is the fluid density, Q is the volume flowrate and V is the component of
fluid velocity perpendicular to area A. Since

application of Eq. 5.6 involves the use of representative or average values of fluid density, and
fluid velocity, V. For incompressible flows, is uniformly distributed over area A. For compress-
ible flows, we will normally consider a uniformly distributed fluid density at each section of flow
and allow density changes to occur only from section to section. The appropriate fluid velocity to
use in Eq. 5.6 is the average value of the component of velocity normal to the section area in-
volved. This average value, defined as

(5.7)

is shown in the figure in the margin.
If the velocity is considered uniformly distributed 1one-dimensional flow2 over the section

area, A, then

(5.8)

and the bar notation is not necessary 1as in Example 5.12. When the flow is not uniformly distrib-
uted over the flow cross-sectional area, the bar notation reminds us that an average velocity is be-
ing used 1as in Examples 5.2 and 5.42.

5.1.2 Fixed, Nondeforming Control Volume

In many applications of fluid mechanics, an appropriate control volume to use is fixed and nonde-
forming. Several example problems that involve the continuity equation for fixed, nondeforming
control volumes 1Eq. 5.52 follow.
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V

V

V5.1 Sink flow

GIVEN Water flows steadily through a nozzle at the end of a
fire hose as illustrated in Fig. E5.1a. According to local regula-

tions, the nozzle exit velocity must be at least 20 m/s as shown in
Fig. E5.1b.

FIND Determine the minimum pumping capacity, Q, required
in m3/s.

F I G U R E  E5.1b

F I G U R E  E5.1a

Conservation of Mass—Steady, Incompressible Flow

Section (1) (pump discharge)

Flow

Control volume

V2 = 20 m/s
D2 = 40 mm 

Section (2) (nozzle exit)

E XAMPLE 5.1

Q

Mass flowrate
equals the product
of density and vol-
ume flowrate.
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The pumping capacity is equal to the volume flowrate at the nozzle
exit. If, for simplicity, the velocity distribution at the nozzle exit plane,
section (2), is considered uniform (one-dimensional), then from Eq. 5

(Ans)

COMMENT By repeating the calculations for various val-
ues of the nozzle exit diameter, D2, the results shown in Fig.
E5.1c are obtained. The flowrate is proportional to the exit area,
which varies as the diameter squared. Hence, if the diameter
were doubled, the flowrate would increase by a factor of four,
provided the exit velocity remained the same.
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 � V2 
Q

4
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4
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F I G U R E  E5.1c
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SOLUTION

The pumping capacity sought is the volume flowrate delivered by
the fire pump to the hose and nozzle. Since we desire knowledge
about the pump discharge flowrate and we have information
about the nozzle exit flowrate, we link these two flowrates with
the control volume designated with the dashed line in Fig. E5.1b.
This control volume contains, at any instant, water that is within
the hose and nozzle from the pump discharge to the nozzle exit
plane.

Equation 5.5 is applied to the contents of this control volume
to give

0 (flow is steady)

(1)

The time rate of change of the mass of the contents of this control
volume is zero because the flow is steady. Because there is only
one inflow [the pump discharge, section (1)] and one outflow [the
nozzle exit, section (2)], Eq. (1) becomes

so that with 

(2)

Because the mass flowrate is equal to the product of fluid density, S,
and volume flowrate, Q (see Eq. 5.6), we obtain from Eq. 2

(3)

Liquid flow at low speeds, as in this example, may be considered
incompressible. Therefore

(4)

and from Eqs. 3 and 4
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GIVEN Air flows steadily between two sections in a long,
straight portion of 4-in. inside diameter pipe as indicated in 
Fig. E5.2. The uniformly distributed temperature and pressure at
each section are given. The average air velocity 1nonuniform ve-
locity distribution2 at section 122 is 

FIND Calculate the average air velocity at section 112.

1000 ft�s.

SOLUTION F I G U R E  E5.2

Conservation of Mass—Steady, Compressible Flow

Control volume

Flow

Section (1)

p1 = 100 psia
T1 = 540 °R

p2 = 18.4 psia
T2 = 453 °R
V2 = 1000 ft/s

D1 = D2 = 4 in.
Section (2)

Pipe

E XAMPLE 5.2

The average fluid velocity at any section is that velocity which
yields the section mass flowrate when multiplied by the section
average fluid density and section area 1Eq. 5.72. We relate the
flows at sections 112 and 122 with the control volume designated
with a dashed line in Fig. E5.2.

Equation 5.5 is applied to the contents of this control volume
to obtain

0 1flow is steady2

The time rate of change of the mass of the contents of this control
volume is zero because the flow is steady. The control surface
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integral involves mass flowrates at sections 112 and 122 so that from
Eq. 5.4 we get

or

(1)

and from Eqs. 1, 5.6, and 5.7 we obtain

(2)

or since 

(3)

Air at the pressures and temperatures involved in this example
problem behaves like an ideal gas. The ideal gas equation of state
1Eq. 1.82 is
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Thus, combining Eqs. 3 and 4 we obtain

(Ans)

COMMENT We learn from this example that the continuity
equation 1Eq. 5.52 is valid for compressible as well as incom-
pressible flows. Also, nonuniform velocity distributions can be
handled with the average velocity concept. Significant average ve-
locity changes can occur in pipe flow if the fluid is compressible.

�
118.4 psia2 1540 °R2 11000 ft�s2

1100 psia2 1453 °R 2 � 219 ft�s

 V1 �
p2T1V2

p1T2

GIVEN The inner workings of a dehumidifier are shown in
Fig. E5.3a. Moist air 1a mixture of dry air and water vapor2 enters
the dehumidifier at the rate of 600 lbmZhr. Liquid water drains out

of the dehumidifier at a rate of 3.0 lbmZhr. A simplified sketch of
the process is provided in Fig. E5.3b. 

FIND Determine the mass flowrate of the dry air and the water
vapor leaving the dehumidifier.

F I G U R E  E5.3a

Conservation of Mass—Two Fluids

Cooling
coil

Fan

F I G U R E  E5.3b

Fan

Motor

Cooling coil

Control volume

Condensate
(water)

Section (1)

Section (3)

Section (2)

m•
4

m• 1 =
600 lbm/hr

m•
3 = 3.0 lbm/hr

m•
2 = ?

m• 5

E XAMPLE 5.3

Not included in the control volume are the fan and its motor,
and the condenser coils and refrigerant. Even though the flow in
the vicinity of the fan blade is unsteady, it is unsteady in a cycli-
cal way. Thus, the flowrates at sections 112, 122, and 132 appear
steady and the time rate of change of the mass of the contents of

SOLUTION

The unknown mass flowrate at section 122 is linked with the known
flowrates at sections 112 and 132with the control volume designated
with a dashed line in Fig. E5.3b. The contents of the control vol-
ume are the air and water vapor mixture and the condensate 1liq-
uid water2 in the dehumidifier at any instant.
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the control volume may be considered equal to zero on a time-
average basis. The application of Eqs. 5.4 and 5.5 to the control
volume contents results in

or

(Ans)

COMMENT Note that the continuity equation 1Eq. 5.52 can
be used when there is more than one stream of fluid flowing
through the control volume.
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The answer is the same with a control volume which includes
the cooling coils to be within the control volume. The continuity
equation becomes

(1)

where is the mass flowrate of the cooling fluid flowing
into the control volume, and is the flowrate out of the
control volume through the cooling coil. Since the flow
through the coils is steady, it follows that . Hence,
Eq. 1 gives the same answer as obtained with the original con-
trol volume.
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GIVEN Incompressible, laminar water flow develops in a
straight pipe having radius R as indicated in Fig. E5.4a. At section
(1), the velocity profile is uniform; the velocity is equal to a con-
stant value U and is parallel to the pipe axis everywhere. At sec-
tion (2), the velocity profile is axisymmetric and parabolic, with
zero velocity at the pipe wall and a maximum value of umax at the
centerline. 

FIND
(a) How are U and umax related? 

(b) How are the average velocity at section (2), , and umax

related?
V2

SOLUTION

F I G U R E  E5.4a

Conservation of Mass—Nonuniform Velocity Profile

Section (1) Control volume

dA2 = 2  r drπ Section (2)

Pipe

R

r

u1 = U

u2 = umax  1 -  r  2

                 
_
R( )[ ]

E XAMPLE 5.4

(a) An appropriate control volume is sketched (dashed lines) in
Fig. E5.4a. The application of Eq. 5.5 to the contents of this con-
trol volume yields

0 (flow is steady)

(1)

At the inlet, section (1), the velocity is uniform with V1 � U so
that

(2)

At the outlet, section (2), the velocity is not uniform. How-
ever, the net flowrate through this section is the sum of flows
through numerous small washer-shaped areas of size dA2� 2Qr dr
as shown by the shaded area element in Fig. E5.4b. On each of
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F I G U R E  E5.4b

r

dr
dA2

these infinitesimal areas the fluid velocity is denoted as u2.
Thus, in the limit of infinitesimal area elements, the summation
is replaced by an integration and the outflow through section (2)
is given by

(3)

By combining Eqs. 1, 2, and 3 we get

(4)

Since the flow is considered incompressible, S1 � S2. The para-
bolic velocity relationship for flow through section (2) is used in
Eq. 4 to yield

(5)

Integrating, we get from Eq. 5
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or

(Ans)

(b) Since this flow is incompressible, we conclude from Eq.
5.7 that U is the average velocity at all sections of the control vol-
ume. Thus, the average velocity at section (2), , is one-half the
maximum velocity, umax, there or

(Ans)

COMMENT The relationship between the maximum veloc-
ity at section (2) and the average velocity is a function of the
“shape” of the velocity profile. For the parabolic profile as-
sumed in this example, the average velocity, is the actual
“average” of the maximum velocity at section (2),
and the minimum velocity at that section, u2 � 0. However, as
shown in Fig. E5.4c, if the velocity profile is a different shape
(non-parabolic), the average velocity is not necessarily one half
of the maximum velocity.

u2 � umax,
umax/2,

V2 �
umax

2

V2

umax � 2U
V2 = umax/2 

       (parabolic)

V2 = umax/2 

         (non-parabolic)

umax

F I G U R E  E5.4c

GIVEN A bathtub is being filled with water from a faucet. The
rate of flow from the faucet is steady at 9 gal/min. The tub volume
is approximated by a rectangular space as indicated in Fig. E5.5a. 

FIND Estimate the time rate of change of the depth of water in
the tub, ∂h/∂t, in inches per minute at any instant.

SOLUTION

F I G U R E  E5.5a

Conservation of Mass—Unsteady Flow

for air, and

(2)

for water. The volume of water in the control volume is given by

(3)

where Aj is the cross-sectional area of the water flowing from the
faucet into the tub. Combining Eqs. 2 and 3, we obtain

and, thus, since 
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E XAMPLE 5.5

We use the fixed, nondeforming control volume outlined with a
dashed line in Fig. E5.5a. This control volume includes in it, at
any instant, the water accumulated in the tub, some of the water
flowing from the faucet into the tub, and some air. Application of
Eqs. 5.4 and 5.5 to these contents of the control volume results in

(1)

Recall that the mass, dm, of fluid contained in a small volume
is . Hence, the two integrals in Eq. 1 represent the

total amount of air and water in the control volume, and the sum
of the first two terms is the time rate of change of mass within
the control volume.

Note that the time rate of change of air mass and water mass
are each not zero. Recognizing, however, that the air mass must
be conserved, we know that the time rate of change of the mass of
air in the control volume must be equal to the rate of air mass flow
out of the control volume. For simplicity, we disregard any water
evaporation that occurs. Thus, applying Eqs. 5.4 and 5.5 to the air
only and to the water only, we obtain

0

0t
 �air

volume

 Sair dVair � m
#

air � 0

dm � S dVdV

  � m
#

water � m
#

air � 0

0

0t
 �air

volume

 Sair dVair �
0

0t
 �water

volume

 Swater dVwater



The preceding example problems illustrate some important results of applying the conserva-
tion of mass principle to the contents of a fixed, nondeforming control volume. The dot product

is for flow out of the control volume and for flow into the control volume. Thus,
mass flowrate out of the control volume is and mass flowrate in is When the flow is
steady, the time rate of change of the mass of the contents of the control volume

is zero and the net amount of mass flowrate, through the control surface is therefore also zero

(5.9)

If the steady flow is also incompressible, the net amount of volume flowrate, Q, through the con-
trol surface is also zero:

(5.10)

An unsteady, but cyclical flow can be considered steady on a time-average basis. When the flow
is unsteady, the instantaneous time rate of change of the mass of the contents of the control vol-
ume is not necessarily zero and can be an important variable. When the value of

is the mass of the contents of the control volume is increasing. When it is the mass of
the contents of the control volume is decreasing.

When the flow is uniformly distributed over the opening in the control surface 1one-dimensional
flow2,

where V is the uniform value of the velocity component normal to the section area A. When the
velocity is nonuniformly distributed over the opening in the control surface,

(5.11)

where is the average value of the component of velocity normal to the section area A as defined
by Eq. 5.7.

For steady flow involving only one stream of a specific fluid flowing through the control vol-
ume at sections 112 and 122,

(5.12)

and for incompressible flow,
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For Aj� 10 ft2 we can conclude that

or

(Ans)

COMMENT By repeating the calculations for the same
flowrate but with various water jet diameters, Dj, the results
shown in Fig. E5.5b are obtained. With the flowrate held constant,
the value of is nearly independent of the jet diameter for val-
ues of the diameter less than about 10 in.

0h/0t
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0t
�
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17.48 gal/ft32 110 ft22 � 1.44 in./min
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0
0 10 20 30
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./m
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(1 in., 1.44 in./min)

Dj, in.

F I G U R E  E5.5b

The appropriate
sign convention
must be followed.

V5.2 Shop vac filter

V5.3 Flow through
a contraction



For steady flow involving more than one stream of a specific fluid or more than one specific
fluid flowing through the control volume,

The variety of example problems solved above should give the correct impression that the
fixed, nondeforming control volume is versatile and useful.

a m
#

in � a m
#

out
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F l u i d s  i n  t h e  N e w s

New 1.6 GPF standards Toilets account for approximately 40%
of all indoor household water use. To conserve water, the new
standard is 1.6 gallons of water per flush (gpf). Old toilets use
up to 7 gpf; those manufactured after 1980 use 3.5 gpf. Neither
are considered low-flush toilets. A typical 3.2 person household
in which each person flushes a 7-gpf toilet 4 times a day uses
32,700 gallons of water each year; with a 3.5-gpf toilet the
amount is reduced to 16,400 gallons. Clearly the new 1.6-gpf
toilets will save even more water. However, designing a toilet

that flushes properly with such a small amount of water is not
simple. Today there are two basic types involved: those that are
gravity powered and those that are pressure powered. Gravity
toilets (typical of most currently in use) have rather long cycle
times. The water starts flowing under the action of gravity and the
swirling vortex motion initiates the siphon action which builds to
a point of discharge. In the newer pressure-assisted models, the
flowrate is large but the cycle time is short and the amount of
water used is relatively small. (See Problem 5.32.)

5.1.3 Moving, Nondeforming Control Volume

It is sometimes necessary to use a nondeforming control volume attached to a moving reference
frame. Examples include control volumes containing a gas turbine engine on an aircraft in flight,
the exhaust stack of a ship at sea, and the gasoline tank of an automobile passing by.

As discussed in Section 4.4.6, when a moving control volume is used, the fluid velocity rela-
tive to the moving control volume 1relative velocity2 is an important flow field variable. The relative
velocity, W, is the fluid velocity seen by an observer moving with the control volume. The control
volume velocity, is the velocity of the control volume as seen from a fixed coordinate system.
The absolute velocity, V, is the fluid velocity seen by a stationary observer in a fixed coordinate sys-
tem. These velocities are related to each other by the vector equation

(5.14)

as illustrated by the figure in the margin. This is the same as Eq. 4.22, introduced earlier.
For a system and a moving, nondeforming control volume that are coincident at an instant

of time, the Reynolds transport theorem 1Eq. 4.232 for a moving control volume leads to

(5.15)

From Eqs. 5.1 and 5.15, we can get the control volume expression for conservation of mass
1the continuity equation2 for a moving, nondeforming control volume, namely,

(5.16)

Some examples of the application of Eq. 5.16 follow.

0

0t
 �

cv

 r dV� � �
cs

 rW  n̂ dA � 0

DMsys

Dt
�
0

0t
 �

cv

 r dV� � �
cs

 rW  n̂ dA

V � W � Vcv

Vcv,

Some problems are
most easily solved
by using a moving
control volume.

V VCV

W

GIVEN An airplane moves forward at a speed of as
shown in Fig. E5.6a. The frontal intake area of the jet engine is

and the entering air density is A stationary
observer determines that relative to the earth, the jet engine
exhaust gases move away from the engine with a speed of

0.736 kg�m3.0.80 m2

971 km�hr

Conservation of Mass—Compressible Flow with 
a Moving Control Volume

The engine exhaust area is , and the exhaust
gas density is 

FIND Estimate the mass flowrate of fuel into the engine in
kg�hr.

0.515 kg�m3.
0.558 m21050 km�hr.

EXAMPLE 5.6
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The control volume, which moves with the airplane 1see Fig.
E5.6b2, surrounds the engine and its contents and includes all flu-
ids involved at an instant. The application of Eq. 5.16 to these
contents of the control volume yields

0 1flow relative to moving control
volume is considered steady on a
time-average basis2

(1)

Assuming one-dimensional flow, we evaluate the surface integral
in Eq. 1 and get

or

(2)

We consider the intake velocity, , relative to the moving con-
trol volume, as being equal in magnitude to the speed of the air-
plane, The exhaust velocity, also needs to be
measured relative to the moving control volume. Since a fixed

W2,971 km�hr.

W1

m
#

fuel
in
� r2A2W2 � r1A1W1

�m
#

fuel
in
� r1A1W1 � r2A2W2 � 0

0

0t
 �

cv
 r dV� � �

cs
 rW  n̂ dA � 0

observer noted that the exhaust gases were moving away from the
engine at a speed of the speed of the exhaust gases
relative to the moving control volume, is determined as fol-
lows by using Eq. 5.14

or

and is shown in Fig. E5.6b.
From Eq. 2,

(Ans)

COMMENT Note that the fuel flowrate was obtained as the
difference of two large, nearly equal numbers. Precise values of 
and are needed to obtain a modestly accurate value of m

#
fuel
in

.W1

W2

 m
#

fuel
in
� 9100 kg�hr

� 1580,800 � 571,7002 kg�hr

� 10.736 kg�m32 10.80 m22 1971 km�hr2 11000 m�km2
 m
#

fuel
in
� 10.515 kg�m32  10.558 m22  12021 km�hr2  11000 m�km2

� 2021 km�hr

W2 � V2 � Vplane � 1050 km�hr � 1�971 km�hr2

V2 � W2 � Vplane

W2,
1050 km�hr,

Control volume

Vplane =
971 km/hr

Vplane =
971 km/hr

W1 =
971 km/hr

W2 = 1050 + 971 =
2021 km/hr

V2 = 1050 km/hr

m•
fuel in

Section (1)

Section (2)

(a)

(b) F I G U R E  E5.6

GIVEN Water enters a rotating lawn sprinkler through its base
at the steady rate of 1000 ml/s as sketched in Fig. E5.7. The exit
area of each of the two nozzles is 30 mm2.

FIND Determine the average speed of the water leaving the
nozzle, relative to the nozzle, if 

(a) the rotary sprinkler head is stationary,

(b) the sprinkler head rotates at 600 rpm, and 

(c) the sprinkler head accelerates from 0 to 600 rpm.

F I G U R E  E5.7

Conservation of Mass—Relative Velocity

Control volume

Section (3)

Sprinkler head
W2

Q

Q = 1000 ml/s

Section (1)

A2 = 30 mm2

Section (2) 

E XAMPLE 5.7

SOLUTION



When a moving, nondeforming control volume is used, the dot product sign convention
used earlier for fixed, nondeforming control volume applications is still valid. Also, if the flow
within the moving control volume is steady, or steady on a time-average basis, the time rate of
change of the mass of the contents of the control volume is zero. Velocities seen from the con-
trol volume reference frame 1relative velocities2 must be used in the continuity equation. Rela-
tive and absolute velocities are related by a vector equation 1Eq. 5.142, which also involves the
control volume velocity.

5.1.4 Deforming Control Volume

Occasionally, a deforming control volume can simplify the solution of a problem. A deforming
control volume involves changing volume size and control surface movement. Thus, the Reynolds
transport theorem for a moving control volume can be used for this case, and Eqs. 4.23 and 5.1
lead to

(5.17)

The time rate of change term in Eq. 5.17,

is usually nonzero and must be carefully evaluated because the extent of the control volume varies
with time. The mass flowrate term in Eq. 5.17,

�
cs

 rW  n̂ dA

0

0t
 �

cv
 r dV�

DMsys

Dt
�
0

0t
 �

cv

 r dV� � �
cs

 rW  n̂ dA � 0
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SOLUTION
Hence, for incompressible flow with S1� S2� S3, Eq. 2 becomes

With Q � A1W1, A2 � A3, and W2 � W3 it follows that

or

(Ans)

(b), (c) The value of W2 is independent of the speed of rotation
of the sprinkler head and represents the average velocity of the
water exiting from each nozzle with respect to the nozzle for
cases (a), (b), and (c). 

COMMENT The velocity of water discharging from each noz-
zle, when viewed from a stationary reference (i.e., V2), will vary as
the rotation speed of the sprinkler head varies since from Eq. 5.14,

where U � WR is the speed of the nozzle and W and R are the an-
gular velocity and radius of the sprinkler head, respectively.

V2 � W2 � U

 � 16.7 m/s

 W2 �
11000 ml/s2 10.001 m3/liter 2 1106 mm2/m22

11000 ml/liter2 122 130 mm22

W2 �
Q

2 A2

A2W2 � A3W3 � A1W1 � 0

(a) We specify a control volume that contains the water in the
rotary sprinkler head at any instant. This control volume is non-
deforming, but it moves (rotates) with the sprinkler head.
The application of Eq. 5.16 to the contents of this control volume
for situation (a), (b), or (c) of the problem results in the same ex-
pression, namely

0 flow is steady or the
control volume is filled with 
an incompressible fluid

or

(1)

The time rate of change of the mass of water in the control vol-
ume is zero because the flow is steady and the control volume is
filled with water.

Because there is only one inflow [at the base of the rotating
arm, section (1)] and two outflows [the two nozzles at the tips of
the arm, sections (2) and (3), each have the same area and fluid
velocity], Eq. 1 becomes

(2)S2A2W2 � S3A3W3 � S1A1W1 � 0

grout  Aout Wout � grin  Ain Win � 0

0

0t
 �

cv

r d V� � �
cs
rW  n̂ dA � 0

Care is needed to
ensure that absolute
and relative veloci-
ties are used cor-
rectly.



must be determined with the relative velocity, W, the velocity referenced to the control surface.
Since the control volume is deforming, the control surface velocity is not necessarily uniform and
identical to the control volume velocity, as was true for moving, nondeforming control vol-
umes. For the deforming control volume,

(5.18)

where is the velocity of the control surface as seen by a fixed observer. The relative velocity, W,
must be ascertained with care wherever fluid crosses the control surface. Two example problems that
illustrate the use of the continuity equation for a deforming control volume, Eq. 5.17, follow.

Vcs

V � W � Vcs

Vcv,
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The velocity of the
surface of a de-
forming control
volume is not the
same at all points
on the surface.

GIVEN A syringe 1Fig. E5.82 is used to inoculate a cow. The
plunger has a face area of The liquid in the syringe is
to be injected steadily at a rate of The leakage rate
past the plunger is 0.10 times the volume flowrate out of the
needle.

FIND With what speed should the plunger be advanced? 

300 cm3�min.
500 mm2.

SOLUTION

F I G U R E  E5.8

Conservation of Mass—Deforming Control Volume

Note that

(5)

where is the speed of the plunger sought in the problem state-
ment. Combining Eqs. 2, 4, and 5 we obtain

(6)

However, from Eq. 5.6, we see that

(7)

and Eq. 6 becomes

(8)

Solving Eq. 8 for yields

(9)

Since Eq. 9 becomes

and

(Ans) � 660 mm�min

 Vp �
11.12 1300 cm3�min2
1500 mm22  a1000 mm3

cm3 b

Vp �
Q2 � 0.1Q2

A1
�

1.1Q2

A1

Qleak � 0.1Q2,

Vp �
Q2 � Qleak

A1

Vp

�rA1Vp � rQ2 � rQleak � 0

m
#

2 � rQ2

�rA1Vp � m
#

2 � rQleak � 0

Vp

� 

0/

0t
� Vp

Plunger
motion

Section (1)

Section (2)

Control volume

Qleak =
0.1 Q2 Q2 =

300 cm3/min

Vp

Ap =
500 mm2

�

E XAMPLE 5.8

The control volume selected for solving this problem is the de-
forming one illustrated in Fig. E5.8. Section 112 of the control sur-
face moves with the plunger. The surface area of section 112, is
considered equal to the circular area of the face of the plunger, ,
although this is not strictly true, since leakage occurs. The differ-
ence is small, however. Thus,

(1)

Liquid also leaves the needle through section 122, which involves
fixed area The application of Eq. 5.17 to the contents of this
control volume gives

(2)

Even though and the flow through section area are
steady, the time rate of change of the mass of liquid in the
shrinking control volume is not zero because the control volume
is getting smaller. To evaluate the first term of Eq. 2, we note
that

(3)

where is the changing length of the control volume 1see Fig.
E5.82 and is the volume of the needle. From Eq. 3, we
obtain

(4)
0

0t
 �

cv

 r dV� � rA1 
0/

0t

V�needle

/

�
cv

 r dV� � r1/A1 � V�needle 2

A2Qleak

0

0t
 �

cv
 r dV� � m

#
2 � rQleak � 0

A2.

A1 � Ap

Ap

A1,

GIVEN Consider Example 5.5. FIND Solve the problem of Example 5.5 using a deforming con-
trol volume that includes only the water accumulating in the bathtub.

Conservation of Mass—Deforming Control VolumeE XAMPLE 5.9



The conservation of mass principle is easily applied to the contents of a control volume. The
appropriate selection of a specific kind of control volume 1for example, fixed and nondeforming,
moving and nondeforming, or deforming2 can make the solution of a particular problem less com-
plicated. In general, where fluid flows through the control surface, it is advisable to make the con-
trol surface perpendicular to the flow. In the sections ahead we learn that the conservation of mass
principle is primarily used in combination with other important laws to solve problems.
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SOLUTION
For this deforming control volume, Eq. 5.17 leads to

(1)

The first term of Eq. 1 can be evaluated as

(2)

The second term of Eq. 1 can be evaluated as

(3)�
cs

 r W  n̂ dA � �r aVj �
0h

0t
b Aj

 � r 110 ft22 0h
0t

 0

0t
 �

water
volume

 
r dV� �

0

0t
 3rh12 ft 2 15 ft 2 4

0

0t
 �

water

volume

r dV� � �
cs

 rW  n̂ dA � 0

where and are the cross-sectional area and velocity of the
water flowing from the faucet into the tube. Thus, from Eqs. 1, 2,
and 3 we obtain

or for 

(Ans)

COMMENT Note that these results using a deforming con-
trol volume are the same as that obtained in Example 5.5 with a
fixed control volume.

0h

0t
�

91gal�min2 112 in.�ft 2
17.48 gal�ft32 110 ft22 � 1.44 in.�min

Aj � 10 ft2

0h

0t
�

Vj  Aj

110 ft2 � Aj2
�

Qwater

110 ft2 � Aj2

VjAj

5.2.1 Derivation of the Linear Momentum Equation

Newton’s second law of motion for a system is

Since momentum is mass times velocity, the momentum of a small particle of mass is
Thus, the momentum of the entire system is and Newton’s law becomes

(5.19)

Any reference or coordinate system for which this statement is true is called inertial. A fixed coor-
dinate system is inertial. A coordinate system that moves in a straight line with constant velocity
and is thus without acceleration is also inertial. We proceed to develop the control volume formula
for this important law. When a control volume is coincident with a system at an instant of time,
the forces acting on the system and the forces acting on the contents of the coincident control vol-
ume 1see Fig. 5.22 are instantaneously identical, that is,

(5.20)

Furthermore, for a system and the contents of a coincident control volume that is fixed and non-
deforming, the Reynolds transport theorem [Eq. 4.19 with b set equal to the velocity (i.e., momen-
tum per unit mass), and being the system momentum] allows us to conclude that

(5.21)
D

Dt
 �

sys

 Vr dV� �
0

0t
 �

cv
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 VrV #  n̂ dA

Bsys
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coincident control volume
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 Vr dV� � a Fsys

FsysVrdV�VrdV�.
rdV�

time rate of change of the
linear momentum of the system

� sum of external forces
acting on the system

5.2 Newton’s Second Law—The Linear Momentum 
and Moment-of-Momentum Equations

V5.4 Smokestack
plume momentum

Forces acting on a
flowing fluid can
change its velocity
magnitude and/or
direction.



or

Equation 5.21 states that the time rate of change of system linear momentum is expressed
as the sum of the two control volume quantities: the time rate of change of the linear momentum
of the contents of the control volume, and the net rate of linear momentum flow through the con-
trol surface. As particles of mass move into or out of a control volume through the control sur-
face, they carry linear momentum in or out. Thus, linear momentum flow should seem no more
unusual than mass flow.

For a control volume that is fixed 1and thus inertial2 and nondeforming, Eqs. 5.19, 5.20, and 5.21
provide an appropriate mathematical statement of Newton’s second law of motion as

(5.22)

We call Eq. 5.22 the linear momentum equation.
In our application of the linear momentum equation, we initially confine ourselves to fixed,

nondeforming control volumes for simplicity. Subsequently, we discuss the use of a moving but
inertial, nondeforming control volume. We do not consider deforming control volumes and accel-
erating 1noninertial2 control volumes. If a control volume is noninertial, the acceleration compo-
nents involved 1for example, translation acceleration, Coriolis acceleration, and centrifugal accel-
eration2 require consideration.

The forces involved in Eq. 5.22 are body and surface forces that act on what is contained in
the control volume as shown in the sketch in the margin. The only body force we consider in this
chapter is the one associated with the action of gravity. We experience this body force as weight, w.
The surface forces are basically exerted on the contents of the control volume by material just out-
side the control volume in contact with material just inside the control volume. For example, a wall
in contact with fluid can exert a reaction surface force on the fluid it bounds. Similarly, fluid just
outside the control volume can push on fluid just inside the control volume at a common interface,
usually an opening in the control surface through which fluid flow occurs. An immersed object
can resist fluid motion with surface forces.

The linear momentum terms in the momentum equation deserve careful explanation. We clar-
ify their physical significance in the following sections.

5.2.2 Application of the Linear Momentum Equation

The linear momentum equation for an inertial control volume is a vector equation 1Eq. 5.222. In
engineering applications, components of this vector equation resolved along orthogonal coordi-
nates, for example, x, y, and z 1rectangular coordinate system2 or r, and x 1cylindrical coordinate
system2, will normally be used. A simple example involving steady, incompressible flow is con-
sidered first.

u,

0

0t
 �

cv

 Vr dV� � �
cs

 VrV  n̂ dA � a Fcontents of the
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control volume
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F I G U R E  5.2 External forces acting on system and

coincident control volume.
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Control volume
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Ffluid out

Fwall
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propulsion
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GIVEN As shown in Fig. E5.10a, a horizontal jet of water ex-
its a nozzle with a uniform speed of V1 � 10 ft/s, strikes a vane,
and is turned through an angle V.

SOLUTION

F I G U R E  E5.10

Linear Momentum—Change in Flow Direction

and

(2)

where V� u î� w k̂, and 4Fx and 4Fz are the net x and z compo-
nents of force acting on the contents of the control volume. De-
pending on the particular flow situation being considered and the
coordinate system chosen, the x and z components of velocity, u
and w, can be positive, negative, or zero. In this example the flow is
in the positive directions at both the inlet and the outlet.

The water enters and leaves the control volume as a free jet at
atmospheric pressure. Hence, there is atmospheric pressure sur-
rounding the entire control volume, and the net pressure force on
the control volume surface is zero. If we neglect the weight of the
water and vane, the only forces applied to the control volume con-
tents are the horizontal and vertical components of the anchoring
force, FAx and FAz, respectively.

With negligible gravity and viscous effects, and since p1 � p2,
the speed of the fluid remains constant so that V1� V2� 10 ft/s
(see the Bernoulli equation, Eq. 3.7). Hence, at section (1),
u1� V1, w1� 0, and at section (2), u2� V1 cos V, w2 � V1 sin V.

By using this information, Eqs. 1 and 2 can be written as

(3)

and

(4)

Equations 3 and 4 can be simplified by using conservation of
mass, which states that for this incompressible flow A1V1 �
A2V2, or A1 � A2 since V1 � V2. Thus

(5)

and

(6)

With the given data we obtain

(Ans)

and

(Ans)

COMMENTS The values of FAx and FAz as a function of V are
shown in Fig. E5.10d. Note that if V � 0 (i.e., the vane does not
turn the water), the anchoring force is zero. The inviscid fluid
merely slides along the vane without putting any force on it. If
V � 90°, then FAx � �11.64 lb and FAz � 11.64 lb. It is necessary
to push on the vane (and, hence, for the vane to push on the water)

 � 11.64 sin u lb

 FAz � 11.94 slugs/ft32 10.06 ft22 110 ft/s22 sin u

 � �11.6411 � cos u2 lb
 � �11.6411 � cos u2 slugs  ft/s2

 FAx � �11.94 slugs/ft32 10.06 ft22 110 ft/s2211 � cos u2

 FAz � SA1V 2
1 sin V

 FAx � �SA1V2
1 � SA1V2

1 cos V � �SA1V2
1  11 � cos V2

V1sin V S A2V1 � 0 S A1V1 � FAz

V1cos V S A2V1 � V1 S A1V1 � FAx

w2 SA2V2 � w1SA1V1 � gFz

Nozzle

A1 = 0.06 ft2 Vane

V1

(a)

θ

Nozzle
V1

(b)

Control
volume

(c)

z

x

(2)

FAx
FAz

V1

V2
θ

(1)

E XAMPLE 5.10

We select a control volume that includes the vane and a portion of
the water (see Figs. E5.10b, c) and apply the linear momentum
equation to this fixed control volume. The only portions of the
control surface across which fluid flows are section (1) (the en-
trance) and section (2) (the exit). Hence, the x and z components
of Eq. 5.22 become

0 1flow is steady2

and

0 1flow is steady2

or

(1)u2 SA2V2 � u1SA1V1 � gFx

0

0t
 �

cv
 w r dV� � �

cs
 w r V  n̂ dA � a Fz

0

0t
 �

cv
 u r dV� � �

cs
 u r V  n̂ dA � a Fx

FIND Determine the anchoring force needed to hold the vane
stationary if gravity and viscous effects are negligible.
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to the left (FAx is negative) and up in order to change the direction
of flow of the water from horizontal to vertical. This momentum
change requires a force. If V � 180°, the water jet is turned back
on itself. This requires no vertical force (FAz � 0), but the hori-
zontal force (FAx � �23.3 lb) is two times that required if
V � 90°. This horizontal fluid momentum change requires a hor-
izontal force only.

Note that the anchoring force (Eqs. 5, 6) can be written in
terms of the mass flowrate, as

and

In this example exerting a force on a fluid flow resulted in a
change in its direction only (i.e., change in its linear momentum).

FAz � m
#
V1 sin V

FAx � �m
#
V111 � cos V2

m
#
� SA1V1,

F I G U R E  E5.10d

–25

–20

–15

–10

–5

0

5

10

15
F A

x 
or

 F
A

z,  lb 30 60 90 120 150 180 

θ   , deg

FAx 

FAz 

0

F l u i d s  i n  t h e  N e w s

Where the plume goes Commercial airliners have wheel brakes
very similar to those on highway vehicles. In fact, antilock brakes
now found on most new cars were first developed for use on air-
planes. However, when landing, the major braking force comes
from the engine rather than the wheel brakes. Upon touchdown, a
piece of engine cowling translates aft and blocker doors drop
down, directing the engine airflow into a honeycomb structure
called a cascade. The cascade reverses the direction of the high-
speed engine exhausts by nearly so that it flows forward. As180°

predicted by the momentum equation, the air passing through the
engine produces a substantial braking force—the reverse thrust.
Designers must know the flow pattern of the exhaust plumes to
eliminate potential problems. For example, the plumes of hot ex-
haust must be kept away from parts of the aircraft where repeated
heating and cooling could cause premature fatigue. Also, the
plumes must not re-enter the engine inlet, or blow debris from the
runway in front of the engine, or envelop the vertical tail. (See
Problem 5.67.)

GIVEN As shown in Fig. E5.11a, water flows through a noz-
zle attached to the end of a laboratory sink faucet with a flowrate
of 0.6 liters/s. The nozzle inlet and exit diameters are 16 and 5
mm, respectively, and the nozzle axis is vertical. The mass of the
nozzle is 0.1 kg. The pressure at section (1) is 464 kPa.

SOLUTION

Linear Momentum—Weight, Pressure, and Change in Speed

where w is the z direction component of fluid velocity, and the
various parameters are identified in the figure.

Note that the positive direction is considered “up” for the
forces. We will use this same sign convention for the fluid veloc-
ity, w, in Eq. 1. In Eq. 1, the dot product, is for flow
out of the control volume and for flow into the control vol-
ume. For this particular example

(2)

with the used for flow out of the control volume and 
used for flow in. To evaluate the control surface integral in Eq. 1,
we need to assume a distribution for fluid velocity, w, and fluid
density, For simplicity, we assume that w is uniformly distrib-
uted or constant, with magnitudes of and over cross-
sectional areas and Also, this flow is incompressible so theA2.A1

w2w1

r.

“�”“�”

V  n̂ dA � � 0w 0  dA

“�”
“�”V  n̂,

E XAMPLE 5.11

The anchoring force sought is the reaction force between the
faucet and nozzle threads. To evaluate this force we select a con-
trol volume that includes the entire nozzle and the water contained
in the nozzle at an instant, as is indicated in Figs. E5.11a and
E5.11b. All of the vertical forces acting on the contents of this con-
trol volume are identified in Fig. E5.11b. The action of atmos-
pheric pressure cancels out in every direction and is not shown.
Gage pressure forces do not cancel out in the vertical direction and
are shown. Application of the vertical or z direction component of
Eq. 5.22 to the contents of this control volume leads to

0 1flow is steady2

(1)�ww � p2A2

0

0t
 �

cv
 wr dV� � �

cs
 wrV  n̂ dA � FA �wn � p1A1

FIND Determine the anchoring force required to hold the noz-
zle in place.
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fluid density, is constant throughout. Proceeding further we ob-
tain for Eq. 1

(3)

where is the mass flowrate.
Note that and are used because both of these veloc-

ities are “down.” Also, is used because it is associated with
flow into the control volume. Similarly, is used because it is
associated with flow out of the control volume. Solving Eq. 3 for
the anchoring force, we obtain

(4)

From the conservation of mass equation, Eq. 5.12, we obtain

(5)

which when combined with Eq. 4 gives

(6)

It is instructive to note how the anchoring force is affected
by the different actions involved. As expected, the nozzle
weight, the water weight, and gage pressure force at
section 112, all increase the anchoring force, while the
gage pressure force at section 122, acts to decrease the
anchoring force. The change in the vertical momentum
flowrate, will, in this instance, decrease the an-
choring force because this change is negative 1w2 7 w12.

m
# 1w1 � w22,

p2A2,
p1A1,

ww,wn,

FA � m
#  1w1 � w22 �wn � p1A1 �ww � p2A2

m
#

1 � m
#

2 � m
#

FA � m
#

1w1 � m
#

2w2 �wn � p1A1 �ww � p2A2

FA,

�m
#

2

�m
#

1

�w2�w1

m
#
� rAV

 � FA �wn � p1A1 �ww � p2A2

 1�m
#

12 1�w12 � m
#

21�w22

r, To complete this example we use quantities given in the
problem statement to quantify the terms on the right-hand side
of Eq. 6.

From Eq. 5.6,

(7)

and

(8)

Also from Eq. 5.6,

(9)

The weight of the nozzle, can be obtained from the nozzle
mass, with

(10)

The weight of the water in the control volume, can be ob-
tained from the water density, , and the volume of water, inV�w,r

ww,

wn � mng � 10.1 kg2 19.81 m�s22 � 0.981 N

mn,
wn,

�
10.6 liter�s2 110�3 m3�liter2
p15 mm22�4110002 mm2�m22 � 30.6 m�s

w2 �
Q

A2

�
Q

p1D2
2�42

�
10.6 liter�s2 110�3 m3�liter2
p116 mm22�4110002 mm2�m22 � 2.98 m�s

w1 �
Q

A1

�
Q

p1D2
1�42

� 0.599 kg�s
� 1999 kg�m32 10.6 liter�s2 110�3 m3�liter2

m
#
� rw1A1 � rQ

F I G U R E  E5.11a F I G U R E  E5.11b

g
w1

D1 = 16 mm

x

z

Control volume

Section (1)

h = 30 mm

Section (2)

D2 = 5 mm

w2

FA

�n

p1A1

w1

�w

p2A2

w2

z

Control volume

FA

�n

�w

p1
A1

p2
A2

w1

w2

= anchoring force that holds
        nozzle in place
= weight of nozzle
= weight of water contained in
         the nozzle
= gage pressure at section (1)
= cross section area at
        section (1)
= gage pressure at section (2)
= cross section area at
       section (2)
= z direction velocity at
        control volume entrance
= z direction velocity at
        control volume exit
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the truncated cone of height h. That is,

where

Thus,

(11)

The gage pressure at section 122, is zero since, as discussed in
Section 3.6.1, when a subsonic flow discharges to the atmosphere
as in the present situation, the discharge pressure is essentially at-
mospheric. The anchoring force, can now be determined from
Eqs. 6 through 11 with

or

(Ans)

Since the anchoring force, is positive, it acts upward in the z
direction. The nozzle would be pushed off the pipe if it were not
fastened securely.

COMMENT The control volume selected above to solve
problems such as these is not unique. The following is an alternate
solution that involves two other control volumes—one containing

FA,

� 77.8 N

FA � �16.5 N � 0.981 N � 93.3 N � 0.0278 N

 � 0.0278 N � 0

 � 1464 kPa2 11000 Pa�kPa2 p116 mm22
4110002 mm2�m22

 FA � 10.599 kg�s2 12.98 m�s � 30.6 m�s2 � 0.981 N

FA,

p2,

 � 0.0278 N

ww � 1999 kg�m32 12.84 � 10�6 m32 19.81 m�s22

 � 2.84 � 10�6 m3

 � c 116 mm22 � 15 mm22 � 116 mm2 15 mm2
110002 mm2�m22 d

 �
1

12
p 

130 mm2
11000 mm�m2

 V�w �
1
12ph1D2

1 � D 

2
2 � D1D22

ww � rV�wg

only the nozzle and the other containing only the water in the noz-
zle. These control volumes are shown in Figs. E5.11c and E5.11d
along with the vertical forces acting on the contents of each con-
trol volume. The new force involved, represents the interaction
between the water and the conical inside surface of the nozzle. It
includes the net pressure and viscous forces at this interface.

Application of Eq. 5.22 to the contents of the control volume
of Fig. E5.11c leads to

(12)

The term is the resultant force from the at-
mospheric pressure acting upon the exterior surface of the
nozzle 1i.e., that portion of the surface of the nozzle that is not
in contact with the water2. Recall that the pressure force on a
curved surface 1such as the exterior surface of the nozzle2 is
equal to the pressure times the projection of the surface area
on a plane perpendicular to the axis of the nozzle. The projec-
tion of this area on a plane perpendicular to the z direction is

The effect of the atmospheric pressure on the inter-
nal area 1between the nozzle and the water2 is already in-
cluded in which represents the net force on this area.

Similarly, for the control volume of Fig. E5.11d we obtain

(13)

where and are gage pressures. From Eq. 13 it is clear that
the value of depends on the value of the atmospheric pressure,

since That is, we must use absolute pressure, not
gage pressure, to obtain the correct value of From Eq. 13 we
can easily identify which forces acting on the flowing fluid
change its velocity magnitude and thus linear momentum.

By combining Eqs. 12 and 13 we obtain the same result for 
as before 1Eq. 62:

Note that although the force between the fluid and the nozzle wall,
is a function of the anchoring force, is not. That is, we

were correct in using gage pressure when solving for by means
of the original control volume shown in Fig. E5.11b.

FA

FA,patm,Rz,

FA � m
# 1w1 � w22 �wn � p1A1 � Ww � p2A2

FA

Rz.
A1 q A2.patm,
Rz

p2p1

� 1p2 � patm2A2

Rz � m
# 1w1 � w22 �ww � 1  p1 � patm2A1

Rz

A1 � A2.

patm 1A1 � A22
FA �wn � Rz � patm1A1 � A22

Rz,

(p1 + patm)A1

�w

Rz

w2

(p2 + patm)A2

w1

(2)

F I G U R E  E5.11c F I G U R E  E5.11d

FA

�n

Rz

patm



Several important generalities about the application of the linear momentum equation 1Eq.
5.222 are apparent in the example just considered.

1. When the flow is uniformly distributed over a section of the control surface where flow into
or out of the control volume occurs, the integral operations are simplified. Thus, one-
dimensional flows are easier to work with than flows involving nonuniform velocity distri-
butions.

2. Linear momentum is directional; it can have components in as many as three orthogonal
coordinate directions. Furthermore, along any one coordinate, the linear momentum of a
fluid particle can be in the positive or negative direction and thus be considered as a pos-
itive or a negative quantity. In Example 5.11, only the linear momentum in the z direction
was considered 1all of it was in the negative z direction and was hence treated as being
negative2.

3. The flow of positive or negative linear momentum into a control volume involves a nega-
tive product. Momentum flow out of the control volume involves a positive 
product. The correct algebraic sign to assign to momentum flow 
will depend on the sense of the velocity 1 in positive coordinate direction, in negative
coordinate direction2 and the product 1 for flow out of the control volume, for
flow into the control volume2. This is shown in the figure in the margin. In Example 5.11,
the momentum flow into the control volume past section 112 was a positive 1 2 quantity
while the momentum flow out of the control volume at section 122 was a negative 1 2 quantity.

4. The time rate of change of the linear momentum of the contents of a nondeforming control
volume is zero for steady flow. The momentum problems considered in
this text all involve steady flow.

5. If the control surface is selected so that it is perpendicular to the flow where fluid enters or
leaves the control volume, the surface force exerted at these locations by fluid outside the
control volume on fluid inside will be due to pressure. Furthermore, when subsonic flow ex-
its from a control volume into the atmosphere, atmospheric pressure prevails at the exit cross
section. In Example 5.11, the flow was subsonic and so we set the exit flow pressure at the
atmospheric level. The continuity equation 1Eq. 5.122 allowed us to evaluate the fluid flow
velocities and at sections 112 and 122.

6. The forces due to atmospheric pressure acting on the control surface may need consideration
as indicated by Eq. 13 in Example 5.11 for the reaction force between the nozzle and the fluid.
When calculating the anchoring force, the forces due to atmospheric pressure on the con-
trol surface cancel each other 1for example, after combining Eqs. 12 and 13 the atmospheric
pressure forces are no longer involved2 and gage pressures may be used.

7. The external forces have an algebraic sign, positive if the force is in the assigned positive
coordinate direction and negative otherwise.

8. Only external forces acting on the contents of the control volume are considered in the lin-
ear momentum equation 1Eq. 5.222. If the fluid alone is included in a control volume, reac-
tion forces between the fluid and the surface or surfaces in contact with the fluid [wetted
surface1s2] will need to be in Eq. 5.22. If the fluid and the wetted surface or surfaces are
within the control volume, the reaction forces between fluid and wetted surface1s2 do not ap-
pear in the linear momentum equation 1Eq. 5.222 because they are internal, not external forces.
The anchoring force that holds the wetted surface1s2 in place is an external force, however,
and must therefore be in Eq. 5.22.

9. The force required to anchor an object will generally exist in response to surface pressure
andZor shear forces acting on the control surface, to a change in linear momentum flow
through the control volume containing the object, and to the weight of the object and the
fluid contained in the control volume. In Example 5.11 the nozzle anchoring force was re-
quired mainly because of pressure forces and partly because of a change in linear momen-
tum flow associated with accelerating the fluid in the nozzle. The weight of the water and
the nozzle contained in the control volume influenced the size of the anchoring force only
slightly.

FA,

w2w1

1i.e., 0�0t Fcv Vr dV�2

�
�

��V  n̂
��
1VrV  n̂ dA21� or �2

V  n̂V  n̂
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Control
volume

x

y

Vr V n > 0^

Vr V n < 0^

n̂ n̂

V V

n̂ n̂
V V

V5.7 Running on
water

A control volume
diagram is similar
to a free-body 
diagram.



To further demonstrate the use of the linear momentum equation 1Eq. 5.222, we consider
another one-dimensional flow example before moving on to other facets of this important
equation.
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F l u i d s  i n  t h e  N e w s

Motorized surfboard When Bob Montgomery, a former pro-
fessional surfer, started to design his motorized surfboard
(called a jet board), he discovered that there were many engi-
neering challenges to the design. The idea is to provide surfing
to anyone, no matter where they live, near or far from the ocean.
The rider stands on the device like a surfboard and steers it like
a surfboard by shifting his/her body weight. A new, sleek, com-
pact 45-horsepower engine and pump was designed to fit within

the surfboard hull. Thrust is produced in response to the change
in linear momentum of the water stream as it enters through the
inlet passage and exits through an appropriately designed noz-
zle. Some of the fluid dynamic problems associated with de-
signing the craft included one-way valves so that water does not
get into the engine (at both the intake or exhaust ports), buoy-
ancy, hydrodynamic lift, drag, thrust, and hull stability. (See
Problem 5.68.)

GIVEN Water flows through a horizontal, pipe bend as
illustrated in Fig. E5.12a. The flow cross-sectional area is con-
stant at a value of through the bend. The magnitude of the
flow velocity everywhere in the bend is axial and The
absolute pressures at the entrance and exit of the bend are 30 psia
and 24 psia, respectively. 

50 ft�s.
0.1 ft2

180°

SOLUTION

Linear Momentum—Pressure and Change in Flow Direction

At sections 112 and 122, the flow is in the y direction and therefore
at both cross sections. There is no x direction momentum

flow into or out of the control volume and we conclude from Eq. 1
that

(Ans)

For the y direction, we get from Eq. 5.22

(2)

For one-dimensional flow, the surface integral in Eq. 2 is easy to
evaluate and Eq. 2 becomes

(3)1�v12 1�m
#

12 � 1�v22 1�m
#

22 � FAy � p1A1 � p2A2

�
cs

 vrV  n̂ dA � FAy � p1A1 � p2A2

FAx � 0

u � 0

E XAMPLE 5.12

Since we want to evaluate components of the anchoring force to
hold the pipe bend in place, an appropriate control volume 1see
dashed line in Fig. E5.12a2 contains the bend and the water in the
bend at an instant. The horizontal forces acting on the contents of
this control volume are identified in Fig. E5.12b. Note that the
weight of the water is vertical 1in the negative z direction2 and
does not contribute to the x and y components of the anchoring
force. All of the horizontal normal and tangential forces exerted
on the fluid and the pipe bend are resolved and combined into the
two resultant components, and These two forces act on
the control volume contents, and thus for the x direction, Eq. 5.22
leads to

(1)�
cs

 urV  n̂ dA � FAx

FAy.FAx

FIND Calculate the horizontal 1x and y2 components of the an-
choring force required to hold the bend in place.

z

y
x

V = 50 ft/s

Section (1) A = 0.1 ft2

V = 
50 ft/s

Section (2)

Control
volume

180° pipe bend

(a)

x
u v y

w

z

p1A1

v1

v2

p2A2

FAz

FAy

�

FAx
Control volume

Pipe bend
and water

(b)

F I G U R E  E5.12



In Examples 5.10 and 5.12 the force exerted on a flowing fluid resulted in a change in flow
direction only. This force was associated with constraining the flow, with a vane in Example 5.10,
and with a pipe bend in Example 5.12. In Example 5.11 the force exerted on a flowing fluid
resulted in a change in velocity magnitude only. This force was associated with a converging
nozzle. Anchoring forces are required to hold a vane or conduit stationary. They are most easily
estimated with a control volume that contains the vane or conduit and the flowing fluid involved.
Alternately, two separate control volumes can be used, one containing the vane or conduit only
and one containing the flowing fluid only.
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Note that the y component of velocity is positive at section 112 but
is negative at section 122. Also, the mass flowrate term is negative
at section 112 1flow in2 and is positive at section 122 1flow out2. From
the continuity equation 1Eq. 5.122, we get

(4)

and thus Eq. 3 can be written as

(5)

Solving Eq. 5 for we obtain

(6)

From the given data we can calculate the mass flowrate, from
Eq. 5.6 as

For determining the anchoring force, the effects of atmos-
pheric pressure cancel and thus gage pressures for and are
appropriate. By substituting numerical values of variables into
Eq. 6, and using the fact that we get

(Ans)

The negative sign for is interpreted as meaning that the y
component of the anchoring force is actually in the negative y
direction, not the positive y direction as originally indicated in
Fig. E5.12b.

COMMENT As with Example 5.11, the anchoring force for
the pipe bend is independent of the atmospheric pressure. How-
ever, the force that the bend puts on the fluid inside of it, Ry,

FAy

 FAy � �970 lb � 220 lb � 134 lb � �1324 lb

 � 124 psia � 14.7 psia2 1144 in.2�ft22 10.1 ft22
 � 130 psia � 14.7 psia2 1144 in.2�ft22 10.1 ft22

 FAy � �19.70 slugs�s2 150 ft�s � 50 ft�s2
1 lb � 1 slug  ft�s2

p2p1

FAy,

� 9.70 slugs�s
m
#
� r1A1v1 � 11.94 slugs�ft32 10.1 ft22 150 ft�s2

m
#
,

FAy � �m
# 1v1 � v22 � p1A1 � p2A2

FAy

�m
# 1v1 � v22 � FAy � p1A1 � p2A2

m
#
� m
#

1 � m
#

2

depends on the atmospheric pressure. We can see this by using a
control volume which surrounds only the fluid within the bend as
shown in Fig. E5.12c. Application of the momentum equation to
this situation gives

where and must be in terms of absolute pressure because
the force between the fluid and the pipe wall, is the complete
pressure effect 1i.e., absolute pressure2. We see that forces exerted
on the flowing fluid result in a change in its velocity direction 1a
change in linear momentum2.

Thus, we obtain

(7)

We can use the control volume that includes just the pipe
bend 1without the fluid inside it2 as shown in Fig. E5.12d to
determine the anchoring force component in the y direction
necessary to hold the bend stationary. The y component of the
momentum equation applied to this control volume gives

(8)

where is given by Eq. 7. The term represents the
net pressure force on the outside portion of the control volume.
Recall that the pressure force on the inside of the bend is ac-
counted for by By combining Eqs. 7 and 8 and using the fact that

, we obtain

in agreement with the original answer obtained using the control
volume of Fig. E5.12b.

 � �1324 lb

 FAy � �1748 lb � 2117 lb�ft2 10.1 ft2 � 0.1 ft22
patm � 14.7 lb�in.2 1144 in.2�ft22 � 2117 lb�ft2

Ry.

patm1A1 � A22Ry

FAy � Ry � patm 
1A1 � A22

FAy,

 � �1748 lb

 � 124 psia2 1144 in.2�ft22 10.1 ft22
 � 130 psia2 1144 in.2�ft22 10.1 ft22

 Ry � �19.70 slugs�s2 150 ft�s � 50 ft�s2

Ry,
p2p1

Ry � �m
# 1v1 � v22 � p1A1 � p2A2

F I G U R E  E5.12 cont.

Control volume

Water in 180° bend

p2A2

p1A1

v2

v1

(c)

Pipe bend only

(d)

Ry patm(A1 + A2)

Rz

Ry

Rx

�

Control volume

FAy

x
u v y

w

z

V5.8 Fire hose
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GIVEN Air flows steadily between two cross sections in a long,
straight portion of 4-in. inside diameter pipe as indicated in Fig.
E5.13, where the uniformly distributed temperature and pressure at
each cross section are given. If the average air velocity at section 122
is 1000 ftZs, we found in Example 5.2 that the average air velocity at
section 112 must be 219 ftZs. Assume uniform velocity distributions
at sections 112 and 122. 

SOLUTION
F I G U R E  E5.13

Linear Momentum—Pressure, Change in Speed, and Friction

English Engineering 1EE2 units are often used for this kind of
flow. The gas constant, R, for air in EE units is

(8)

Thus, from Eqs. 5 and 8

or 

(Ans)

COMMENT For this compressible flow, the pressure differ-
ence drives the motion which results in a frictional force, Rx, and
an acceleration of the fluid (i.e., a velocity magnitude increase).
For a similar incompressible pipe flow, a pressure difference re-
sults in fluid motion with a frictional force only (i.e., no change in
velocity magnitude).

Rx � 793 lb

 � 1025 lb � 232 lb

 32.174 1lbm  ft 2� 1lb  s22
 � 19.57 lbm2 11000 ft�s � 219 ft�s2�

 Rx �
p14 in.22

4
 1100 psia � 18.4 psia2

 �
p14 in.22

41144 in.2�ft22  11000 ft�s2 � 9.57 lbm�s

Hence,  m
#
�

118.4 psia2 1144 in.2�ft22
353.31ft # lb2� 1lbm # °R2 4  1453 °R2

R �
17161ft # lb2� 1slug # °R2

32.1741lbm�slug2 � 53.31ft # lb2� 1lbm # °R2

Control volume

Section (1)

Flow

V1
V2 =

1000 ft/s

p2A2

p1A1

p1 = 100 psia
T1 = 540 °R

Section (2)Pipe
p2 = 18.4 psia
T2 = 453 °R

Rx

y

x

E XAMPLE 5.13

The control volume of Example 5.2 is appropriate for this prob-
lem. The forces acting on the air between sections 112 and 122 are
identified in Fig. E5.13. The weight of air is considered negligibly
small. The reaction force between the wetted wall of the pipe and
the flowing air, is the frictional force sought. Application of
the axial component of Eq. 5.22 to this control volume yields

(1)

The positive x direction is set as being to the right. Furthermore,
for uniform velocity distributions 1one-dimensional flow2, Eq. 1
becomes

(2)

From conservation of mass 1Eq. 5.122 we get

(3)

so that Eq. 2 becomes

(4)

Solving Eq. 4 for we get

(5)

The equation of state gives

(6)

and the equation for area is

(7)

Thus, from Eqs. 3, 6, and 7

 m
#
� a p2

RT2
b apD2

2

4
b u2

A2 �
pD2

2

4

A2

r2 �
p2

RT2

Rx � A21p1 � p22 � m
# 1u2 � u12

Rx,

m
# 1u2 � u12 � �Rx � A21 p1 � p22

m
#
� m
#

1 � m
#

2

1�u12 1�m
#

12 � 1�u22 1�m
#

22 � �Rx � p1A1 � p2A2

�
cs

 urV  n̂ dA � �Rx � p1A1 � p2A2

Rx,

FIND Determine the frictional force exerted by the pipe wall on
the air flow between sections 112 and 122.

GIVEN Consider the flow of Example 5.4 to be vertically
upward.

Linear Momentum—Weight, Pressure, Friction, 
and Nonuniform Velocity Profile

E XAMPLE 5.14

FIND Develop an expression for the fluid pressure drop that
occurs between sections 112 and 122.
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SOLUTION

been identical, a condition we call “fully developed” flow. Then,
the pressure drop, would be due only to pipe wall fric-
tion and the weight of the water column. If in addition to being
fully developed, the flow involved negligible weight effects 1for
example, horizontal flow of liquids or the flow of gases in any
direction2 the drop in pressure between any two sections,

would be a result of pipe wall friction only.
Note that although the average velocity is the same at section

112 as it is at section 122 the momentum flux
across section 112 is not the same as it is across section 122. If it
were, the left-hand side of Eq. 142 would be zero. For this nonuni-
form flow the momentum flux can be written in terms of the av-
erage velocity, and the momentum coefficient, as

Hence the momentum flux can be written as

where 1 for uniform flow2 and 1 for
any nonuniform flow2.

b 7 1b2 � 4�3b � 1b1 � 1

�
cs

 wrV  n̂ dA � �b1w
2
1rpR2 � b2w

2
1rpR2

b �
�  wrV  n̂ dA

rV 2A

b,V,

1V1 � V2 � w12,

p1 � p2,

p1 � p2,
A control volume 1see dashed lines in Fig. E5.142 that includes
only fluid from section 112 to section 122 is selected. The forces
acting on the fluid in this control volume are identified in Fig.
E5.14. The application of the axial component of Eq. 5.22 to the
fluid in this control volume results in

(1)

where is the resultant force of the wetted pipe wall on the
fluid. Further, for uniform flow at section 112, and because the
flow at section 122 is out of the control volume, Eq. 1 becomes

(2)

The positive direction is considered up. The surface integral over
the cross-sectional area at section 122, is evaluated by using
the parabolic velocity profile obtained in Example 5.4,

as

or

(3)

Combining Eqs. 2 and 3 we obtain

(4)

Solving Eq. 4 for the pressure drop from section 112 to section 122,
we obtain

(Ans)

COMMENT We see that the drop in pressure from section 112
to section 122 occurs because of the following:

1. The change in momentum flow between the two sections
associated with going from a uniform velocity profile to
a parabolic velocity profile,

2. Pipe wall friction,
3. The weight of the water column, ; a hydrostatic pres-

sure effect.

If the velocity profiles had been identically parabolic at sections
112 and 122, the momentum flowrate at each section would have

w

Rz

rw1
2�3

p1 � p2 �
rw2

1

3
�

Rz

A1

�
w

A1

p1 � p2,

�w1
2rpR2 � 4

3w
2
1rpR2 � p1A1 � Rz �w � p2A2

�
A2

 w2rw2 dA2 � 4prw2
1 

R2

3

� 2pr�
R

0

 12w122 c1 � a
r

R
b

2

d
2

 r dr

�
A2

 w2rw2 dA2 � r�
R

0

 w2
2 2pr dr

w2 � 2w1 31 � 1r�R22 4 ,

A2,

�w � p2A2

1�w12 1�m
#

12 � �
A2

 1�w22r1�w2 dA22 � p1A1 � Rz

Rz

�
cs

 wrV  n̂ dA � p1A1 � Rz �w � p2A2

F I G U R E  E5.14

Flow

p2A2

�

Rz

R
r

Fluid only

Control volume

Section (1)

Section (2)w2 = 2w1 1 – ( )[ ]r–
R

2

p1A1

w1

x

u v y

w

z

GIVEN A static thrust stand as sketched in Fig. E5.15 is to be
designed for testing a jet engine. The following conditions are
known for a typical test: Intake air velocity exhaust gas
velocity intake cross-sectional area intake� 1 m2;� 500 m�s;

� 200 m�s;

Linear Momentum—ThrustE XAMPLE 5.15

static pressure kPa 1abs2; intake static temper-
ature exhaust static pressure 0 kPa 1abs2. 

FIND Estimate the nominal anchoring force for which to design.

� 101 kPa�� 268 K;
� 78.5 kPa��22.5
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SOLUTION

Thus,

(6)

Finally, combining Eqs. 5 and 6 and substituting given data with
we obtain

or

(Ans)

COMMENT The force of the thrust stand on the engine is di-
rected toward the right. Conversely, the engine pushes to the left
on the thrust stand 1or aircraft2.

Fth � 22,500 N � 61,200 N � 83,700 N

 � 1204 kg�s2 1500 m�s � 200 m�s2 31 N� 1kg # m�s22 4
 Fth � �11 m22 1�22.5 kPa2 11000 Pa�kPa2 311N�m22�Pa 4

p2 � 0,

� 204 kg�s
m
#
� r1A1u1 � 11.02 kg�m32 11 m22 1200 m�s2

The cylindrical control volume outlined with a dashed line in 
Fig. E5.15 is selected. The external forces acting in the axial di-
rection are also shown. Application of the momentum equation
1Eq. 5.222 to the contents of this control volume yields

(1)

where the pressures are absolute. Thus, for one-dimensional flow,
Eq. 1 becomes

(2)

The positive direction is to the right. The conservation of mass
equation 1Eq. 5.122 leads to

(3)

Combining Eqs. 2 and 3 and using gage pressure we obtain

(4)

Solving Eq. 4 for the thrust force, we obtain

(5)

We need to determine the mass flowrate, to calculate and
to calculate we need From the ideal gas equation
of state

 � 1.02 kg�m3

 r1 �
p1

RT1

�
178.5 kPa2 11000 Pa�kPa2 311N�m22�Pa 4
1286.9 J�kg # K2 1268 K2 11 N # m�J2

r1.m
#
� r1A1u1,

Fth,m
#
,

Fth � �p1A1 � p2A2 � m
# 1u2 � u12

Fth,

m
# 1u2 � u12 � p1A1 � p2A2 � Fth

m
#
� m
#

1 � r1A1u1 � m
#

2 � r2A2u2

� 1 p2 � patm2A2 � Fth

1�u12 1�m
#

12 � 1�u22 1�m
#

22 � 1  p1 � patm2A1

� patm 1A1 � A22
�
cs

 urV  n̂ dA � p1A1 � Fth � p2A2

F I G U R E  E5.15

Control volume

Section (1)

Section (2)

p1A1
p2A2

patm(A1 – A2)

u1

Fth

u2

z

x u

F l u i d s  i n  t h e  N e w s

Bow thrusters In the past, large ships required the use of tugboats
for precise maneuvering, especially when docking. Nowadays,
most large ships (and many moderate to small ones as well) are
equipped with bow thrusters to help steer in close quarters. The
units consist of a mechanism (usually a ducted propeller mounted
at right angles to the fore/aft axis of the ship) that takes water from
one side of the bow and ejects it as a water jet on the other side.
The momentum flux of this jet produces a starboard or port force

on the ship for maneuvering. Sometimes a second unit is installed
in the stern. Initially used in the bows of ferries, these versatile
control devices have became popular in offshore oil servicing
boats, fishing vessels, and larger ocean-going craft. They permit
unassisted maneuvering alongside of oilrigs, vessels, loading plat-
forms, fishing nets, and docks. They also provide precise control at
slow speeds through locks, narrow channels, and bridges, where
the rudder becomes very ineffective. (See Problem 5.69.)

GIVEN A sluice gate across a channel of width b is shown in
the closed and open positions in Figs. E5.16a and E5.16b. 

SOLUTION

Linear Momentum—Nonuniform Pressure

volume used in each case is indicated with dashed lines in Figs.
E5.16a and E5.16b.

E XAMPLE 5.16

We will answer this question by comparing expressions for the
horizontal reaction force, between the gate and the water
when the gate is closed and when the gate is open. The control

Rx,

FIND Is the anchoring force required to hold the gate in place
larger when the gate is closed or when it is open?



All of the linear momentum examples considered thus far have involved stationary and non-
deforming control volumes which are thus inertial because there is no acceleration. A nondeform-
ing control volume translating in a straight line at constant speed is also inertial because there is
no acceleration. For a system and an inertial, moving, nondeforming control volume that are both
coincident at an instant of time, the Reynolds transport theorem 1Eq. 4.232 leads to

(5.23)

When we combine Eq. 5.23 with Eqs. 5.19 and 5.20, we get

(5.24)

When the equation relating absolute, relative, and control volume velocities 1Eq. 5.142 is used with
Eq. 5.24, the result is

(5.25)
0

0t
 �

cv
 1W � Vcv2r dV� � �

cs
 1W � Vcv2rW  n̂ dA � a Fcontents of the

control volume

0

0t
 �

cv

 Vr dV� � �
cs

 VrW  n̂ dA � a Fcontents of the
control volume

D

Dt
 �

sys

 Vr dV� �
0

0t
 �

cv

 Vr dV� � �
cs

 VrW  n̂ dA
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When the gate is closed, the horizontal forces acting on the
contents of the control volume are identified in Fig. E5.16c. Ap-
plication of Eq. 5.22 to the contents of this control volume yields

0 1no flow2

(1)

Note that the hydrostatic pressure force, is used. From
Eq. 1, the force exerted on the water by the gate 1which is equal to
the force necessary to hold the gate stationary2 is

(2)

which is equal in magnitude to the hydrostatic force exerted on
the gate by the water.

When the gate is open, the horizontal forces acting on the con-
tents of the control volume are shown in Fig. E5.16d. Application
of Eq. 5.22 to the contents of this control volume leads to

(3)

Note that because the water at sections (1) and (2) is flowing
along straight, horizontal streamlines, the pressure distribution at
those locations is hydrostatic, varying from zero at the free sur-
face to times the water depth at the bottom of the channel (see
Chapter 3, Section 3.4). Thus, the pressure forces at sections (1)
and (2) (given by the pressure at the centroid times the area) are

and respectively. Also, the frictional force be-
tween the channel bottom and the water is specified as The
surface integral in Eq. 3 is nonzero only where there is flow
across the control surface. With the assumption of uniform veloc-
ity distributions,

(4)

Thus, Eqs. 3 and 4 combine to form

(5)�ru2
1Hb � ru2

2hb � 1
2 
gH2b � Rx �

1
2 
gh2b � Ff

�
cs

 urV  n̂ dA � 1u12r1�u12Hb � 1�u22r1�u22hb

Ff.
gh2b�2,gH2b�2

g

�
cs

 urV  n̂ dA � 1
2 gH2b � Rx �

1
2 gh2b � Ff

Rx �
1
2 
gH2b

gH2b�2,

�
cs

 urV  n̂ dA � 1
2 gH2b � Rx

If the upstream velocity, is much less than so that the
contribution of the incoming momentum flow to the control sur-
face integral can be neglected and from Eq. 5 we obtain

(6)

By using the continuity equation, Eq. (6)
can be rewritten as

(7)

Hence, since , by comparing the expressions for Rx (Eqs.
2 and 7) we conclude that the reaction force between the gate and
the water (and therefore the anchoring force required to hold the
gate in place) is smaller when the gate is open than when it is
closed. (Ans)

u2 7 u1

Rx �
1
2 
HH2b � 1

2 
Hh2b � Ff � m

# 1u2 � u12

m
#
� SbHu1 � Sbhu2,

Rx �
1
2 
gH2b � 1

2 
gh2b � Ff � ru

2
2hb

u2u1,H ! h,
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u
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u2

( )1_
2
γ H Hb( )1_
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γ H Hb
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Section
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Section (2)

(c) (d)

Rx

V5.9 Jelly fish

The linear momen-
tum equation can
be written for a
moving control 
volume.



For a constant control volume velocity, and steady flow in the control volume reference frame,

(5.26)

Also, for this inertial, nondeforming control volume

(5.27)

For steady flow 1on an instantaneous or time-average basis2, Eq. 5.15 gives

(5.28)

Combining Eqs. 5.25, 5.26, 5.27, and 5.28, we conclude that the linear momentum equation for
an inertial, moving, nondeforming control volume that involves steady 1instantaneous or time-
average2 flow is

(5.29)

Example 5.17 illustrates the use of Eq. 5.29.

�
cs

 WrW  n̂ dA � a Fcontents of the
control volume

�
cs

 rW  n̂ dA � 0

�
cs

 1W � Vcv2rW  n̂ dA � �
cs

 WrW  n̂ dA � Vcv �
cs

 rW  n̂ dA

0

0t
 �

cv

 1W � Vcv2r dV� � 0

Vcv,
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The linear momen-
tum equation for a
moving control vol-
ume involves the
relative velocity.

GIVEN A vane on wheels moves with constant velocity
when a stream of water having a nozzle exit velocity of is
turned by the vane as indicated in Fig. E5.17a. Note that
this is the same moving vane considered in Section 4.4.6
earlier. The speed of the water jet leaving the nozzle is 100 ftZs,

45°
V1

V0

Linear Momentum—Moving Control VolumeE XAMPLE 5.17

F I G U R E  E5.17

Nozzle
V1 V0

A1 = 0.006 ft2
45° Moving

vane

Nozzle
V1 V0

z

x

VCV = V0

�w

Rx

Rz

1 ft Moving
vane

Moving
control
volume

(1)

(2)

(b)

(c)

(a)

and the vane is moving to the right with a constant speed of
20 ftZs.

FIND Determine the magnitude and direction of the force, F,
exerted by the stream of water on the vane surface. 
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SOLUTION
Combining results we get

or

Also,

where

Thus,

Combining the components we get

The angle of R from the x direction, is

The force of the water on the vane is equal in magnitude but op-
posite in direction from R; thus it points to the right and down at
an angle of from the x direction and is equal in magnitude
to 57.3 lb. (Ans)

COMMENT The force of the fluid on the vane in the x-
direction, , is associated with x-direction motion of the
vane at a constant speed of . Since the vane is not accelerat-
ing, this x-direction force is opposed mainly by a wheel friction
force of the same magnitude. From basic physics we recall that the
power this situation involves is the product of force and speed. Thus,

All of this power is consumed by friction.

 � 0.79 hp

 �
121.8 lb2 120 ft�s2

5501ft  lb2� 1hp  s2

 p � RxV0

20 ft�s
Rx � 21.8 lb

67.6°

a � tan�1
 

Rz

Rx
� tan�1 153 lb�21.8 lb2 � 67.6°

a,

R � 2Rx
2 � Rz

2 � 3 121.8 lb22 � 153 lb22 4 1�2 � 57.3 lb

 � 52.6 lb � 0.37 lb � 53 lb

 � 162.4 lb�ft32 10.006 ft22 11 ft2
 Rz � 11.94 slugs�ft32 180 ft�s221sin 45°2 10.006 ft22

ww � rgA1/

Rz � rW1
21sin 45°2A1 �ww

 � 21.8 lb

 Rx � 11.94 slugs�ft32 180 ft�s2210.006 ft22 11 � cos 45° 2

Rx � rW
2
1 A1 11 � cos 45°2

To determine the magnitude and direction of the force, F, exerted
by the water on the vane, we apply Eq. 5.29 to the contents of the
moving control volume shown in Fig. E5.17b. The forces acting
on the contents of this control volume are indicated in 
Fig. E5.17c. Note that since the ambient pressure is atmospheric,
all pressure forces cancel each other out. Equation 5.29 is ap-
plied to the contents of the moving control volume in component
directions. For the x direction 1positive to the right2, we get

or

(1)

where

For the vertical or z direction 1positive up2 we get

or

(2)

We assume for simplicity that the water flow is frictionless and that
the change in water elevation across the vane is negligible. Thus,
from the Bernoulli equation 1Eq. 3.72we conclude that the speed of
the water relative to the moving control volume, W, is constant or

The relative speed of the stream of water entering the control vol-
ume, is

The water density is constant so that

Application of the conservation of mass principle to the contents
of the moving control volume 1Eq. 5.162 leads to

m
#

1 � r1W1A1 � r2W2A2 � m
#

2

r1 � r2 � 1.94 slugs�ft3

W1 � V1 � V0 � 100 ft�s � 20 ft�s � 80 ft�s � W2

W1,

W1 � W2

1�W2 sin 45°2 1�m
#

22 � Rz �ww

�
cs

 
Wz rW  n̂ dA � Rz �ww

m
#

1 � r1W1A1  and  m
#

2 � r2W2A2.

1�W12 1�m
#

12 � 1�W2 cos 45°2 1�m
#

22 � �Rx

�
cs

 
Wx r W  n̂ dA � �Rx

It is clear from the preceding examples that a flowing fluid can be forced to

1. change direction
2. speed up or slow down
3. have a velocity profile change
4. do only some or all of the above
5. do none of the above

A net force on the fluid is required for achieving any or all of the first four above. The forces
on a flowing fluid balance out with no net force for the fifth.

Typical forces considered in this book include

(a) pressure

(b) friction

(c) weight



and involve some type of constraint such as a vane, channel, or conduit to guide the flowing fluid.
A flowing fluid can cause a vane, channel or conduit to move. When this happens, power is pro-
duced.

The selection of a control volume is an important matter. For determining anchoring forces,
consider including fluid and its constraint in the control volume. For determining force between a
fluid and its constraint, consider including only the fluid in the control volume.

5.2.3 Derivation of the Moment-of-Momentum Equation2

In many engineering problems, the moment of a force with respect to an axis, namely, torque, is im-
portant. Newton’s second law of motion has already led to a useful relationship between forces and
linear momentum flow. The linear momentum equation can also be used to solve problems involving
torques. However, by forming the moment of the linear momentum and the resultant force associated
with each particle of fluid with respect to a point in an inertial coordinate system, we will develop a
moment-of-momentum equation that relates torques and angular momentum flow for the contents of
a control volume. When torques are important, the moment-of-momentum equation is often more con-
venient to use than the linear momentum equation.

Application of Newton’s second law of motion to a particle of fluid yields

(5.30)

where V is the particle velocity measured in an inertial reference system, is the particle density,
is the infinitesimally small particle volume, and is the resultant external force acting

on the particle. If we form the moment of each side of Eq. 5.30 with respect to the origin of an
inertial coordinate system, we obtain

(5.31)

where r is the position vector from the origin of the inertial coordinate system to the fluid parti-
cle 1Fig. 5.32. We note that

(5.32)

and

(5.33)

Thus, since

(5.34)

by combining Eqs. 5.31, 5.32, 5.33, and 5.34, we obtain the expression

(5.35)
D

Dt
 3 1r � V2r dV� 4 � r � dFparticle

V � V � 0

Dr

Dt
� V

D

Dt
 3 1r � V2r dV� 4 � Dr

Dt
� Vr dV� � r �

D1Vr dV�2
Dt

r �
D

Dt
 1Vr dV�2 � r � dFparticle

dFparticledV�
r

D

Dt
 1Vr dV�2 � dFparticle
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2This section may be omitted, along with Sections 5.2.4 and 5.3.5, without loss of continuity in the text material. However, these sec-
tions are recommended for those interested in Chapter 12.

F I G U R E  5.3 Inertial coordinate system.
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The angular mo-
mentum equation is
derived from New-
ton’s second law.



Equation 5.35 is valid for every particle of a system. For a system 1collection of fluid particles2,
we need to use the sum of both sides of Eq. 5.35 to obtain

(5.36)

where

(5.37)

We note that

(5.38)

since the sequential order of differentiation and integration can be reversed without consequence. 1Re-
call that the material derivative, denotes the time derivative following a given system; see
Section 4.2.1.2 Thus, from Eqs. 5.36 and 5.38 we get

(5.39)

or

The sketch in the margin illustrates what torque, , is. For a control volume that is in-
stantaneously coincident with the system, the torques acting on the system and on the control vol-
ume contents will be identical:

(5.40)

Further, for the system and the contents of the coincident control volume that is fixed and nonde-
forming, the Reynolds transport theorem 1Eq. 4.192 leads to

(5.41)

or

For a control volume that is fixed 1and therefore inertial2 and nondeforming, we combine Eqs. 5.39,
5.40, and 5.41 to obtain the moment-of-momentum equation:

(5.42)

An important category of fluid mechanical problems that is readily solved with the help of
the moment-of-momentum equation 1Eq. 5.422 involves machines that rotate or tend to rotate around
a single axis. Examples of these machines include rotary lawn sprinklers, ceiling fans, lawn mower
blades, wind turbines, turbochargers, and gas turbine engines. As a class, these devices are often
called turbomachines.

5.2.4 Application of the Moment-of-Momentum Equation3

We simplify our use of Eq. 5.42 in several ways:

1. We assume that flows considered are one-dimensional 1uniform distributions of average ve-
locity at any section2.

0

0t
 �

cv
 1r � V2r dV� � �

cs
 1r � V2rV  n̂ dA � a 1r � F2contents of the

control volume

time rate of change time rate of change net rate of flow
of the moment-of- of the moment-of- of the moment-of-
momentum of the � momentum of the � momentum through
system contents of the the control surface

control volume

D

Dt
 �

sys
 1r � V2r dV� �

0

0t
 �

cv
 1r � V2r dV� � �

cs
 1r � V2rV  n̂ dA

a 1r � F2sys � a 1r � F2cv

T � r � F

the time rate of change of the
moment-of-momentum of the system

� sum of external torques
acting on the system

D

Dt
 �

sys
 1r � V2r d V� � a 1r � F2sys

D1 2�Dt,

D

Dt
 �

sys
 1r � V2r dV� � �

sys

 
D

Dt
 3 1r � V2r dV� 4

a r � dFparticle � a 1r � F2sys

�
sys

 
D

Dt
 3 1r � V2r dV� 4 � a 1r � F2sys
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T
T = r × F

Fr
y
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z

For a system, the
rate of change of
moment-of-momen-
tum equals the net
torque.

3This section may be omitted, along with Sections 5.2.3 and 5.3.5, without loss of continuity in the text material. However, these sec-
tions are recommended for those interested in Chapter 12.



2. We confine ourselves to steady or steady-in-the-mean cyclical flows. Thus,

at any instant of time for steady flows or on a time-average basis for cyclical unsteady
flows.

3. We work only with the component of Eq. 5.42 resolved along the axis of rotation.

Consider the rotating sprinkler sketched in Fig. 5.4. Because the direction and magnitude of the flow
through the sprinkler from the inlet [section 112] to the outlet [section 122] of the arm changes, the
water exerts a torque on the sprinkler head causing it to tend to rotate or to actually rotate in the di-
rection shown, much like a turbine rotor. In applying the moment-of-momentum equation 1Eq. 5.422
to this flow situation, we elect to use the fixed and nondeforming control volume shown in Fig. 5.4.
This disk-shaped control volume contains within its boundaries the spinning or stationary sprinkler
head and the portion of the water flowing through the sprinkler contained in the control volume at
an instant. The control surface cuts through the sprinkler head’s solid material so that the shaft torque
that resists motion can be clearly identified. When the sprinkler is rotating, the flow field in the sta-
tionary control volume is cyclical and unsteady, but steady in the mean. We proceed to use the ax-
ial component of the moment-of-momentum equation 1Eq. 5.422 to analyze this flow.

The integrand of the moment-of-momentum flow term in Eq. 5.42,

can be nonzero only where fluid is crossing the control surface. Everywhere else on the control
surface this term will be zero because Water enters the control volume axially through
the hollow stem of the sprinkler at section 112. At this portion of the control surface, the compo-
nent of resolved along the axis of rotation is zero because as illustrated by the figure in the
margin, lies in the plane of section (1), perpendicular to the axis of rotation. Thus, there is
no axial moment-of-momentum flow in at section 112. Water leaves the control volume through
each of the two nozzle openings at section 122. For the exiting flow, the magnitude of the axial
component of is where is the radius from the axis of rotation to the nozzle centerline
and is the value of the tangential component of the velocity of the flow exiting each nozzle asVu2

r2r2Vu2,r � V

r � V
r � V

V  n̂ � 0.

�
cs

 1r � V2rV  n̂ dA

0

0t
 �

cv
 1r � V2r dV� � 0
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Change in moment
of fluid velocity
around an axis can
result in torque and
rotation around
that same axis. 

F I G U R E  5.4 (a) Rotary water
sprinkler. (b) Rotary water sprinkler, plane view.
(c) Rotary water sprinkler, side view.
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observed from a frame of reference attached to the fixed and nondeforming control volume. The
fluid velocity measured relative to a fixed control surface is an absolute velocity, V. The velocity
of the nozzle exit flow as viewed from the nozzle is called the relative velocity, W. The absolute
and relative velocities, V and W, are related by the vector relationship

(5.43)

where U is the velocity of the moving nozzle as measured relative to the fixed control surface.
The cross product and the dot product involved in the moment-of-momentum flow term of

Eq. 5.42,

can each result in a positive or negative value. For flow into the control volume, is negative.
For flow out, is positive. The correct algebraic sign to assign the axis component of 
can be ascertained by using the right-hand rule. The positive direction along the axis of rotation is
the direction the thumb of the right hand points when it is extended and the remaining fingers are
curled around the rotation axis in the positive direction of rotation as illustrated in Fig. 5.5. The di-
rection of the axial component of is similarly ascertained by noting the direction of the cross
product of the radius from the axis of rotation, and the tangential component of absolute ve-
locity, Thus, for the sprinkler of Fig. 5.4, we can state that

(5.44)

where, because of mass conservation, is the total mass flowrate through both nozzles. As was
demonstrated in Example 5.7, the mass flowrate is the same whether the sprinkler rotates or not. The
correct algebraic sign of the axial component of can be easily remembered in the following
way: if and U are in the same direction, use and U are in opposite directions, use 

The torque term of the moment-of-momentum equation 1Eq.
5.422 is analyzed next. Confining ourselves to torques acting with respect to the axis of rotation
only, we conclude that the shaft torque is important. The net torque with respect to the axis of ro-
tation associated with normal forces exerted on the contents of the control volume will be very
small if not zero. The net axial torque due to fluid tangential forces is also negligibly small for the
control volume of Fig. 5.4. Thus, for the sprinkler of Fig. 5.4

(5.45)

Note that we have entered as a positive quantity in Eq. 5.45. This is equivalent to assuming
that is in the same direction as rotation.

For the sprinkler of Fig. 5.4, the axial component of the moment-of-momentum equation 1Eq.
5.422 is, from Eqs. 5.44 and 5.45

(5.46)

We interpret being a negative quantity from Eq. 5.46 to mean that the shaft torque actually
opposes the rotation of the sprinkler arms as shown in Fig. 5.4. The shaft torque, opposes
rotation in all turbine devices.

Tshaft,
Tshaft

�r2Vu2m
#
� Tshaft

Tshaft

Tshaft

a 1r � F2contents of the
control volume  axial

� Tshaft

3 g  1r � F2contents of the control volume 4
�.�; if VuVu

r � V

m
#

c �
cs

 1r � V2rV  n̂ dA d
axial

� 1�r2Vu22 1�m
# 2

Vuêu.
rêr,

r � V

r � VV  n̂
V  n̂

�
cs

 1r � V2rV  n̂ dA

V � W � U

218 Chapter 5 ■ Finite Control Volume Analysis

F I G U R E  5.5 Right-hand rule convention.
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We could evaluate the shaft power, associated with shaft torque, , by forming the
product of and the rotational speed of the shaft, [We use the notation that

Thus, from Eq. 5.46 we get

(5.47)

Since is the speed of each sprinkler nozzle, U, we can also state Eq. 5.47 in the form

(5.48)

Shaft work per unit mass, is equal to Dividing Eq. 5.48 by the mass flowrate,
we obtain

(5.49)

Negative shaft work as in Eqs. 5.47, 5.48, and 5.49 is work out of the control volume, that is, work
done by the fluid on the rotor and thus its shaft.

The principles associated with this sprinkler example can be extended to handle most sim-
plified turbomachine flows. The fundamental technique is not difficult. However, the geometry of
some turbomachine flows is quite complicated.

Example 5.18 further illustrates how the axial component of the moment-of-momentum equa-
tion 1Eq. 5.462 can be used.

wshaft � �U2Vu2

m
#
,W

#
shaft�m
#
.wshaft,

W
#

shaft � �U2Vu2m
#

r2v

W
#

shaft � Tshaft v � �r2Vu2m
#
 v

W � work, 1 # 2 � d1 2�dt, and thus W
#
� power. 4

v.Tshaft

TshaftW
#

shaft,
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Power is equal to
angular velocity
times torque.

V5.11 Impulse-type
lawn sprinkler

GIVEN Water enters a rotating lawn sprinkler through its base
at the steady rate of 1000 ml/s as sketched in Fig. E5.18a. The exit
area of each of the two nozzles is 30 mm2 and the flow leaving each
nozzle is in the tangential direction. The radius from the axis of ro-
tation to the centerline of each nozzle is 200 mm.

FIND (a) Determine the resisting torque required to hold the
sprinkler head stationary.

(b) Determine the resisting torque associated with the sprinkler
rotating with a constant speed of 500 rev/min.

(c) Determine the speed of the sprinkler if no resisting torque is
applied.

SOLUTION

F I G U R E  E5.18

Moment-of-Momentum—Torque

Control volume

Flow out
Flow out

Tshaft

Q = 1000 ml/s

r2 =
200 mm

Nozzle exit
area = 30 mm2

(a)

(b)

V2
V2 = V  2θ

V1

(c)

W2
W2

V1

U2
V2

ω

V2 = V  2θ
U2 = r2ω

E XAMPLE 5.18

To solve parts (a), (b), and (c) of this example we can use the
same fixed and nondeforming, disk-shaped control volume illus-
trated in Fig. 5.4. As indicated in Fig. E5.18a, the only axial
torque considered is the one resisting motion, Tshaft.

(a) When the sprinkler head is held stationary as specified in part
(a) of this example problem, the velocities of the fluid entering and
leaving the control volume are shown in Fig. E5.18b. Equation
5.46 applies to the contents of this control volume. Thus,

(1)

Since the control volume is fixed and nondeforming and the flow
exiting from each nozzle is tangential,

(2)

Equations 1 and 2 give

(3)Tshaft � �r2V2m
#

VV2 � V2

Tshaft � �r2VV2m
#



When the moment-of-momentum equation 1Eq. 5.422 is applied to a more general, one-
dimensional flow through a rotating machine, we obtain

(5.50)Tshaft � 1�m
#

in2 1�rinVuin2 � m
#

out1�routVuout2
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In Example 5.7, we ascertained that V2 � 16.7 m/s. Thus, from
Eq. 3 with

we obtain

or

(Ans)

(b) When the sprinkler is rotating at a constant speed of 500
rpm, the flow field in the control volume is unsteady but cyclical.
Thus, the flow field is steady in the mean. The velocities of the flow
entering and leaving the control volume are as indicated in Fig.
E5.18c. The absolute velocity of the fluid leaving each nozzle, V2,
is from Eq. 5.43,

(4)

where

as determined in Example 5.7. The speed of the nozzle, U2, is ob-
tained from

(5)

Application of the axial component of the moment-of-momentum
equation (Eq. 5.46) leads again to Eq. 3. From Eqs. 4 and 5,

or

Thus, using Eq. 3, with (as calculated previ-
ously), we get

or

(Ans)

COMMENT Note that the resisting torque associated with
sprinkler head rotation is much less than the resisting torque that
is required to hold the sprinkler stationary.

Tshaft � �1.24 N   m

Tshaft � �
1200 mm2 16.2 m/s 2 0.999 kg/s 31 1N/kg2/ 1m/s22 4

11000 mm/m 2

m
#
� 0.999 kg/s

V2 � 16.7 m/s � 10.5 m/s � 6.2 m/s

 � 16.7 m/s �
1200 mm2 1500 rev/min 2 12Q rad/rev2

11000 mm/m2 160 s/min2

 V2 � 16.7 m/s � r2W

U2 � r2W

W2 � 16.7 m/s

V2 � W2 � U2

Tshaft � �3.34 N   m

Tshaft � �
1200 mm2 116.7 m/s2 10.999 kg/s2 31 1N/kg 2/ 1m/s22 4

11000 mm/m 2

 � 0.999 kg/s

 m
#
� QS �

11000 ml/s2 110�3 m3/liter2 1999 kg/m32
11000 ml/liter2

(c) When no resisting torque is applied to the rotating sprinkler
head, a maximum constant speed of rotation will occur as demon-
strated below. Application of Eqs. 3, 4, and 5 to the contents of the
control volume results in

(6)

For no resisting torque, Eq. 6 yields

Thus,

(7)

In Example 5.4, we learned that the relative velocity of the
fluid leaving each nozzle, W2, is the same regardless of the speed
of rotation of the sprinkler head, W, as long as the mass flowrate
of the fluid, , remains constant. Thus, by using Eq. 7 we obtain

or

(Ans)

For this condition (Tshaft � 0), the water both enters and leaves the
control volume with zero angular momentum.

COMMENT Note that forcing a change in direction of a
flowing fluid, in this case with a sprinkler, resulted in rotary mo-
tion and a useful “sprinkling” of water over an area.

By repeating the calculations for various values of the angular
velocity, , the results shown in Fig. E5.18d are obtained. It is seen
that the magnitude of the resisting torque associated with rotation is
less than the torque required to hold the rotor stationary. Even in the
absence of a resisting torque, the rotor maximum speed is finite.

v

W �
183.5 rad/s 2 160 s/min 2

2 Q rad/rev
� 797 rpm

W �
W2

r2
�
116.7 m/s2 11000 mm/m 2

1200 mm2 � 83.5 rad/s

m
#

W �
W2

r2

0 � �r21W2 � r2W2m#

Tshaft � �r21W2 � r2W2m#

T S
ha

ft
 ,  

N
 .

 m

–0.5

0

–1

–1.5

–2

–2.5

–3

–3.5

–4

ω,   rpm

200 400 6000 800

F I G U R E  E5.18d



by applying the same kind of analysis used with the sprinkler of Fig. 5.4. The is used with
mass flowrate into the control volume, and the is used with mass flowrate out of the
control volume, to account for the sign of the dot product, involved. Whether

is used with the product depends on the direction of A simple way to
determine the sign of the product is to compare the direction of and the blade speed, U. As
shown in the margin, if and U are in the same direction, then the product is positive. If 
and U are in opposite directions, the product is negative. The sign of the shaft torque is

is in the same direction along the axis of rotation as , and otherwise.
The shaft power, is related to shaft torque, by

(5.51)

Thus, using Eqs. 5.50 and 5.51 with a sign for in Eq. 5.50, we obtain

(5.52)

or since 

(5.53)

The is used for the product when U and are in the same direction; the 
is used when U and are in opposite directions. Also, since was used to obtain Eq. 5.53,
when is positive, power is into the fluid 1for example, a pump2, and when is negative,
power is out of the fluid 1for example, a turbine2.

The shaft work per unit mass, can be obtained from the shaft power, by divid-
ing Eq. 5.53 by the mass flowrate, By conservation of mass,

From Eq. 5.53, we obtain

(5.54)

The application of Eqs. 5.50, 5.53, and 5.54 is demonstrated in Example 5.19. More exam-
ples of the application of Eqs. 5.50, 5.53, and 5.54 are included in Chapter 12.

wshaft � �1�UinVuin2 � 1�UoutVuout2

m
#
� m
#

in � m
#

out

m
#
.

W
#
shaft,wshaft,

W
#
shaftW

#
shaft

�TshaftVu

“�”VuUVu“�”

W
#

shaft � 1�m
#

in2 1�UinVuin2 � m
#

out1�UoutVuout2

rv � U

W
#

shaft � 1�m
#

in2 1�rinvVuin2 � m
#

out1�routvVuout2
Tshaft“�”

W
#

shaft � Tshaft v

Tshaft,W
#

shaft,
“�”v“�” if Tshaft

rVu

VurVuVu

VurVu

1r � V2axial.rVu“�” or “�”
V  n̂,m

#
out,

“�”m
#

in,
“�”
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rV� > 0

r�

U
Vr

VV
VW

rV� < 0 VV

r

U

Vr

VW

When shaft torque
and shaft rotation
are in the same
(opposite) direc-
tion, power is into
(out of) the fluid.

GIVEN An air fan has a bladed rotor of 12-in. outside di-
ameter and 10-in. inside diameter as illustrated in Fig.
E5.19a. The height of each rotor blade is constant at 1 in.
from blade inlet to outlet. The flowrate is steady, on a time-
average basis, at 230 ft3/min and the absolute velocity of the

air at blade inlet, V1, is radial. The blade discharge angle is
30� from the tangential direction. The rotor rotates at a con-
stant speed of 1725 rpm.

FIND Estimate the power required to run the fan.

SOLUTION

Moment-of-Momentum—Power

From Eq. 1 we see that to calculate fan power, we need mass
flowrate, , rotor exit blade velocity, U2, and fluid tangential ve-
locity at blade exit, VV2. The mass flowrate, , is easily obtained
from Eq. 5.6 as

(2)

Often, problems involving fans are solved using English Engi-
neering units. Since 1slug � 32.174 lbm, we could have used as
the density of air 
� 0.0766 lbm�ft3.

rair � 12.38 � 10�3 slug�ft32 132.174lbm�slug2

 � 0.00912 slug/s

m
#
� SQ �

12.38 � 10�3 slug/ft32 1230 ft3/min 2
160 s/min2

m
#

m
#

E XAMPLE 5.19

We select a fixed and nondeforming control volume that includes
the rotating blades and the fluid within the blade row at an instant, as
shown with a dashed line in Fig. E5.19a. The flow within this con-
trol volume is cyclical, but steady in the mean. The only torque we
consider is the driving shaft torque, Tshaft. This torque is provided by
a motor. We assume that the entering and leaving flows are each rep-
resented by uniformly distributed velocities and flow properties.
Since shaft power is sought, Eq. 5.53 is appropriate. Application of
Eq. 5.53 to the contents of the control volume in Fig. E5.19 gives

(1)W
#

shaft � �m
#

11�U1VV12 � m
#

21�U2VV22
0 1V1 is radial 2
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Then

The rotor exit blade speed, U2, is

(3)

To determine the fluid tangential speed at the fan rotor exit, VV2,
we use Eq. 5.43 to get

(4)

The vector addition of Eq. 4 is shown in the form of a “velocity
triangle” in Fig. E5.19b. From Fig. E5.19b, we can see that

(5)

To solve Eq. 5 for VV2 we need a value of W2, in addition to the
value of U2 already determined (Eq. 3). To get W2, we recognize
that

(6)

where Vr2 is the radial component of either W2 or V2. Also, us-
ing Eq. 5.6, we obtain

(7)

or since

(8)A2 � 2 Qr2h

m
#
� SA2Vr 2

W2 sin 30° � Vr 2

VV2 � U2 � W2 cos 30°

V2 �W2 � U2

 � 90.3 ft/s

U2 � r2W �
16 in.2 11725 rpm 2 12Q rad/rev2
112 in./ft 2 160 s/min2

m
#
�
10.0766 lbm�ft32 1230 ft3�min2

160  s�min2 � 0.294 lbm�s

where h is the blade height, Eqs. 7 and 8 combine to form

(9)

Taking Eqs. 6 and 9 together we get

(10)

Substituting known values into Eq. 10, we obtain

By using this value of W2 in Eq. 5 we get

Equation 1 can now be used to obtain

with BG units.
With EE units

�
10.294 lbm/s2 190.3 ft/s2 164.9 ft/s2

332.174 1lbm   ft 2� 1lb�s22 4 3550 1ft   lb2/1hp   s2 4 W
#

shaft

U2VV2 �
10.00912 slug/s2 190.3 ft/s2 164.9 ft/s2
31 1slug   ft/s22/lb 4 3550 1ft   lb2/ 1hp   s2 4� m

#
 W
#

shaft

 � 90.3 ft/s � 129.3 ft/s 2 10.8662 � 64.9 ft/s

 VV2 � U2 � W2 cos 30°

 � 29.3 ft�s

W2 �
1230 ft3�min2 112 in.�ft2 112 in.�ft2
160 s�min22p16 in.2 11 in.2 sin 30°

 �
Q

2pr2h sin 30°

 W2 �
m
#

r2pr2h sin 30°
�

rQ

r2pr2h sin 30°

m
#
� S2Qr2hVr 2

ω

Section (1)

Fixed control volume

Tshaft

V1

Section (2)

30°
W2

ω

Tshaft

D2 = 2r2 = 12 in.

D1 = 2r1 = 10 in.

h =
1 in.

Fixed
control volume

W2
Wr2 Vr2

U2

V2

(b)(a)

30° V  2θ
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In either case

(Ans)

COMMENT Note that the “�” was used with the U2VV2
product because U2 and VV2 are in the same direction. This result,

 W
#

shaft � 0.097 hp

0.097 hp, is the power that needs to be delivered through the fan
shaft for the given conditions. Ideally, all of this power would go
into the flowing air. However, because of fluid friction, only some
of this power will produce useful effects (e.g., movement and pres-
sure rise) on the air. How much useful effect depends on the effi-
ciency of the energy transfer between the fan blades and the fluid.

5.3.1 Derivation of the Energy Equation

The first law of thermodynamics for a system is, in words

In symbolic form, this statement is

or

(5.55)

Some of these variables deserve a brief explanation before proceeding further. The total stored
energy per unit mass for each particle in the system, e, is related to the internal energy per unit
mass, the kinetic energy per unit mass, and the potential energy per unit mass, gz, by the
equation

(5.56)

The net rate of heat transfer into the system is denoted with and the net rate of work trans-
fer into the system is labeled Heat transfer and work transfer are considered going into
the system and coming out.

Equation 5.55 is valid for inertial and noninertial reference systems. We proceed to develop
the control volume statement of the first law of thermodynamics. For the control volume that is
coincident with the system at an instant of time

(5.57)

Furthermore, for the system and the contents of the coincident control volume that is fixed and
nondeforming, the Reynolds transport theorem 1Eq. 4.19 with the parameter b set equal to e2 allows
us to conclude that

(5.58)

or in words,

the time rate
of increase
of the total
stored energy
of the system

�

the time rate of in-
crease of the total stored
energy of the contents
of the control volume

�

the net rate of flow
of the total stored energy
out of the control
volume through the
control surface

D

Dt
 �

sys
 er dV� �

0

0t
 �

cv
 er dV� � �

cs
 erV  n̂ dA

1Q# net
in
� W
#

net
in
2sys � 1Q

#
net
in
� W
#

net
in
2coincident
control volume

“�”
“�”W

#
net in.

Q
#

net in,

e � ǔ �
V 2

2
� gz

V 2�2,ǔ,

D

Dt
 �

 

sys

 er dV� � 1Q# net
in
� W
#

net
in
2sys

D

Dt
 �

sys
 er dV� � aa Q

#
in � a Q

#
outb

sys

� aa W
#

in � a W
#

outb
sys

time rate of net time rate of net time rate of
increase of the energy addition by energy addition by
total stored energy � heat transfer into � work transfer into
of the system the system the system

5.3 First Law of Thermodynamics—The Energy Equation

The first law of
thermodynamics is
a statement of con-
servation of energy.



Combining Eqs. 5.55, 5.57, and 5.58 we get the control volume formula for the first law of ther-
modynamics:

(5.59)

The total stored energy per unit mass, e, in Eq. 5.59 is for fluid particles entering, leaving, and
within the control volume. Further explanation of the heat transfer and work transfer involved in
this equation follows.

The heat transfer rate, represents all of the ways in which energy is exchanged between
the control volume contents and surroundings because of a temperature difference. Thus, radiation,
conduction, and/or convection are possible. As shown by the figure in the margin, heat transfer
into the control volume is considered positive, heat transfer out is negative. In many engineering
applications, the process is adiabatic; the heat transfer rate, is zero. The net heat transfer rate,

can also be zero when 
The work transfer rate, also called power, is positive when work is done on the contents

of the control volume by the surroundings. Otherwise, it is considered negative. Work can be trans-
ferred across the control surface in several ways. In the following paragraphs, we consider some
important forms of work transfer.

In many instances, work is transferred across the control surface by a moving shaft. In rotary
devices such as turbines, fans, and propellers, a rotating shaft transfers work across that portion of
the control surface that slices through the shaft. Even in reciprocating machines like positive dis-
placement internal combustion engines and compressors that utilize piston-in-cylinder arrangements,
a rotating crankshaft is used. Since work is the dot product of force and related displacement, rate
of work 1or power2 is the dot product of force and related displacement per unit time. For a rotat-
ing shaft, the power transfer, is related to the shaft torque that causes the rotation, and
the angular velocity of the shaft, by the relationship

When the control surface cuts through the shaft material, the shaft torque is exerted by shaft ma-
terial at the control surface. To allow for consideration of problems involving more than one shaft
we use the notation

(5.60)

Work transfer can also occur at the control surface when a force associated with fluid nor-
mal stress acts over a distance. Consider the simple pipe flow illustrated in Fig. 5.6 and the con-
trol volume shown. For this situation, the fluid normal stress, is simply equal to the negative of
fluid pressure, p, in all directions; that is,

(5.61)

This relationship can be used with varying amounts of approximation for many engineering prob-
lems 1see Chapter 62.

The power transfer, , associated with a force F acting on an object moving with velocity V
is given by the dot product . This is illustrated by the figure in the margin. Hence, the power
transfer associated with normal stresses acting on a single fluid particle, can be evalu-
ated as the dot product of the normal stress force, and the fluid particle velocity, V, as

If the normal stress force is expressed as the product of local normal stress, and
fluid particle surface area, the result is

For all fluid particles on the control surface of Fig. 5.6 at the instant considered, power transfer
due to fluid normal stress, is

(5.62)W
#

normal
stress

� �
cs

 sV  n̂ dA � �
cs

 �pV  n̂ dA

W
#

normal stress,

dW
#

normal stress � sn̂ dA  V � �pn̂ dA  V � �pV  n̂ dA

n̂ dA,
s � �p,

dW
#

normal stress � dFnormal stress  V

dFnormal stress,
dW
#

normal stress,
F  V

W
#

s � �p

s,

W
#

shaft
net in
� a W

#
shaft
in
� aW

#
shaft
out

W
#

shaft � Tshaftv

v,
Tshaft,W

#
shaft,

W
#
,
g  Q
#

in � g  Q
#

out � 0.Q
#

net in,
Q
#
,

Q
#
,

0

0t
 �

cv

 er dV� � �
cs

 erV  n̂ dA � 1Q# net
in
� W
#

net
in
2cv
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The energy equa-
tion involves stored
energy and heat
and work transfer.

Control Volume

Q
•

4

Q
•

2
Q
•

3

Q
•

1

Q
•

net = Q
•

1 + Q
•

2 – Q
•

3 – Q
•

4
in

V

F
θ

W
•    

= F•V
= FV cosθ



Note that the value of for particles on the wetted inside surface of the pipe is zero be-
cause is zero there. Thus, can be nonzero only where fluid enters and leaves the
control volume. Although only a simple pipe flow was considered, Eq. 5.62 is quite general and
the control volume used in this example can serve as a general model for other cases.

Work transfer can also occur at the control surface because of tangential stress forces. Ro-
tating shaft work is transferred by tangential stresses in the shaft material. For a fluid particle, shear
stress force power, can be evaluated as the dot product of tangential stress force,

and the fluid particle velocity, V. That is,

For the control volume of Fig. 5.6, the fluid particle velocity is zero everywhere on the wetted in-
side surface of the pipe. Thus, no tangential stress work is transferred across that portion of the
control surface. Furthermore, if we select the control surface so that it is perpendicular to the fluid
particle velocity, then the tangential stress force is also perpendicular to the velocity. Therefore,
the tangential stress work transfer is zero on that part of the control surface. This is illustrated in
the figure in the margin. Thus, in general, we select control volumes like the one of Fig. 5.6 and
consider fluid tangential stress power transfer to be negligibly small.

Using the information we have developed about power, we can express the first law of ther-
modynamics for the contents of a control volume by combining Eqs. 5.59, 5.60, and 5.62 to obtain

(5.63)

When the equation for total stored energy 1Eq. 5.562 is considered with Eq. 5.63, we obtain the
energy equation:

(5.64)

5.3.2 Application of the Energy Equation

In Eq. 5.64, the term represents the time rate of change of the total stored energy,
e, of the contents of the control volume. This term is zero when the flow is steady. This term is
also zero in the mean when the flow is steady in the mean 1cyclical2.

In Eq. 5.64, the integrand of

can be nonzero only where fluid crosses the control surface Otherwise, is zero
and the integrand is zero for that portion of the control surface. If the properties within parenthe-
ses, and gz, are all assumed to be uniformly distributed over the flow cross-sectional
areas involved, the integration becomes simple and gives

(5.65)� a
flow
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F I G U R E  5.6 Simple, fully
developed pipe flow.

R
r

Section (1) Control volume Section (2) Pipe

umax umax

u1 = umax  1 -  r  2

                 
_
R( )[ ] u2 = umax  1 -  r  2

                 
_
R( )[ ]

Work is transferred
by rotating shafts,
normal stresses,
and tangential
stresses.

n̂

V

p
τ

W
•

tangential stress = 0δ



Furthermore, if there is only one stream entering and leaving the control volume, then

(5.66)

Uniform flow as described above will occur in an infinitesimally small diameter streamtube as il-
lustrated in Fig. 5.7. This kind of streamtube flow is representative of the steady flow of a particle
of fluid along a pathline. We can also idealize actual conditions by disregarding nonuniformities
in a finite cross section of flow. We call this one-dimensional flow and although such uniform flow
rarely occurs in reality, the simplicity achieved with the one-dimensional approximation often jus-
tifies its use. More details about the effects of nonuniform distributions of velocities and other fluid
flow variables are considered in Section 5.3.4 and in Chapters 8, 9, and 10.

If shaft work is involved, the flow must be unsteady, at least locally 1see Refs. 1 and 22. The
flow in any fluid machine that involves shaft work is unsteady within that machine. For example,
the velocity and pressure at a fixed location near the rotating blades of a fan are unsteady. How-
ever, upstream and downstream of the machine, the flow may be steady. Most often shaft work is
associated with flow that is unsteady in a recurring or cyclical way. On a time-average basis for
flow that is one-dimensional, cyclical, and involves only one stream of fluid entering and leaving
the control volume, Eq. 5.64 can be simplified with the help of Eqs. 5.9 and 5.66 to form

(5.67)

We call Eq. 5.67 the one-dimensional energy equation for steady-in-the-mean flow. Note that Eq. 5.67
is valid for incompressible and compressible flows. Often, the fluid property called enthalpy, where

(5.68)

is used in Eq. 5.67. With enthalpy, the one-dimensional energy equation for steady-in-the-mean
flow 1Eq. 5.672 is

(5.69)

Equation 5.69 is often used for solving compressible flow problems. Examples 5.20 and 5.21
illustrate how Eqs. 5.67 and 5.69 can be used.

m
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F I G U R E  5.7
Streamtube flow.

Streamtube
dA

m•

in

m•
out

V

The energy equa-
tion is sometimes
written in terms of
enthalpy.

GIVEN A pump delivers water at a steady rate of 300 gal/min as
shown in Fig. E5.20. Just upstream of the pump [section (1)]
where the pipe diameter is 3.5 in., the pressure is 18 psi. Just
downstream of the pump [section (2)] where the pipe diameter is
1 in., the pressure is 60 psi. The change in water elevation across

Energy—Pump PowerE XAMPLE 5.20

the pump is zero. The rise in internal energy of water, , as-
sociated with a temperature rise across the pump is 93 ft lb/lbm.
The pumping process is considered to be adiabatic.

FIND Determine the power (hp) required by the pump.

 
ǔ2 � ǔ1
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SOLUTION

Substituting the values of Eqs. 2, 3, and 4 and values from the
problem statement into Eq. 1 we obtain

(Ans)

COMMENT Of the total 32.2 hp, internal energy change ac-
counts for 7.09 hp, the pressure rise accounts for 7.37 hp, and the
kinetic energy increase accounts for 17.8 hp.

  �
1

35501ft lb/s2/hp 4 � 32.2 hp

  �
1123 ft�s22 � 110.0 ft�s22
2 332.174 1lbm ft2� 1lb s22 4 d

  �
118 psi2 1144 in.2�ft22

11.94 slugs�ft32 132.174 lbm�slug2

 �
160 psi2 1144 in.2�ft22

11.94 slugs�ft32 132.174 lbm�slug2

� 141.8 lbm�s2 c 193 ft  lb�lbm2shaft
net in

W
#

We include in our control volume the water contained in the pump
between its entrance and exit sections. Application of Eq. 5.67 to
the contents of this control volume on a time-average basis yields

0 (no elevation change)

0 (adiabatic flow)

� (1)

We can solve directly for the power required by the pump,
, from Eq. 1, after we first determine the mass flowrate,

, the speed of flow into the pump, V1, and the speed of the flow
out of the pump, V2. All other quantities in Eq. 1 are given in the
problem statement. From Eq. 5.6, we get

(2)

Also from Eq. 5.6,

so

(3)

and

(4) � 123 ft/s

V2 �
Q

A2
�

1300 gal/min 24 112 in./ft22
17.48 gal/ft32 160 s/min 2Q 11 in.22

 � 10.0 ft/s

V1 �
Q

A1
�

1300 gal/min24 112 in./ft22
17.48 gal/ft32 160 s/min 2Q 13.5 in.22

V �
Q

A
�

Q

QD2/4

 � 41.8 lbm�s

m
#

� rQ �
11.94 slugs�ft32 1300 gal�min2 132.174 lbm�slug2

17.48 gal�ft32 160 s�min2

m
#

W
#

shaft net in

shaft
net in

W
#

net
in

 � Q
#

 m
# c ǔ2 � ǔ1 � ap

S
b

2
� ap

S
b

1
�

V 2
2 � V2

1

2
� g1z2 � z12 d

F I G U R E  E5.20

Control volume

Section (1)
p1 = 18 psi

u2 – u1 = 93 ft •lb/lbm
^ ^

D1 =
3.5 in. Pump

W
•

shaft = ?

D2 = 1 in.

Q =
300 gal/min.

Section (2)
p2 = 60 psi

GIVEN A steam turbine generator unit used to produce elec-
tricity is shown in Fig. E5.21a. Assume the steam enters a turbine
with a velocity of 30 m/s and enthalpy, , of 3348 kJ/kg (see Fig.
E5.21b). The steam leaves the turbine as a mixture of vapor and
liquid having a velocity of 60 m/s and an enthalpy of 2550 kJ/kg.
The flow through the turbine is adiabatic, and changes in eleva-
tion are negligible. 

FIND Determine the work output involved per unit mass of
steam through-flow.

ȟ1

F I G U R E  E5.21a

Energy—Turbine Power per Unit Mass of FlowE XAMPLE 5.21



SOLUTION

F I G U R E  E5.21b

Thus,

(Ans)

COMMENT Note that in this particular example, the change
in kinetic energy is small in comparison to the difference in en-
thalpy involved. This is often true in applications involving steam
turbines. To determine the power output, , we must know
the mass flowrate, .m

#
W
#

shaft

 � 797 kJ/kg

wshaft
net out

� 3348 kJ�kg � 2550 kJ�kg � 1.35 kJ�kg

Steam turbine

Control volume

Section (1)
V1 = 30 m/s
h1 = 3348 kJ/kg
^

Section (2)
V2 = 60 m/s
h2 = 2550 kJ/kg
^

wshaft = ?

We use a control volume that includes the steam in the turbine
from the entrance to the exit as shown in Fig. E5.21b. Applying
Eq. 5.69 to the steam in this control volume we get

0 (elevation change is negligible)
0 (adiabatic flow)

(1)

The work output per unit mass of steam through-flow, wshaft net in, can
be obtained by dividing Eq. 1 by the mass flow rate, , to obtain

(2)

Since wshaft net out��wshaft net in, we obtain

or

 �
3 130 m�s22 � 160 m�s22 4 31 J� 1N m2 4

2 31 1kg m2� 1N s22 4 11000 J�kJ2

wshaft
net out

� 3348 kJ�kg � 2550 kJ�kg

wshaft
net out

� ȟ1 � ȟ2 �
V 2

1 � V 2
2

2

wshaft
net in
�

W
#

shaft
net in

m
# � ȟ2 � ȟ1 �

V 2
2 � V 2

1

2

m
#

m
# c ȟ2 � ȟ1 �

V 2
2 � V 2

1

2
� g1z2 � z12 d � Q

#

net
in
� W
#

shaft
net in

If the flow is steady throughout, one-dimensional, and only one fluid stream is involved, then the
shaft work is zero and the energy equation is

(5.70)

We call Eq. 5.70 the one-dimensional, steady flow energy equation. This equation is valid for in-
compressible and compressible flows. For compressible flows, enthalpy is most often used in the
one-dimensional, steady flow energy equation and, thus, we have

(5.71)

An example of the application of Eq. 5.70 follows.

m
# c ȟout � ȟin �

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
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m
# c ǔout � ǔin � a

p
r
b

out

� ap
r
b

in

�
V2

out � V 2
in

2
� g1zout � zin2 d � Q

#
net
in
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V5.12 Pelton wheel
turbine

GIVEN The 420-ft waterfall shown in Fig. E5.22a involves
steady flow from one large body of water to another. 

SOLUTION

Energy—Temperature Change

the change of internal energy of the water, by the rela-
tionship

(1)T2 � T1 �
ǔ2 � ǔ1

č

ǔ2 � ǔ1,

E XAMPLE 5.22

To solve this problem we consider a control volume consisting of
a small cross-sectional streamtube from the nearly motionless
surface of the upper body of water to the nearly motionless sur-
face of the lower body of water as is sketched in Fig. E5.22b. We
need to determine This temperature change is related toT2 � T1.

FIND Determine the temperature change associated with this
flow.



A form of the energy equation that is most often used to solve incompressible flow prob-
lems is developed in the next section.

5.3.3 Comparison of the Energy Equation with the Bernoulli Equation

When the one-dimensional energy equation for steady-in-the-mean flow, Eq. 5.67, is applied to a
flow that is steady, Eq. 5.67 becomes the one-dimensional, steady-flow energy equation, Eq. 5.70.
The only difference between Eq. 5.67 and Eq. 5.70 is that shaft power, is zero if the
flow is steady throughout the control volume 1fluid machines involve locally unsteady flow2. If in
addition to being steady, the flow is incompressible, we get from Eq. 5.70

(5.72)

Dividing Eq. 5.72 by the mass flowrate, and rearranging terms we obtain

(5.73)
pout

r
�

V 2
out

2
� gzout �

pin

r
�

V 2
in

2
� gzin � 1ǔout � ǔin � qnet
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#
,
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shaft net in,
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where is the specific heat of water. The ap-
plication of Eq. 5.70 to the contents of this control volume leads to

(2)

We assume that the flow is adiabatic. Thus Also,

(3)ap

r
b

1
� ap

r
b

2

Q
#

net in � 0.

� Q
#

net
in

m
#
 c ǔ2 � ǔ1 � a

p

r
b

2
� ap

r
b

1
�

V 22 � V 21
2

� g1z2 � z12 d

č � 1 Btu�1lbm # °R2

because the flow is incompressible and atmospheric pressure pre-
vails at sections 112 and 122. Furthermore,

(4)

because the surface of each large body of water is considered mo-
tionless. Thus, Eqs. 1 through 4 combine to yield

so that with

(Ans)

COMMENT Note that it takes a considerable change of po-
tential energy to produce even a small increase in temperature.

� 0.540 °R

T2 � T1 �
132.2 ft�s22 1420 ft 2

3778 ft # lb� 1lbm # °R2 4 332.2 1lbm # ft2� 1lb # s22 4

 � 3778 ft # lb� 1lbm # °R2 4
 č � 31 Btu� 1lbm # °R2 4  1778 ft # lb�Btu2

T2 � T1 �
g1z1 � z22

č

V1 � V2 � 0

F I G U R E  E5.22b

Section (2)

Control
volume

Section (1)

420 ft

F I G U R E  E5.22a
[Photograph of Akaka Falls (Hawaii)
courtesy of Scott and Margaret Jones.]



where

is the heat transfer rate per mass flowrate, or heat transfer per unit mass. Note that Eq. 5.73 in-
volves energy per unit mass and is applicable to one-dimensional flow of a single stream of fluid
between two sections or flow along a streamline between two sections.

If the steady, incompressible flow we are considering also involves negligible viscous effects
1frictionless flow2, then the Bernoulli equation, Eq. 3.7, can be used to describe what happens be-
tween two sections in the flow as

(5.74)

where is the specific weight of the fluid. To get Eq. 5.74 in terms of energy per unit mass, so
that it can be compared directly with Eq. 5.73, we divide Eq. 5.74 by density, and obtain

(5.75)

A comparison of Eqs. 5.73 and 5.75 prompts us to conclude that

(5.76)

when the steady incompressible flow is frictionless. For steady incompressible flow with friction,
we learn from experience (second law of thermodynamics) that

(5.77)

In Eqs. 5.73 and 5.75, we can consider the combination of variables

as equal to useful or available energy. Thus, from inspection of Eqs. 5.73 and 5.75, we can con-
clude that represents the loss of useful or available energy that occurs in an in-
compressible fluid flow because of friction. In equation form we have

(5.78)

For a frictionless flow, Eqs. 5.73 and 5.75 tell us that loss equals zero.
It is often convenient to express Eq. 5.73 in terms of loss as

(5.79)

An example of the application of Eq. 5.79 follows.
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ǔout � ǔin � qnet
in
� loss
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ǔout � ǔin � qnet
in
� 0

pout

r
�

V 2
out

2
� gzout �

pin

r
�

V 2
in

2
� gzin

r,
g � rg

pout �
rV 2

out

2
� gzout � pin �

rV 2
in

2
� gzin

qnet
in
�

Q
#

net in

m
#

230 Chapter 5 ■ Finite Control Volume Analysis

Minimizing loss is
the central goal of
fluid mechanical
design.

GIVEN As shown in Fig. E5.23a, air flows from a room
through two different vent configurations: a cylindrical hole in
the wall having a diameter of 120 mm and the same diameter
cylindrical hole in the wall but with a well-rounded entrance.
The room pressure is held constant at 1.0 kPa above atmos-
pheric pressure. Both vents exhaust into the atmosphere. As dis-
cussed in Section 8.4.2, the loss in available energy associated
with flow through the cylindrical vent from the room to the vent

Energy—Effect of Loss of Available EnergyE XAMPLE 5.23

exit is 0.5V2
2/2 where V2 is the uniformly distributed exit veloc-

ity of air. The loss in available energy associated with flow
through the rounded entrance vent from the room to the vent exit
is 0.05V2

2/2, where V2 is the uniformly distributed exit velocity
of air.

FIND Compare the volume flowrates associated with the two
different vent configurations.



SOLUTION

or

(Ans)

COMMENT By repeating the calculations for various values
of the loss coefficient, KL, the results shown in Fig. E5.23b are
obtained. Note that the rounded entrance vent allows the passage
of more air than does the cylindrical vent because the loss asso-
ciated with the rounded entrance vent is less than that for the
cylindrical one. For this flow the pressure drop, p1 � p2, has two
purposes: (1) overcome the loss associated with the flow, and (2)
produce the kinetic energy at the exit. Even if there were no loss
(i.e., KL � 0), a pressure drop would be needed to accelerate the
fluid through the vent.

Q � 0.372 m3/s

We use the control volume for each vent sketched in Fig. E5.23a.
What is sought is the flowrate, Q� A2V2, where A2 is the vent exit
cross-sectional area, and V2 is the uniformly distributed exit veloc-
ity. For both vents, application of Eq. 5.79 leads to

0 (no elevation change)

(1)

where 1loss2 is the loss between sections (1) and (2). Solving Eq.
1 for V2 we get

(2)

Since

(3)

where KL is the loss coefficient (KL� 0.5 and 0.05 for the two vent
configurations involved), we can combine Eqs. 2 and 3 to get

(4)

Solving Eq. 4 for V2 we obtain

(5)

Therefore, for flowrate, Q, we obtain

(6)

For the rounded entrance cylindrical vent, Eq. 6 gives

or

(Ans)

For the cylindrical vent, Eq. 6 gives us

 �  B
11.0 kPa2 11000 Pa�kPa2 311N�m22� 1Pa2 4
11.23 kg�m32 3 11 � 0.52�2 4 311N s22� 1kg m2 4

 Q �
p1120 mm22

411000 mm �m22 

 Q � 0.445 m3/s

 �  B
11.0 kPa2 11000 Pa�kPa2 311N�m22� 1Pa2 4

11.23 kg�m32 3 11 � 0.052�2 4 311N s22� 1kg m2 4

Q �
p1120 mm22

411000 mm�m22 

Q � A2V2 �
pD2

2

4
 
B

p1 � p2

r 3 11 � KL2�2 4

V2 � B
p1 � p2

r 3 11 � KL2�2 4

V2 � B2 c ap1 � p2

S
b � KL 

V2
2

2
d

1loss2 � KL 
V2

2

2

V2 � B2 c ap1 � p2

S
b � 1loss2 d

0 1V1 � 02

p2

S
�

V2
2

2
� gz2 �

p1

S
�

V2
1

2
� gz1 � 1loss2

An important group of fluid mechanics problems involves one-dimensional, incompressible,
steady-in-the-mean flow with friction and shaft work. Included in this category are constant density
flows through pumps, blowers, fans, and turbines. For this kind of flow, Eq. 5.67 becomes

(5.80) m
# c ǔout � ǔin �

pout
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�
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�
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out � V 2

in

2
� g1zout � zin2 d � Q

#
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� W
#

shaft
net in
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F I G U R E  E5.23a

Control
volume

Section (2)

V2

V2

Section (2)

Control
volume

D2 = 120 mm

D2 = 120 mm

Section (1) for
both vents is

in the room and
involves V1 = 0

p1 = 1.0 kPa

F I G U R E  E5.23b

0.5

0.4

0.3

0.2

0.1

0

Q
, 
m

3
/s

KL

0 0.1 0.2 0.3 0.4 0.5

(0.05, 0.445 m3/s)

(0.5, 0.372 m3/s)



Dividing Eq. 5.80 by mass flowrate and using the work per unit mass, we 
obtain

(5.81)

If the flow is steady throughout, Eq. 5.81 becomes identical to Eq. 5.73, and the previous observation
that equals the loss of available energy is valid. Thus, we conclude that Eq. 5.81
can be expressed as

(5.82)

This is a form of the energy equation for steady-in-the-mean flow that is often used for incompressible
flow problems. It is sometimes called the mechanical energy equation or the extended Bernoulli equa-
tion. Note that Eq. 5.82 involves energy per unit mass 

According to Eq. 5.82, when the shaft work is into the control volume, as for example with a
pump, a larger amount of loss will result in more shaft work being required for the same rise in avail-
able energy. Similarly, when the shaft work is out of the control volume 1for example, a turbine2, a
larger loss will result in less shaft work out for the same drop in available energy. Designers spend
a great deal of effort on minimizing losses in fluid flow components. The following examples demon-
strate why losses should be kept as small as possible in fluid systems.
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The mechanical 
energy equation
can be written in
terms of energy per
unit mass.

V5.13 Energy 
transfer

GIVEN An axial-flow ventilating fan driven by a motor that
delivers 0.4 kW of power to the fan blades produces a 0.6-m-
diameter axial stream of air having a speed of 12 m/s. The flow
upstream of the fan involves negligible speed.

SOLUTION

F I G U R E  E5.24

Energy—Fan Work and Efficiency

To calculate the efficiency, we need a value of wshaft net in, which is
related to the power delivered to the blades, . We note
that

(4)wshaft
net in
�

W
#

shaft
net in

m
#

W
#

shaft net in

Fan
motor

Fan

V1 = 0

Section (1)

Stream surface

Control volume
Section (2)

D2 =
0.6 m

V2 = 12 m/s

E XAMPLE 5.24

We select a fixed and nondeforming control volume as is illus-
trated in Fig. E5.24. The application of Eq. 5.82 to the contents of
this control volume leads to

0 (atmospheric pressures cancel) 0 (V1 � 0)

(1)

0 (no elevation change)

where wshaft net in� loss is the amount of work added to the air that
produces a useful effect. Equation 1 leads to

(2) (Ans)

A reasonable estimate of efficiency, I, would be the ratio of
amount of work that produces a useful effect, Eq. 2, to the amount
of work delivered to the fan blades. That is

(3)h �

wshaft
net in � loss

wshaft
net in

� 72.0 N m/kg

wshaft
net in
� loss �

V 2
2

2
�

112 m�s22
2 311kg m2� 1N s22 4

wshaft
net in
� loss � ap2

S
�

V2
2

2
� gz2b � a

p1

S
�

V2
1

2
� gz1b

FIND Determine how much of the work to the air actually pro-
duces useful effects, that is, fluid motion and a rise in available
energy. Estimate the fluid mechanical efficiency of this fan.



If Eq. 5.82, which involves energy per unit mass, is multiplied by fluid density, we obtain

(5.83)

where is the specific weight of the fluid. Equation 5.83 involves energy per unit volume and
the units involved are identical with those used for pressure or 

If Eq. 5.82 is divided by the acceleration of gravity, g, we get

(5.84)

where

(5.85)

is the shaft work head and is the head loss. Equation 5.84 involves energy per unit weight
or In Section 3.7, we introduced the notion of “head,” which is energy

per unit weight. Units of length 1for example, ft, m2 are used to quantify the amount of head involved.
If a turbine is in the control volume, is negative because it is associated with shaft work out of
the control volume. For a pump in the control volume, is positive because it is associated with
shaft work into the control volume.

We can define a total head, H, as follows

Then Eq. 5.84 can be expressed as

Hout � Hin � hs � hL

H �
p

g
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V 2

2g
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out

2g
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pin
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V2
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2g
� zin � hs � hL
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� gzin � rwshaft
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� r1loss2

r,
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where the mass flowrate, , is (from Eq. 5.6)

(5)

For fluid density, S, we use 1.23 kg/m3 (standard air) and, thus,
from Eqs. 4 and 5 we obtain

 
�

10.4 kW2 31000 1Nm 2�1skW2 4
11.23 kg�m32 3 1p2 10.6 m22�4 4 112 m�s2

 
wshaft

net in
�

W
#

shaft
net in

1rpD 2
2�42V2

m
#
� SAV � S 

QD2
2

4
 V2

m
#

or

(6)

From Eqs. 2, 3, and 6 we obtain

(Ans)

COMMENT Note that only 75% of the power that was deliv-
ered to the air resulted in useful effects, and, thus, 25% of the
shaft power is lost to air friction.

I �
72.0 N m/kg

95.8 N m/kg
� 0.752

wshaft
net in
� 95.8 N m/kg

F l u i d s  i n  t h e  N e w s

Curtain of air An air curtain is produced by blowing air through
a long rectangular nozzle to produce a high-velocity sheet of air,
or a “curtain of air.” This air curtain is typically directed over a
doorway or opening as a replacement for a conventional door.
The air curtain can be used for such things as keeping warm air
from infiltrating dedicated cold spaces, preventing dust and other
contaminates from entering a clean environment, and even just
keeping insects out of the workplace, still allowing people to en-
ter or exit. A disadvantage over conventional doors is the added

power requirements to operate the air curtain, although the ad-
vantages can outweigh the disadvantage for various industrial
applications. New applications for current air curtain designs
continue to be developed. For example, the use of air curtains as
a means of road tunnel fire security is currently being investi-
gated. In such an application, the air curtain would act to isolate
a portion of the tunnel where fire has broken out and not allow
smoke and fumes to infiltrate the entire tunnel system. (See
Problem 5.123.)

V5.14 Water plant
aerator

The energy equa-
tion written in
terms of energy 
per unit weight 
involves heads.



Some important possible values of in comparison to are shown in Fig. 5.8. Note that hL

(head loss) always reduces the value of , except in the ideal case when it is zero. Note also that
hL lessens the effect of shaft work that can be extracted from a fluid. When (ideal condi-
tion) the shaft work head, hs, and the change in total head are the same. This head change is some-
times called “ideal head change.” The corresponding ideal shaft work head is the minimum required
to achieve a desired effect. For work out, it is the maximum possible. Designers usually strive to
minimize loss. In Chapter 12 we learn of one instance when minimum loss is sacrificed for sur-
vivability of fish coursing through a turbine rotor.

hL � 0
Hout

HinHout
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F I G U R E  5.8 Total-head change in
fluid flows.

h L
 =

 0
, 

h s
 =

 0

Hout

Hin

h L
 =

 0
, 

h s
 >

 0

h L
 >

 0
, 

h s
 =

 0

h L
 >

 0
, 

h s
 >

 0

h L
 >

 0
,

h s
 <

 0

h L
 =

 0
,

h s
 <

 0

hs
hs – hL

hs + hL

hs

hL

GIVEN The pump shown in Fig. E5.25a adds 10 horsepower
to the water as it pumps water from the lower lake to the upper
lake. The elevation difference between the lake surfaces is 30 ft
and the head loss is 15 ft. 

FIND Determine 

(a) the flowrate and 

(b) the power loss associated with this flow.

SOLUTION

F I G U R E  E5.25a

Energy—Head Loss and Power Loss

Hence, from Eq. 2,

or

(Ans)

COMMENT Note that in this example the purpose of the
pump is to lift the water (a 30-ft head) and overcome the head loss
(a 15-ft head); it does not, overall, alter the water’s pressure or
velocity.

Q � 1.96 ft3/s

88.1�Q � 15 ft � 30 ft

Control volume

Section (2)

Section (1)
Pump

Flow

Flow

30 ft

E XAMPLE 5.25

(a) The energy equation (Eq. 5.84) for this flow is

(1)

where points 2 and 1 (corresponding to “out” and “in” in Eq.
5.84) are located on the lake surfaces. Thus, and

so that Eq. 1 becomes

(2)

where and The pump head is ob-
tained from Eq. 5.85 as

where is in ft when Q is in ft3/s.hs

 � 88.1�Q
 � 110 hp2 1550 ft #lb�s�hp2�162.4 lb�ft32 Q

 hs � W
#
shaft net in �H Q

hL � 15 ft.z2 � 30 ft, z1 � 0,

hs � hL � z2 � z1

V2 � V1 � 0
p2 � p1 � 0

p2

g
�

V 2
2

2g
� z2 �

p1

g
�

V 2
1

2g
� z1 � hs � hL



A comparison of the energy equation and the Bernoulli equation has led to the concept of
loss of available energy in incompressible fluid flows with friction. In Chapter 8, we discuss in de-
tail some methods for estimating loss in incompressible flows with friction. In Section 5.4 and
Chapter 11, we demonstrate that loss of available energy is also an important factor to consider in
compressible flows with friction.
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(b) The power lost due to friction can be obtained from
Eq. 5.85 as

(Ans)

COMMENTS The remaining 
that the pump adds to the water is used to lift the water from the

10 hp � 3.33 hp � 6.67 hp

 � 3.33 hp

 � 1830 ft #lb/s 11 hp�550 ft #lb/s2
 W
#
loss � H QhL � 162.4 lb/ft32 11.96 ft3/s2 115 ft2

lower to the upper lake. This energy is not “lost,” but it is stored
as potential energy.

By repeating the calculations for various head losses, the
results shown in Fig. E5.25b are obtained. Note that as the head
loss increases, the flowrate decreases because an increasing por-
tion of the 10 hp supplied by the pump is lost and, therefore, not
available to lift the fluid to the higher elevation.

hL,

F I G U R E  E5.25b

(15 ft, 1.96 ft3/s)

3.5

3

2.5

2

1.5

1

0.5

0
0 5 10

hL, ft

15 20 25

Q
, 
ft

3
/s

F l u i d s  i n  t h e  N e w s

Smart shocks Vehicle shock absorbers are dampers used to pro-
vide a smooth, controllable ride. When going over a bump, the rel-
ative motion between the tires and the vehicle body displaces a
piston in the shock and forces a viscous fluid through a small ori-
fice or channel. The viscosity of the fluid produces a head loss that
dissipates energy to dampen the vertical motion. Current shocks
use a fluid with fixed viscosity. However, recent technology has
been developed that uses a synthetic oil with millions of tiny iron
balls suspended in it. These tiny balls react to a magnetic field

generated by an electric coil on the shock piston in a manner that
changes the fluid viscosity, going anywhere from essentially no
damping to a solid almost instantly. A computer adjusts the current
to the coil to select the proper viscosity for the given conditions
(i.e., wheel speed, vehicle speed, steering-wheel angle, lateral ac-
celeration, brake application, and temperature). The goal of these
adjustments is an optimally tuned shock that keeps the vehicle on
a smooth, even keel while maximizing the contact of the tires with
the pavement for any road conditions. (See Problem 5.107.)

5.3.4 Application of the Energy Equation to Nonuniform Flows

The forms of the energy equation discussed in Sections 5.3.2 and 5.3.3 are applicable to one-
dimensional flows, flows that are approximated with uniform velocity distributions where fluid
crosses the control surface.



If the velocity profile at any section where flow crosses the control surface is not uniform,
inspection of the energy equation for a control volume, Eq. 5.64, suggests that the integral

will require special attention. The other terms of Eq. 5.64 can be accounted for as already dis-
cussed in Sections 5.3.2 and 5.3.3.

For one stream of fluid entering and leaving the control volume, we can define the relationship

where is the kinetic energy coefficient and is the average velocity defined earlier in Eq. 5.7.
From the above we can conclude that

for flow through surface area A of the control surface. Thus,

(5.86)

It can be shown that for any velocity profile, with only for uniform flow. Some typical
velocity profile examples for flow in a conventional pipe are shown in the sketch in the margin. There-
fore, for nonuniform velocity profiles, the energy equation on an energy per unit mass basis for the
incompressible flow of one stream of fluid through a control volume that is steady in the mean is

(5.87)

On an energy per unit volume basis we have

(5.88)

and on an energy per unit weight or head basis we have

(5.89)

The following examples illustrate the use of the kinetic energy coefficient.

pout

g
�
aoutV

2
out

2g
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�
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2
in

2g
� zin �
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net in

g
� hL

pout �
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2
out

2
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� gzin � rwshaft
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� r1loss2
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2
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2
� gzout �
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�
ainV

2
in

2
� gzin � wshaft
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a � 1a � 1,
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�
A

 1V 2�22rV  n̂ dA
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V 2�2
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The kinetic energy
coefficient is used
to account for non-
uniform flows.

Parabolic
(laminar)

Turbulent

Uniform

� = 2

�    1.08

� = 1

~~

GIVEN The small fan shown in Fig. E5.26 moves air at a
mass flowrate of 0.1 kgZmin. Upstream of the fan, the pipe di-
ameter is 60 mm, the flow is laminar, the velocity distribution is
parabolic, and the kinetic energy coefficient, is equal to 2.0.
Downstream of the fan, the pipe diameter is 30 mm, the flow is
turbulent, the velocity profile is quite uniform, and the kinetic

a1,

energy coefficient, is equal to 1.08. The rise in static pres-
sure across the fan is 0.1 kPa and the fan motor draws 0.14 W.

FIND Compare the value of loss calculated: (a) assuming uni-
form velocity distributions, (b) considering actual velocity distri-
butions.

a2,

Energy—Effect of Nonuniform Velocity ProfileE XAMPLE 5.26
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SOLUTION

or

(Ans)

(b) For the actual velocity profiles Eq. 1
gives

(7)

If we use Eqs. 3, 4, and 5 and the given pressure rise, Eq. 7
yields

or

(Ans)

COMMENT The difference in loss calculated assuming uni-
form velocity profiles and actual velocity profiles is not large
compared to for this fluid flow situation.wshaft net in

 � 0.940 N # m�kg

� 0.230 N # m�kg � 1.99 N # m�kg
 loss � 84.0 N # m�kg � 81.3 N # m�kg

 �
210.479 m�s22

2 31 1kg # m2� 1N # s22 4 �
1.0811.92 m�s22

2 31 1kg # m2� 1/ # s22 4

 loss � 84 N # m�kg �
10.1 kPa2 11000 Pa�kPa2 11 N�m2�Pa2

1.23 kg�m3

loss � wshaft
net in
� ap2 � p1

r
b � a1 

V 1
2

2
� a2 

V 2
2

2

1a1 � 2, a2 � 1.082,
 � 0.975 N # m�kg

� 0.115 N # m�kg � 1.84 N # m�kg
 loss � 84.0 N # m�kg � 81.3 N # m�kg

Application of Eq. 5.87 to the contents of the control volume
shown in Fig. E5.26 leads to

0 1change in gz is negligible2

(1)

or solving Eq. 1 for loss we get

(2)

To proceed further, we need values of and These
quantities can be obtained as follows. For shaft work

or

(3)

For the average velocity at section 112, from Eq. 5.11 we obtain

(4)

For the average velocity at section 122,

(5)

(a) For the assumed uniform velocity profiles 
Eq. 2 yields

(6)

Using Eqs. 3, 4, and 5 and the pressure rise given in the problem
statement, Eq. 6 gives

 �
10.479 m�s22

2 31 1kg # m2� 1N # s22 4 �
11.92 m�s22

2 31 1kg # m2� 1N # s22 4

 loss � 84.0 
N # m

kg
�
10.1 kPa2 11000 Pa�kPa2 11 N�m2�Pa2

1.23 kg�m3

loss � wshaft
net in
� ap2 � p1

r
b � V 2

1

2
�

V 2
2

2

1.02,1a1 � a2 �

 � 1.92 m�s

 V2 �
10.1 kg�min2 11 min�60 s2 11000 mm�m22

11.23 kg�m32 3p130 mm22�4 4

V2,

 � 0.479 m�s

 �
10.1 kg�min2 11 min�60 s2 11000 mm�m22

11.23 kg�m32 3p160 mm22�4 4

 �
m
#

r1pD2
1�42

 V1 �
m
#

rA1

V1,

� 84.0 N # m�kg

wshaft
net in
�
10.14 W2 3 11 N # m�s2�W 4

0.1 kg�min
 160 s�min2

wshaft
net in
�

power to fan motor

m
#

V2.wshaft net in, V1,

loss � wshaft
net in
� ap2 � p1

r
b � a1V

2
1

2
�
a2V

2
2

2

� loss � wshaft
net in

p2

r
�
a2V

2
2

2
� gz2 �

p1

r
�
a1V

2
1

2
� gz1

Control volume

Turbulent
flow

Section (2)
  2 = 1.08α

D2 = 30 mm

D1 = 60 mm

Section (1)
  1 = 2.0α

Laminar flow
m• = 0.1 kg/min

F I G U R E  E5.26
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GIVEN Consider the flow situation of Example 5.14. 

FIND Apply Eq. 5.87 to develop an expression for the fluid
pressure drop that occurs between sections 112 and 122. By compar-

ing the equation for pressure drop obtained presently with the re-
sult of Example 5.14, obtain an expression for loss between sec-
tions 112 and 122.

Energy—Effect of Nonuniform Velocity ProfileE XAMPLE 5.27

SOLUTION

Now we combine Eqs. 2 and 5 to get

(6)

However, from conservation of mass so that Eq. 6
becomes

(7)

The term associated with change in elevation, is equal
to the weight per unit cross-sectional area, of the water con-
tained between sections 112 and 122 at any instant,

(8)

Thus, combining Eqs. 7 and 8 we get

(9)

The pressure drop between sections 112 and 122 is due to:

1. The change in kinetic energy between sections 112 and 122 as-
sociated with going from a uniform velocity profile to a par-
abolic velocity profile.

2. The weight of the water column, that is, hydrostatic pressure
effect.

3. Viscous loss.

Comparing Eq. 9 for pressure drop with the one obtained in
Example 5.14 1i.e., the answer of Example 5.142 we obtain

(10)

or

(Ans)

COMMENT We conclude that while some of the pipe wall
friction force, resulted in loss of available energy, a portion of
this friction, led to the velocity profile change.rAw 2�6,

Rz,

loss �
Rz

rA
�

w 2

6

rw 2

2
�
w

A
� r1loss2 � rw

2

3
�

Rz

A
�
w

A

p1 � p2 �
rw 2

2
�
w

A
� r1loss2

rg1z2 � z12 �
w

A

w�A,
rg1z2 � z12,

p1 � p2 �
rw 2

2
� rg1z2 � z12 � r1loss2

w2 � w1 � w

p1 � p2 � r c
2.0w 2

2

2
�

1.0w 1
2

2
� g1z2 � z12 � loss d

Application of Eq. 5.87 to the flow of Example 5.14 1see Fig.
E5.142 leads to

0 1no shaft work2

(1)

Solving Eq. 1 for the pressure drop, we obtain

(2)

Since the fluid velocity at section 112, is uniformly distributed
over cross-sectional area A1, the corresponding kinetic energy
coefficient, is equal to 1.0. The kinetic energy coefficient at
section 122, needs to be determined from the velocity profile
distribution given in Example 5.14. Using Eq. 5.86 we get

(3)

Substituting the parabolic velocity profile equation into Eq. 3 we
obtain

From conservation of mass, since 

(4)

Then, substituting Eq. 4 into Eq. 3, we obtain

or

(5)
� 2

a2 �
16

R2 �
R

0

 31 � 31r�R22 � 31r�R24 � 1r�R26 4r dr

a2 �

r8w 3
22p�

R

0
 31 � 1r�R22 43r dr

rpR2w 3
2

w1 � w2

A1 � A2

a2 �

r �
R

0

 12w123 31 � 1r�R22 43 2pr dr

1rA2w22w 2
2

a2 �

�
A2

 rw3
2 dA2

m
#
w 2

2

a2,
a1,

w1,

p1 � p2 � r c
a2w

2
2

2
�
a1w 1

2

2
� g1z2 � z12 � loss d

p1 � p2,

p2

r
�
a2w

2
2

2
� gz2 �

p1

r
�
a1w1

2

2
� gz1 � loss � wshaft

net in

5.3.5 Combination of the Energy Equation 
and the Moment-of-Momentum Equation4

If Eq. 5.82 is used for one-dimensional incompressible flow through a turbomachine, we can use 
Eq. 5.54, developed in Section 5.2.4 from the moment-of-momentum equation 1Eq. 5.422, to evaluate

4This section may be omitted without loss of continuity in the text material. This section should not be considered without prior study
of Sections 5.2.3 and 5.2.4. All of these sections are recommended for those interested in Chapter 12.



shaft work. This application of both Eqs. 5.54 and 5.82 allows us to ascertain the amount of loss that
occurs in incompressible turbomachine flows as is demonstrated in Example 5.28.
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GIVEN Consider the fan of Example 5.19.

FIND Show that only some of the shaft power into the air
is converted into useful effects. Develop a meaningful effi-

ciency equation and a practical means for estimating lost shaft
energy.

Energy—Fan PerformanceEXAMPLE 5.28

SOLUTION

However, when Eq. 5.54, which was developed from the moment-
of-momentum equation 1Eq. 5.422, is applied to the contents of
the control volume of Fig. E5.19, we obtain

(4)

Combining Eqs. 2, 3, and 4, we obtain

(5) (Ans)

Equation 5 provides us with a practical means to evaluate the ef-
ficiency of the fan of Example 5.19.

Combining Eqs. 2 and 4, we obtain

(6) (Ans)

COMMENT Equation 6 provides us with a useful method of
evaluating the loss due to fluid friction in the fan of Example
5.19 in terms of fluid mechanical variables that can be mea-
sured.

� a p1

r
�

V 2
1

2
� gz1b d

loss � U2Vu2 � c a
p2

r
�

V 2
2

2
� gz2b

� 3 1p1�r2 � 1V 2
1�22 � gz1 4 6�U2Vu2

h � 5 3 1p2�r2 � 1V 2
2�22 � gz2 4

wshaft
net in
� �U2Vu2

We use the same control volume used in Example 5.19. Applica-
tion of Eq. 5.82 to the contents of this control volume yields

(1)

As in Example 5.26, we can see with Eq. 1 that a “useful effect”
in this fan can be defined as

(2) (Ans)

In other words, only a portion of the shaft work delivered to the
air by the fan blades is used to increase the available energy of the
air; the rest is lost because of fluid friction.

A meaningful efficiency equation involves the ratio of shaft
work converted into a useful effect 1Eq. 22 to shaft work into the
air, Thus, we can express efficiency, as

(3)h �

wshaft
net in� loss

wshaft
net in

h,wshaft net in.

� ap2

r
�

V 2
2

2
� gz2b � a

p1

r
�

V 1
2

2
� gz1b

useful effect � wshaft
net in
� loss

p2

r
�

V 2
2

2
� gz2 �

p1

r
�

V 2
1

2
� gz1 � wshaft

net in
� loss

The second law of thermodynamics affords us with a means to formalize the inequality

(5.90)

for steady, incompressible, one-dimensional flow with friction 1see Eq. 5.732. In this section we
continue to develop the notion of loss of useful or available energy for flow with friction. Min-
imization of loss of available energy in any flow situation is of obvious engineering impor-
tance.

5.4.1 Semi-infinitesimal Control Volume Statement 
of the Energy Equation

If we apply the one-dimensional, steady flow energy equation, Eq. 5.70, to the contents of a con-
trol volume that is infinitesimally thin as illustrated in Fig 5.8, the result is

(5.91)m
#
 cdǔ � d ap

r
b � d aV2

2
b � g 1dz2 d � dQ# net

in

ǔ2 � ǔ1 � qnet
in
� 0

5.4 Second Law of Thermodynamics—Irreversible Flow5

The second law of
thermodynamics
formalizes the no-
tion of loss.

5This entire section may be omitted without loss of continuity in the text material.



For all pure substances including common engineering working fluids, such as air, water, oil, and
gasoline, the following relationship is valid 1see, for example, Ref. 32.

(5.92)

where T is the absolute temperature and s is the entropy per unit mass.
Combining Eqs. 5.91 and 5.92 we get

or, dividing through by and letting we obtain

(5.93)

5.4.2 Semi-infinitesimal Control Volume Statement 
of the Second Law of Thermodynamics

A general statement of the second law of thermodynamics is

(5.94)

or in words,

The right-hand side of Eq. 5.94 is identical for the system and control volume at the instant when
system and control volume are coincident; thus,

(5.95)

With the help of the Reynolds transport theorem 1Eq. 4.192 the system time derivative can be ex-
pressed for the contents of the coincident control volume that is fixed and nondeforming. Using
Eq. 4.19, we obtain

(5.96)
D
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F I G U R E  5.9 Semi-infinitesimal control volume.
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For a fixed, nondeforming control volume, Eqs. 5.94, 5.95, and 5.96 combine to give

(5.97)

At any instant for steady flow

(5.98)

If the flow consists of only one stream through the control volume and if the properties are uni-
formly distributed 1one-dimensional flow2, Eqs. 5.97 and 5.98 lead to

(5.99)

For the infinitesimally thin control volume of Fig. 5.8, Eq. 5.99 yields

(5.100)

If all of the fluid in the infinitesimally thin control volume is considered as being at a uniform tem-
perature, T, then from Eq. 5.100 we get

or

(5.101)

The equality is for any reversible 1frictionless2 process; the inequality is for all irreversible 1fric-
tion2 processes.

5.4.3 Combination of the Equations of the First and Second Laws 
of Thermodynamics

Combining Eqs. 5.93 and 5.101, we conclude that

(5.102)

The equality is for any steady, reversible 1frictionless2 flow, an important example being flow for
which the Bernoulli equation 1Eq. 3.7) is applicable. The inequality is for all steady, irreversible
1friction2 flows. The actual amount of the inequality has physical significance. It represents the
extent of loss of useful or available energy which occurs because of irreversible flow phenom-
ena including viscous effects. Thus, Eq. 5.102 can be expressed as

(5.103)

The irreversible flow loss is zero for a frictionless flow and greater than zero for a flow with
frictional effects. Note that when the flow is frictionless, Eq. 5.103 multiplied by density,
is identical to Eq. 3.5. Thus, for steady frictionless flow, Newton’s second law of motion 1see
Section 3.12 and the first and second laws of thermodynamics lead to the same differential
equation,

(5.104)
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The relationship
between entropy
and heat transfer
rate depends on the
process involved.



If some shaft work is involved, then the flow must be at least locally unsteady in a cyclical
way and the appropriate form of the energy equation for the contents of an infinitesimally thin con-
trol volume can be developed starting with Eq. 5.67. The resulting equation is

(5.105)

Equations 5.103 and 5.105 are valid for incompressible and compressible flows. If we combine
Eqs. 5.92 and 5.103, we obtain

(5.106)

For incompressible flow, and, thus, from Eq. 5.106,

(5.107)

Applying Eq. 5.107 to a finite control volume, we obtain

which is the same conclusion we reached earlier 1see Eq. 5.782 for incompressible flows.
For compressible flow, and thus when we apply Eq. 5.106 to a finite control vol-

ume we obtain

(5.108)

indicating that is not equal to loss.

5.4.4 Application of the Loss Form of the Energy Equation

Steady flow along a pathline in an incompressible and frictionless flow field provides a simple ap-
plication of the loss form of the energy equation 1Eq. 5.1052. We start with Eq. 5.105 and integrate
it term by term from one location on the pathline, section 112, to another one downstream, section
122. Note that because the flow is frictionless, Also, because the flow is steady through-
out, Since the flow is incompressible, the density is constant. The control volume
in this case is an infinitesimally small diameter streamtube 1Fig. 5.72. The resultant equation is

(5.109)

which is identical to the Bernoulli equation 1Eq. 3.72 already discussed in Chapter 3.
If the frictionless and steady pathline flow of the fluid particle considered above was com-

pressible, application of Eq. 5.105 would yield

(5.110)

To carry out the integration required, a relationship between fluid density, and pres-
sure, p, must be known. If the frictionless compressible flow we are considering is adiabatic and in-
volves the flow of an ideal gas, it is shown in Section 11.1 that

(5.111)

where is the ratio of gas specific heats, and which are properties of the fluid. Us-
ing Eq. 5.111 we get

(5.112)�
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dǔ � dqnet
in
� d1loss2

d11�r2 � 0
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Zero loss is associ-
ated with the
Bernoulli equation.



Thus, Eqs. 5.110 and 5.112 lead to

(5.113)

Note that this equation is identical to Eq. 3.24. An example application of Eqs. 5.109 and 5.113
follows.
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k � 1
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�

V 2
1

2
� gz1
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GIVEN Air steadily expands adiabatically and without friction
from stagnation conditions of 100 psia and to 14.7 psia. 520 °R

FIND Determine the velocity of the expanded air assuming (a)
incompressible flow, (b) compressible flow.

Energy—Comparison of Compressible and Incompressible FlowE XAMPLE 5.29

SOLUTION

or

(4)

Given in the problem statement are values of and A value
of was calculated earlier (Eq. 2). To determine we need to
make use of a property relationship for reversible (frictionless)
and adiabatic flow of an ideal gas that is derived in Chapter 11;
namely,

(5)

where for air. Solving Eq. 5 for we get

or

Then, from Eq. 4, with 
and 

or

(Ans)

COMMENT A considerable difference exists between the air
velocities calculated assuming incompressible and compressible
flow. In Section 3.8.1, a discussion of when a fluid flow may be
appropriately considered incompressible is provided. Basically,
when flow speed is less than a third of the speed of sound in the
fluid involved, incompressible flow may be assumed with only a
small error.

V2 � 1620 ft�s

� 1620 1lb # ft�slug21�2 3 11 slug # ft�s22�lb 41�2
V2 � B

122 11.42
1.4 � 1

  a 14,400 lb�ft2 

0.0161 slug�ft3 �
2117 lb�ft2  

0.00409 slug�ft3b  

2117 lb�ft2,p2 � 14.7 lb�in.21144 in.2�ft22 �lb�ft2 
p1� 100 lb�in.21144 in.2�ft22� 14,400

 r2 � 10.0161 slug�ft32 c 14.7 psia

100 psia
d

1�1.4

� 0.00409 slug�ft3

r2 � r1 ap2

p1
b

1�k

r2k � 1.4

p

rk � constant

r2r1

p2.p1

V2 � B  
2k

k � 1
 ap1

r1
�

p2

r2
b

(a) If the flow is considered incompressible, the Bernoulli equa-
tion, Eq. 5.109, can be applied to flow through an infinitesimal
cross-sectional streamtube, like the one in Fig. 5.7, from the stag-
nation state (1) to the expanded state (2). From Eq. 5.109 we get

0 (1 is the stagnation state)

(1)

0 (changes in gz are negligible for air flow)

or

We can calculate the density at state (1) by assuming that air be-
haves like an ideal gas,

(2)

Thus,

(Ans)

The assumption of incompressible flow is not valid in this case
since for air a change from 100 psia to 14.7 psia would undoubt-
edly result in a significant density change.

(b) If the flow is considered compressible, Eq. 5.113 can be ap-
plied to the flow through an infinitesimal cross-sectional control
volume, like the one in Fig. 5.7, from the stagnation state (1) to
the expanded state (2). We obtain

0 (1 is the stagnation state)

(3)

0 (changes in gz are negligible for air flow)
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In this chapter the flow of a fluid is analyzed by using important principles including conservation of
mass, Newton’s second law of motion, and the first and second laws of thermodynamics as applied to
control volumes. The Reynolds transport theorem is used to convert basic system-orientated laws
into corresponding control volume formulations.

The continuity equation, a statement of the fact that mass is conserved, is obtained in a
form that can be applied to any flow—steady or unsteady, incompressible or compressible. Sim-
plified forms of the continuity equation enable tracking of fluid everywhere in a control volume,
where it enters, where it leaves, and within. Mass or volume flowrates of fluid entering or leav-
ing a control volume and rate of accumulation or depletion of fluid within a control volume can
be estimated.

The linear momentum equation, a form of Newton’s second law of motion applicable to flow
of fluid through a control volume, is obtained and used to solve flow problems. Net force results
from or causes changes in linear momentum (velocity magnitude and/or direction) of fluid flow-
ing through a control volume. Work and power associated with force can be involved.

The moment-of-momentum equation, which involves the relationship between torque and
changes in angular momentum, is obtained and used to solve flow problems dealing with turbines
(energy extracted from a fluid) and pumps (energy supplied to a fluid).

The steady-state energy equation, obtained from the first law of thermodynamics (conser-
vation of energy), is written in several forms. The first (Eq. 5.69) involves power terms. The sec-
ond form (Eq. 5.82 or 5.84) is termed the mechanical energy equation or the extended Bernoulli
equation. It consists of the Bernoulli equation with extra terms that account for energy losses due
to friction in the flow, as well as terms accounting for the work of pumps or turbines in the flow.

The following checklist provides a study guide for this chapter. When your study of the en-
tire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

select an appropriate control volume for a given problem and draw an accurately labeled con-
trol volume diagram.

use the continuity equation and a control volume to solve problems involving mass or vol-
ume flowrate.

use the linear momentum equation and a control volume, in conjunction with the continuity
equation as necessary, to solve problems involving forces related to linear momentum change.

use the moment-of-momentum equation to solve problems involving torque and related work
and power due to angular momentum change.

use the energy equation, in one of its appropriate forms, to solve problems involving losses
due to friction (head loss) and energy input by pumps or extraction by turbines.

use the kinetic energy coefficient in the energy equation to account for nonuniform flows.

Some of the important equations in this chapter are given below.

Conservation of mass (5.5)

Mass flowrate (5.6)

Average velocity (5.7)

Steady flow mass conservation (5.9)

Moving control volume 
mass conservation (5.16)

0

0t
 �

cv

 r dV� � �
cs

 rW  n̂ dA � 0

a m
#

out � a m
#
in � 0

V �
�

A

 rV  n̂ dA

rA

m
#
� rQ � rAV

0

0t
 �

cv
 r dV� � �

cs
 rV  n̂ dA � 0

5.5 Chapter Summary and Study Guide

conservation of mass
continuity equation
mass flowrate
linear momentum

equation
moment-of-

momentum
equation

shaft power
shaft torque
first law of 

thermodynamics
heat transfer rate
energy equation
loss
shaft work head
head loss
kinetic energy

coefficient
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Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. (©
2009 John Wiley and Sons, Inc.).

Review Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an (*) are intended to be solved
with the aid of a programmable calculator or a computer.
Problems designated with a (†) are “open-ended” problems
and require critical thinking in that to work them one must
make various assumptions and provide the necessary data.
There is not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 5.1.1 Derivation of the Continuity Equation

5.1 Explain why the mass of the contents of a system is constant
with time.

5.2 Explain how the mass of the contents of a control volume can
vary with time or not.

5.3 Explain the concept of a coincident control volume and system
and why it is useful.

5.4 Obtain a photograph/image of a situation for which the con-
servation of mass law is important. Briefly describe the situation
and its relevance.

Problems

Deforming control volume 
mass conservation (5.17)

Force related to change in 
linear momentum                    (5.22)

Moving control volume force related            
(5.29)

to change in linear momentum 

Vector addition of absolute and relative velocities             (5.43)

Shaft torque from force (5.45)

Shaft torque related to change in 
(5.50)moment-of-momentum (angular 

momentum)

Shaft power related to change in 
(5.53)moment-of-momentum (angular 

momentum)

First law of 
thermodynamics (5.64)
(Conservation of
energy)

Conservation of power (5.69)

Conservation of  
mechanical energy (5.82)

References

1. Eck, B., Technische Stromungslehre, Springer-Verlag, Berlin, Germany, 1957.
2. Dean, R. C., “On the Necessity of Unsteady Flow in Fluid Machines,” ASME Journal of Basic Engi-
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Section 5.1.2 Fixed, Nondeforming Control Volume—
Uniform Velocity Profile or Average Velocity.

5.5 Water enters a cylindrical tank through two pipes at rates of
250 and 100 gal/min (see Fig. P5.5). If the level of the water in the
tank remains constant, calculate the average velocity of the flow
leaving the tank through an 8-in. inside-diameter pipe.
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Section (1)

Section (3)

Section (2)

Q2 = 
250 gal/min

Q1 = 
100 gal/min

D3 = 8 in.

F I G U R E  P5.5

0.08-ft diameter

0.1 ft

Inlet

Blades

0.6 ft
60°

V = 10 ft/s

F I G U R E  P5.6

5.6 Water flows out through a set of thin, closely spaced blades as
shown in Fig. 5.6 with a speed of around the entire cir-
cumference of the outlet. Determine the mass flowrate through the
inlet pipe.

V � 10 ft�s

5.7 The pump shown in Fig. P5.7 produces a steady flow of 10
gal/s through the nozzle. Determine the nozzle exit diameter,
if the exit velocity is to be .V2 � 100 ft�s

D2,

F I G U R E  P5.7

Section (1)

Section (2)

D2

V2 Pump

F I G U R E  P5.8

Three 0.4–in.-diameter
overflow holes Q = 2 gal/min

Drain

5.8 Water flows into a sink as shown in Video V5.1 and Fig. P5.8
at a rate of 2 gallons per minute. Determine the average velocity
through each of the three 0.4-in.-diameter overflow holes if
the drain is closed and the water level in the sink remains
constant.

5.9 The wind blows through a garage door opening
with a speed of 5 ftZs as shown in Fig. P5.9. Determine the average
speed, V, of the air through the two openings in the win-
dows.

3 ft � 4 ft

7 ft � 10 ft

10 ft16 ft

22 ft

3 ft 3 ft

V V

5 ft /s

20°

F I G U R E  P5.9

5.10 The human circulatory system consists of a complex branch-
ing pipe network ranging in diameter from the aorta (largest) to the
capillaries (smallest). The average radii and the number of these
vessels is shown in the table below. Does the average blood veloc-
ity increase, decrease, or remain constant as it travels from the aorta
to the capillaries?

Vessel Average Radius, mm Number

Aorta 12.5 1
Arteries 2.0 159
Arterioles 0.03 1.4 � 107

Capillaries 0.006 3.9 � 109 



5.11 Air flows steadily between two cross sections in a long,
straight section of 0.1-m inside diameter pipe. The static tempera-
ture and pressure at each section are indicated in Fig. P5.11. If the
average air velocity at section 112 is 205 mZs, determine the average
air velocity at section 122.
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F I G U R E  P5.11

D = 0.1 m

Section (1) Section (2)

p1 = 77 kPa (abs)
T1 = 268 K
V1 = 205 m/s

p2 = 45 kPa (abs)
T2 = 240 K

5.12 A hydraulic jump (see Video V10.10) is in place downstream
from a spillway as indicated in Fig. P5.12. Upstream of the jump,
the depth of the stream is 0.6 ft and the average stream velocity is
18 ftZs. Just downstream of the jump, the average stream velocity is
3.4 ftZs. Calculate the depth of the stream, h, just downstream of
the jump.

F I G U R E  P5.12

18 ft/s

3.4 ft/s
0.6 ft

h

F I G U R E  P5.13

Wet air
m•  = 156,900 lbm/hr

Warm water
m•  = 250,000 lbm/hr

Dry air
m•  = 151,000 lbm/hr

Cooled
water

F I G U R E  P5.15

Water and
alcohol mix

Water
Q = 0.1 m3/s

Alcohol (SG = 0.8)
Q = 0.3 m3/s

5.13 An evaporative cooling tower (see Fig. P5.13) is used to cool
water from 110 to . Water enters the tower at a rate of

. Dry air (no water vapor) flows into the tower at a
rate of . If the rate of wet air flow out of the tower
is , determine the rate of water evaporation in

and the rate of cooled water flow in .lbm�hrlbm�hr
156,900 lbm�hr

151,000 lbm�hr
250,000 lbm�hr

80°F

5.14 At cruise conditions, air flows into a jet engine at a steady
rate of 65 lbmZs. Fuel enters the engine at a steady rate of 0.60 lbmZs.
The average velocity of the exhaust gases is 1500 ftZs relative to the
engine. If the engine exhaust effective cross-sectional area is

estimate the density of the exhaust gases in lbm�ft3.3.5 ft2,

5.15 Water at 0.1 m3/s and alcohol (SG�0.8) at 0.3 m3/s are mixed
in a y-duct as shown in Fig. 5.15. What is the average density of the
mixture of alcohol and water?

5.16 Freshwater flows steadily into an open 55-gal drum initially
filled with seawater. The freshwater mixes thoroughly with the sea-
water and the mixture overflows out of the drum. If the freshwater
flowrate is 10 gal/min, estimate the time in seconds required to de-
crease the difference between the density of the mixture and the
density of freshwater by 50%.

Section 5.1.2 Fixed, Nondeforming Control Volume—
Nonuniform Velocity Profile

5.17 A water jet pump 1see Fig. P5.172 involves a jet cross-sectional
area of and a jet velocity of 30 mZs. The jet is surrounded by
entrained water. The total cross-sectional area associated with the
jet and entrained streams is These two fluid streams leave
the pump thoroughly mixed with an average velocity of 6 mZs
through a cross-sectional area of Determine the pumping
rate 1i.e., the entrained fluid flowrate2 involved in litersZs.

0.075 m2.

0.075 m2.

0.01 m2,

F I G U R E  P5.17

Entrained
water

Entrained
water

30 m/s
jet

6 m/s

5.18 Two rivers merge to form a larger river as shown in
Fig. P5.18. At a location downstream from the junction 1before the
two streams completely merge2, the nonuniform velocity profile is
as shown and the depth is 6 ft. Determine the value of V.

F I G U R E  P5.18

4 ft/s

3 ft/s

Depth = 3 ft

Depth = 5 ft
80 ft

50 ft

0.8 V

V
70 ft

30 ft



5.19 Various types of attachments can be used with the shop vac
shown in Video V5.2. Two such attachments are shown in Fig. P5.19
—a nozzle and a brush. The flowrate is (a) Determine the
average velocity through the nozzle entrance, (b) Assume the air
enters the brush attachment in a radial direction all around the brush
with a velocity profile that varies linearly from 0 to along the length
of the bristles as shown in the figure. Determine the value of Vb.

Vb

Vn.
1 ft3/s.
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F I G U R E  P5.19

Q = 1 ft3/s

Q = 1 ft3/s

Vn

2-in. dia.

1.5 in.

3-in. dia.Vb

F I G U R E  P5.23

z

(a)

1 m

1 m

z

(b)

1 m
2 m

1 m

5.20 An appropriate turbulent pipe flow velocity profile is

where centerline velocity, local radius, pipe radius,
and vector along pipe centerline. Determine the ratio of av-
erage velocity, to centerline velocity, for (a) (b)
(c) (d) Compare the different velocity profiles.

5.21 As shown in Fig. P5.21, at the entrance to a 3-ft-wide channel
the velocity distribution is uniform with a velocity V. Further down-
stream the velocity profile is given by where u is in
ftZs and y is in ft. Determine the value of V.

u � 4y � 2y2,

n � 10.n � 8,
n � 6,n � 4,uc,u,

î � unit
R �r �uc �

V � uc aR � r

R
b

1�n

 î

F I G U R E  P5.22

y

x

z

2

5

5
y

x

z

2

5

5

(a) (b)

5.23 An incompressible flow velocity field (water) is given as

where r is in meters. (a) Calculate the mass flowrate through the
cylindrical surface at m from to m as shown in
Fig.P5.23a. (b) Show that mass is conserved in the annular control
volume from m to m and to m as shown
in Fig. P5.23b.

z � 1z � 0r � 2r � 1

z � 1z � 0r � 1

V � �
1
r
 erˆ �

1
r

euˆ  m�s

5.24 Flow of a viscous fluid over a flat plate surface results in the
development of a region of reduced velocity adjacent to the wetted
surface as depicted in Fig. P5.24. This region of reduced flow is
called a boundary layer. At the leading edge of the plate, the veloc-
ity profile may be considered uniformly distributed with a value U.
All along the outer edge of the boundary layer, the fluid velocity
component parallel to the plate surface is also U. If the x direction
velocity profile at section 122 is

develop an expression for the volume flowrate through the edge of
the boundary layer from the leading edge to a location downstream
at x where the boundary layer thickness is d.

u

U
� ay

d
b

1�7

F I G U R E  P5.24

U

U

x

δ

Section (1)

Section (2)

Outer edge
of

boundary
layer

F I G U R E  P5.25

Tank volume = 20 ft3
1.2 in.

700 ft/s

0.0035 slugs/ft3

10 ft3/s

Compressor

0.00238 slugs/ft3

Section 5.1.2 Fixed, Nondeforming Control Volume—
Unsteady Flow

5.25 Air at standard conditions enters the compressor shown in Fig.
P5.25 at a rate of It leaves the tank through a 1.2-in.-diame-
ter pipe with a density of and a uniform speed of

. (a) Determine the rate 1slugs s2 at which the mass of air in
the tank is increasing or decreasing. (b) Determine the average time
rate of change of air density within the tank.

�700 ft�s
slugs�ft30.0035

10 ft3�s.

F I G U R E  P5.21

u = 4y – 2y2

x

1 ft
0.75 ft

y

V

5.22 A water flow situation is described by the velocity field equation

where x, y, and z are in feet. (a) Determine the mass flowrate through
the rectangular area in the plane corresponding to feet having
corners at (x, y, z) � (0, 0, 2), (5, 0, 2), (5, 5, 2), and (0, 5, 2) as shown
in Fig P5.22a. (b) Show that mass is conserved in the control volume
having corners at (x, y, z) � (0, 0, 2), (5, 0, 2), (5, 5, 2), (0, 5, 2), (0, 0, 0),
(5, 0, 0), (5, 5, 0), and (0, 5, 0), as shown in Fig. P5.22b.

z � 2

V � 13x � 22 î � 12y � 42 ĵ � 5zk̂ ft�s



5.26 Estimate the time required to fill with water a cone-shaped
container (see Fig. P5.26) 5 ft high and 5 ft across at the top if the
filling rate is .20  gal�min
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F I G U R E  P5.26

5 ft

5 ft

†5.27 Estimate the maximum flowrate of rainwater 1during a heavy
rain2 that you would expect from the downspout connected to the gut-
ters of your house. List all assumptions and show all calculations.

Section 5.1.3 Moving, Nondeforming Control Volume

5.28 For an automobile moving along a highway, describe the con-
trol volume you would use to estimate the flowrate of air across the
radiator. Explain how you would estimate the velocity of that air.

Section 5.1.4 Deforming Control Volume

5.29 A hypodermic syringe (see Fig. P5.29) is used to apply a vac-
cine. If the plunger is moved forward at the steady rate of 20 mm/s
and if vaccine leaks past the plunger at 0.1 of the volume flowrate out
the needle opening, calculate the average velocity of the needle exit
flow. The inside diameters of the syringe and the needle are 20 mm
and 0.7 mm.

F I G U R E  P5.29

Qleak Qout

5.30 The Hoover Dam (see Video V2.4) backs up the Colorado
River and creates Lake Mead, which is approximately 115 miles long
and has a surface area of approximately 225 square miles.  If during
flood conditions the Colorado River flows into the lake at a rate of
45,000 cfs and the outflow from the dam is 8000 cfs, how many feet
per 24-hour day will the lake level rise?

5.31 Storm sewer backup causes your basement to flood at the steady
rate of 1 in. of depth per hour. The basement floor area is
What capacity 1galZmin2 pump would you rent to (a) keep the water
accumulated in your basement at a constant level until the storm sewer
is blocked off, and (b) reduce the water accumulation in your base-
ment at a rate of 3 in.Zhr even while the backup problem exists?

5.32 (See Fluids in the News article “New 1.6 gpf standards,”
Section 5.1.2.) When a toilet is flushed, the water depth, h, in the
tank as a function of time, t, is as given in the table. The size of the
rectangular tank is 19 in. by 7.5 in. (a) Determine the volume of
water used per flush, gpf. (b) Plot the flowrate for .0 � t � 6 s

1500 ft2.

t (s) h (in.)

0 5.70
0.5 5.33
1.0 4.80
2.0 3.45
3.0 2.40
4.0 1.50
5.0 0.75
6.0 0 

Section 5.2.1 Derivation of the Linear Momentum
Equation

5.33 What is fluid linear momentum and the “flow” of linear
momentum?

5.34 Explain the physical meaning of each of the terms of the lin-
ear momentum equation (Eq. 5.22).

5.35 What is an inertial control volume?

5.36 Distinguish between body and surface forces.

5.37 Obtain a photograph/image of a situation in which the linear
momentum of a fluid changes during flow from one location to an-
other. Explain briefly how force is involved.

Section 5.2.2 Application of the Linear Momentum
Equation (Also see Lab Problems 5.140, 5.141, 5.142,
and 5.143.)

5.38 A 10-mm diameter jet of water is deflected by a homoge-
neous rectangular block (15 mm by 200 mm by 100 mm) that
weighs 6 N as shown in Video V5.6 and Fig. P5.38. Determine the
minimum volume flowrate needed to tip the block.

F I G U R E  P5.38

0.050 m

0.010 m

0.10 m

0.015 m

Q

5.39 Determine the anchoring force required to hold in place the
conical nozzle attached to the end of the laboratory sink faucet
shown in Fig. P5.39 when the water flowrate is 10 gal/min. The
nozzle weight is 0.2 lb. The nozzle inlet and exit inside diameters
are 0.6 and 0.2 in., respectively. The nozzle axis is vertical and the
axial distance between sections (1) and (2) is 1.2 in. The pressure at
section (1) is 68 psi.

F I G U R E  P5.39

D1 =
0.6 in.

Q = 10 gal/min

1.2 in.

Section (2)

Section (1)

D2 = 0.2 in.

5.40 Water flows through a horizontal, pipe bend as is illus-
trated in Fig. P5.40. The flow cross section area is constant at a value
of . The flow velocity everywhere in the bend is .15 m�s9000 mm2

180°



The pressures at the entrance and exit of the bend are 210 and 165 kPa,
respectively. Calculate the horizontal (x and y) components of the an-
choring force needed to hold the bend in place.

5.41 Water enters the horizontal, circular cross-sectional, sudden
contraction nozzle sketched in Fig. P5.41 at section 112 with a uni-
formly distributed velocity of 25 ftZs and a pressure of 75 psi. The
water exits from the nozzle into the atmosphere at section 122where
the uniformly distributed velocity is 100 ftZs. Determine the axial
component of the anchoring force required to hold the contraction
in place.
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F I G U R E  P5.40

z

y

x
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D1 = 3 in.

p1 = 75 psi
V1 = 25 ft/s

p2 = 
0 psi

V2 = 
100 ft/s

Section (2)

Section (1)

F I G U R E  P5.44

D = 12 in.

Section (1) Section (2)

p1 = 690 kPa (abs)
T1 = 300 K

p2 = 127 kPa (abs)
T2 = 252 K
V2 = 320 m/s

5.42 The four devices shown in Fig. P5.42 rest on frictionless
wheels, are restricted to move in the x direction only, and are ini-
tially held stationary. The pressure at the inlets and outlets of each
is atmospheric, and the flow is incompressible. The contents of
each device is not known. When released, which devices will move
to the right and which to the left? Explain.

F I G U R E  P5.42

(a)

(c)

(b)

(d)

5.43 Exhaust (assumed to have the properties of standard air)
leaves the 4-ft-diameter chimney shown in Video V5.4 and
Fig. P5.43 with a speed of Because of the wind, after a few
diameters downstream the exhaust flows in a horizontal direction
with the speed of the wind, Determine the horizontal com-
ponent of the force that the blowing wind puts on the exhaust
gases.

15 ft/s.

6 ft/s.

5.44 Air flows steadily between two cross sections in a long, straight
section of 12-in.-inside diameter pipe. The static temperature and pres-
sure at each section are indicated in Fig P5.44. If the average air
velocity at section (2) is 320 m/s, determine the average air velocity at
section (1). Determine the frictional force exerted by the pipe wall on
the air flowing between sections (1) and (2). Assume uniform velocity
distributions at each section.

F I G U R E  P5.43

15 ft/s
15 ft/s

6 ft/s

4 ft

5.45 Determine the magnitude and direction of the anchoring force
needed to hold the horizontal elbow and nozzle combination shown
in Fig. P5.45 in place. Atmospheric pressure is 100 kPa(abs). The
gage pressure at section (1) is 100 kPa. At section (2), the water ex-
its to the atmosphere.

F I G U R E  P5.45

160 mm

300 mm

Section (2)

Section (1)

y

x

Water

V2

V1

p1 = 100 kPa
V1 = 2 m/s

5.46 Water flows as two free jets from the tee attached to the pipe
shown in Fig. P5.46. The exit speed is 15 mZs. If viscous effects
and gravity are negligible, determine the x and y components of the
force that the pipe exerts on the tee.

F I G U R E  P5.46

y

x

V = 15 m/s

V = 15 m/s

Area = 0.3 m2

Area = 0.5 m2

Area = 1 m2

TeePipe



5.47 A converging elbow (see Fig. P5.47) turns water through an
angle of in a vertical plane. The flow cross section diameter is
400 mm at the elbow inlet, section (1), and 200 mm at the elbow out-
let, section (2). The elbow flow passage volume is between
sections (1) and (2). The water volume flowrate is and the
elbow inlet and outlet pressures are 150 kPa and 90 kPa. The elbow
mass is 12 kg. Calculate the horizontal (x direction) and vertical
(z direction) anchoring forces required to hold the elbow in place.

0.4  m3�s
0.2 m3

135°
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Section
(1)

Section (2)

D1 = 400 mm

D2 =
200 mm

135°

x

z

5.48 The hydraulic dredge shown in Fig. P5.48 is used to dredge
sand from a river bottom. Estimate the thrust needed from the pro-
peller to hold the boat stationary. Assume the specific gravity of the
sandZwater mixture is SG � 1.2.

F I G U R E  P5.48

2-ft diameter
30°

30 ft/s

9 ft 7 ft Prop

5.49 A static thrust stand is to be designed for testing a specific jet
engine. Knowing the following conditions for a typical test,

intake air velocity
exhaust gas velocity

intake cross section area
intake static pressure

intake static temperature
exhaust gas pressure

estimate a nominal thrust to design for.

5.50 A horizontal, circular cross-sectional jet of air having a diam-
eter of 6 in. strikes a conical deflector as shown in Fig. P5.50. 
A horizontal anchoring force of 5 lb is required to hold the cone in

� 0 psi
�  480 °R
� 11.4 psia
� 10 ft2

� 1640 ft�s
� 700 ft�s

F I G U R E  P5.50

6 in.
60° FA = 5 lb

place. Estimate the nozzle flowrate in . The magnitude of the
velocity of the air remains constant.

5.51 A vertical, circular cross-sectional jet of air strikes a conical de-
flector as indicated in Fig. P5.51. A vertical anchoring force of 0.1 N
is required to hold the deflector in place. Determine the mass 1kg2 of
the deflector. The magnitude of velocity of the air remains constant.

ft3�s

F I G U R E  P5.51

0.1 m

V = 30 m/s

FA = 0.1 N

60°

5.52 Water flows from a large tank into a dish as shown in Fig.
P5.52. (a) If at the instant shown the tank and the water in it
weigh what is the tension, in the cable supporting the
tank? (b) If at the instant shown the dish and the water in it weigh

lb, what is the force, needed to support the dish?F2,W2

T1,W1 lb,

F I G U R E  P5.53

90°

V 1 =10 ft /s

V2 = 10 ft /s

V 

0.1 ft

0.1 ft

θ 

F I G U R E  P5.52

0.1-ft diameter

Dish

Tank

10 ft

12 ft

2 ft

F2

T1

5.53 Two water jets of equal size and speed strike each other as
shown in Fig. P5.53. Determine the speed, V, and direction, of
the resulting combined jet. Gravity is negligible.

u,



5.54 Assuming frictionless, incompressible, one-dimensional flow
of water through the horizontal tee connection sketched in Fig.
P5.54, estimate values of the x and y components of the force exerted
by the tee on the water. Each pipe has an inside diameter of 1 m.
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Section (3)

Q3 =
10 m3/s

Section (2)

Section (1)

x

y

z

V1 = 6 m/s
p1 = 200 kPa
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10 ft

4 ft/s

1.5 ft

F I G U R E  P5.56

Fz

Fx

F I G U R E  P5.57

Vj =
40 m/s

Dj = 30 mm

V3

V2

30°

90°

FA

5.55 Determine the magnitude of the horizontal component of the
anchoring force required to hold in place the sluice gate shown in
Fig. 5.55. Compare this result with the size of the horizontal com-
ponent of the anchoring force required to hold in place the sluice
gate when it is closed and the depth of water upstream is 10 ft.

5.56 The rocket shown in Fig. P5.56. is held stationary by the hor-
izontal force, Fx, and the vertical force, Fz. The velocity and pres-
sure of the exhaust gas are 5000 ft/s and 20 psia at the nozzle exit,
which has a cross section area of 60 in.2. The exhaust mass flowrate
is constant at 21 lbm/s. Determine the value of the restraining force
Fx. Assume the exhaust flow is essentially horizontal.

5.57 A horizontal circular jet of air strikes a stationary flat plate as
indicated in Fig. 5.57. The jet velocity is 40 m/s and the jet diameter

is 30 mm. If the air velocity magnitude remains constant as the air
flows over the plate surface in the directions shown, determine: (a)
the magnitude of FA, the anchoring force required to hold the plate
stationary; (b) the fraction of mass flow along the plate surface in
each of the two directions shown; (c) the magnitude of FA, the an-
choring force required to allow the plate to move to the right at a
constant speed of 10 m/s.

5.58 Water is sprayed radially outward over as indicated in
Fig. P5.58. The jet sheet is in the horizontal plane. If the jet veloc-
ity at the nozzle exit is 20 ftZs, determine the direction and magni-
tude of the resultant horizontal anchoring force required to hold the
nozzle in place.

180°

F I G U R E  P5.58

8 in. 0.5 in.

V =
20 ft/s

5.59 A sheet of water of uniform thickness flows
from the device shown in Fig. P5.59. The water enters vertically
through the inlet pipe and exits horizontally with a speed that varies
linearly from 0 to 10 mZs along the 0.2-m length of the slit. Deter-
mine the y component of anchoring force necessary to hold this de-
vice stationary.

1h � 0.01 m2

F I G U R E  P5.59

0.2 m

h = 0.01 m

x

y

0 m/s

10 m/s

Q

F I G U R E  P5.60

Variable mesh screen

Section (2)Section (1)

p1 = 0.2 psi
V1 = 100 ft/s

D = 2 ft

p2 = 0.15 psi

5.60 A variable mesh screen produces a linear and axisymmetric
velocity profile as indicated in Fig. P5.60 in the air flow through a



2-ft-diameter circular cross section duct. The static pressures up-
stream and downstream of the screen are 0.2 and 0.15 psi and are
uniformly distributed over the flow cross section area. Neglecting
the force exerted by the duct wall on the flowing air, calculate the
screen drag force.

5.61 Water flows vertically upward in a circular cross-sectional
pipe as shown in Fig. P5.61. At section 112, the velocity profile over
the cross-sectional area is uniform. At section 122, the velocity pro-
file is

where local velocity vector, centerline velocity in the
axial direction, pipe radius, and radius from pipe axis.
Develop an expression for the fluid pressure drop that occurs be-
tween sections 112 and 122.

r �R �
wc �V �

V � wc aR � r

R
b

1� 7

 k̂
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Section (1)

Section (2)

R

r

z

5.62 In a laminar pipe flow that is fully developed, the axial ve-
locity profile is parabolic. That is,

as is illustrated in Fig. P5.62. Compare the axial direction momen-
tum flowrate calculated with the average velocity, with the axial
direction momentum flowrate calculated with the nonuniform ve-
locity distribution taken into account.

�u,

u � uc c 1 � a
r

R
b

2

d

F I G U R E  P5.62

uc

u
R r

†5.63 Water from a garden hose is sprayed against your car to
rinse dirt from it. Estimate the force that the water exerts on the car.
List all assumptions and show calculations.

5.64 A Pelton wheel vane directs a horizontal, circular cross-
sectional jet of water symmetrically as indicated in Fig. P5.64 and
Video V5.6. The jet leaves the nozzle with a velocity of 100 ftZs.
Determine the x direction component of anchoring force required
to (a) hold the vane stationary, (b) confine the speed of the vane to
a value of 10 ftZs to the right. The fluid speed magnitude remains
constant along the vane surface.

5.65 How much power is transferred to the moving vane of Prob-
lem 5.64?

5.66 The thrust developed to propel the jet ski shown in Video
V9.11 and Fig. P5.66 is a result of water pumped through the vehi-
cle and exiting as a high-speed water jet. For the conditions shown
in the figure, what flowrate is needed to produce a 300-lb thrust?
Assume the inlet and outlet jets of water are free jets.

F I G U R E  P5.64

45°

45°

D = 1 in.

100
ft/s

(a)

45°

45°

D = 1 in.

100
ft/s 10 ft/s

(b)

y

x

F I G U R E  P5.66

3.5-in.-diameter
outlet jet

30°

25-in.2 inlet area

5.67 (See Fluids in the News article titled “Where the plume
goes,” Section 5.2.2.) Air flows into the jet engine shown in Fig.
P5.67 at a rate of 9 slugs/s and a speed of . Upon landing,
the engine exhaust exits through the reverse thrust mechanism
with a speed of in the direction indicated. Determine the
reverse thrust applied by the engine to the airplane. Assume
the inlet and exit pressures are atmospheric and that the mass
flowrate of fuel is negligible compared to the air flowrate through
the engine.

900 ft�s

300 ft�s

4-ft diameter

30°(1)

(3)

(2)V1 = 300 ft/s

V2 = 900 ft/s

V3 = 900 ft/s

F I G U R E  P5.67

5.68 (See Fluids in the News article titled “Motorized surf-
board,” Section 5.2.2.) The thrust to propel the powered surfboard
shown in Fig. P5.68 is a result of water pumped through the board
that exits as a high-speed 2.75-in.-diameter jet. Determine the
flowrate and the velocity of the exiting jet if the thrust is to be
300 lb. Neglect the momentum of the water entering the pump.



5.69 (See Fluids in the News article titled “Bow thrusters,” Sec-
tion 5.2.2). The bow thruster on the boat shown in Fig. P5.69 is
used to turn the boat. The thruster produces a 1-m-diameter jet of
water with a velocity of . Determine the force produced by
the thruster. Assume that the inlet and outlet pressures are zero and
that the momentum of the water entering the thruster is negligible.

10 m�s
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F I G U R E  P5.68

V = 10 m/s

D = 1 m

F I G U R E  P5.69

= 45°
(in plane of blade)

d = 8 in.

θ

U = 30 mph

F I G U R E  P5.70

5.70 A snowplow mounted on a truck clears a path 12 ft through
heavy wet snow, as shown in Figure P5.70. The snow is 8 in. deep
and its density is 10 lbm/ft3. The truck travels at 30 mph. The snow
is discharged from the plow at an angle of 45� from the direction of
travel and 45� above the horizontal, as shown in Figure P5.70. Esti-
mate the force required to push the plow.

Section 5.2.3 Derivation of the Moment-of-Momentum
Equation

5.71 What is fluid moment-of-momentum (angular momentum)
and the “flow” of moment-of-momentum (angular momentum)?

5.72 Describe the orthogonal components of the moment-of-
momentum equation (Eq. 5.42) and comment on the direction of each.

5.73 Describe a few examples (include photographs/images) of
turbines where the force/torque of a flowing fluid leads to rotation
of a shaft.

5.74 Describe a few examples (include photographs/images) of
pumps where a fluid is forced to move by “blades” mounted on a
rotating shaft.

Section 5.2.4 Application of the Moment-of-Momentum
Equation

5.75 Water enters a rotating lawn sprinkler through its base at the
steady rate of 16 gal/min as shown in Fig. P5.75. The exit cross-
sectional area of each of the two nozzles is and the flow
leaving each nozzle is tangential. The radius from the axis of rotation
to the centerline of each nozzle is 8 in. (a) Determine the resisting
torque required to hold the sprinkler head stationary. (b) Determine
the resisting torque associated with the sprinkler rotating with a con-
stant speed of 500 revZmin. (c) Determine the angular velocity of the
sprinkler if no resisting torque is applied.

0.04 in.2,

Q = 16 gal/min

r = 8 in. Nozzle exit
area = 0.04 in.2

F I G U R E  P5.75

Q = 5 liters/s

r = 0.5m Nozzle exit area normal to
relative velocity = 18 mm2

θ

F I G U R E  P5.76

5.76 Five liters s of water enter the rotor shown in Video V5.10
and Fig. P5.76 along the axis of rotation. The cross-sectional area
of each of the three nozzle exits normal to the relative velocity is

How large is the resisting torque required to hold the rotor
stationary? How fast will the rotor spin steadily if the resisting
torque is reduced to zero and (a) (b) (c) u � 60°?u � 30°,u � 0°,

18 mm2.

�

5.77 Shown in Fig. P5.77 is a toy “helicopter” powered by air
escaping from a balloon. The air from the balloon flows radially
through each of the three propeller blades and out through small
nozzles at the tips of the blades. Explain physically how this flow
can cause the rotation necessary to rotate the blades to produce the
needed lifting force.

5.78 A simplified sketch of a hydraulic turbine runner is shown in
Fig. P5.78. Relative to the rotating runner, water enters at section
(1) (cylindrical cross section area A1 at r1�1.5 m) at an angle of
100� from the tangential direction and leaves at section (2) (cylin-
drical cross section area A2 at r2�0.85 m ) at an angle of 50� from
the tangential direction. The blade height at sections (1) and (2) is
0.45 m and the volume flowrate through the turbine is 30 m3/s. The
runner speed is 130 rpm in the direction shown. Determine the shaft
power developed.



5.79 A water turbine with radial flow has the dimensions shown in
Fig.P5.79.The absolute entering velocity is 50 ft/s, and it makes an
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r1 =
1.5 m

130
rpm

r2 =
0.85 m

100

50

Section (1)

Section (2)

Q = 30 m3/s

0.45 mW2

W1

F I G U R E  P5.78

1 ft

Section (1) Section (2)

r1 = 2 ft

120
rpm

r2 =
1 ft

V2

V1 = 50 ft/s

30°

F I G U R E  P5.79

Balloon 

ω 

F I G U R E  P5.77

angle of with the tangent to the rotor. The absolute exit veloc-
ity is directed radially inward. The angular speed of the rotor is 120
rpm. Find the power delivered to the shaft of the turbine.

5.80 Shown in Fig. P5.80 are front and side views of a centrifugal
pump rotor or impeller. If the pump delivers 200 liters/s of water
and the blade exit angle is 35� from the tangential direction, deter-
mine the power requirement associated with flow leaving at the
blade angle. The flow entering the rotor blade row is essentially ra-
dial as viewed from a stationary frame.

30°

r1 =
9 cm

r2 =
15 cm

35°

3000
rpm

3 cm

F I G U R E  P5.80
W 2

 =
 1

6 
m/s

W1V1V2

U 2
 =

16
 m

/s

U 1
 =

 8
 m

/s

30° 1

2

ω

F I G U R E  P5.81

5.81 The velocity triangles for water flow through a radial pump
rotor are as indicated in Fig. P5.81. (a) Determine the energy added
to each unit mass (kg) of water as it flows through the rotor. (b)
Sketch an appropriate blade section.

5.82 An axial flow turbomachine rotor involves the upstream (1)
and downstream (2) velocity triangles shown in Fig.P5.82. Is this
turbomachine a turbine or a fan? Sketch an appropriate blade sec-
tion and determine energy transferred per unit mass of fluid.

U1
= 30 ft/s

V1
= 20 ft/s

=

60°

U2
= 30 ft/sW1

W1 W2

1

W2

F I G U R E  P5.82



5.83 An axial flow gasoline pump 1see Fig. P5.832 consists of a ro-
tating row of blades 1rotor2 followed downstream by a stationary row
of blades 1stator2. The gasoline enters the rotor axially 1without any an-
gular momentum2with an absolute velocity of 3 mZs. The rotor blade
inlet and exit angles are and from the axial direction. The
pump annulus passage cross-sectional area is constant. Consider the
flow as being tangent to the blades involved. Sketch velocity triangles
for flow just upstream and downstream of the rotor and just down-
stream of the stator where the flow is axial. How much energy is
added to each kilogram of gasoline? Is this an actual or ideal amount?

45°60°
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U

V1 = 3 m/s

60°

45°

Arithmetic
mean radius blade

sections

Rotor Stator

F I G U R E  P5.83

5.84 Sketch the velocity triangles for the flows entering and leaving
the rotor of the turbine-type flow meter shown in Fig. P5.84. Show
how rotor angular velocity is proportional to average fluid velocity.

FLOW

IN

OUT
Magnetic sensor

Turbine

Flow
in

Flow
out

F I G U R E  P5.84 (Courtesy of EG&G Flow
Technology, Inc.)

5.85 By using velocity triangles for flow upstream 112 and down-
stream 122 of a turbomachine rotor, prove that the shaft work in per
unit mass flowing through the rotor is

where absolute flow velocity magnitude, relative flow
velocity magnitude, and blade speed.U �

W �V �

wshaft
net in
�

V 22 � V 21 � U 22 � U 21 � W 21 � W 22
2

Section 5.3.1 Derivation of the Energy Equation

5.86 Distiguish between shaft work and other kinds of work asso-
ciated with a flowing fluid.

5.87 Define briefly what heat transfer is. What is an adiabatic
flow? Give several practical examples of nearly adiabatic flows.

Section 5.3.2 Application of the Energy Equation – No
Shaft Work and Section 5.3.3 Comparison of the Energy
Equation with the Bernoulli Equation

5.88 What is enthalpy and why is it useful for energy considera-
tions in fluid mechanics?

5.89 Cite a few examples of evidence of loss of available energy in
actual fluid flows. Why does loss occur?

5.90 Is zero heat transfer a necessary condition for application of
the Bernoulli equation (Eq. 5.75)?

5.91 A 1000-m-high waterfall involves steady flow from one large
body to another. Detemine the temperature rise associated with this
flow.

5.92 A 100-ft-wide river with a flowrate of flows over a
rock pile as shown in Fig. P5.92. Determine the direction of flow
and the head loss associated with the flow across the rock pile.

2400 ft3/s

(2)

2 ft

Rock pile

4 ft

(1)

F I G U R E  P5.92

5.93 Air steadily expands adiabatically and without friction from
stagnation conditions of 690 kpa (abs) and 290 K to a static pres-
sure of 101 kpa (abs). Determine the velocity of the expanded air
assuming: (a) incompressible flow; (b) compressible flow.

5.94 A horizontal Venturi flow meter consists of a converging–di-
verging conduit as indicated in Fig. P5.94. The diameters of cross
sections (1) and (2) are 6 and 4 in. The velocity and static pressure
are uniformly distributed at cross sections (1) and (2). Determine 
the volume flowrate (ft3/s) through the meter if ,
the flowing fluid is oil , and the loss per unit mass
from (1) to (2) is negligibly small.

1r � 56 lbm�ft32
p1 � p2 � 3 psi

Section (2)

Section (1)D1 = 6 in.

D2 = 4 in.

F I G U R E  P5.94

5.95 Oil flows downward through a vertical pipe con-
traction as shown in Fig. P5.95. If the mercury manometer reading,
h, is 100 mm, determine the volume flowrate for frictionless flow.
Is the actual flowrate more or less than the frictionless value?
Explain.

5.96 An incompressible liquid flows steadily along the pipe
shown in Fig. P5.96. Determine the direction of flow and the head
loss over the 6-m length of pipe.

1SG � 0.92



5.97 Water flows through a vertical pipe, as is indicated in
Fig. P5.97. Is the flow up or down in the pipe? Explain.
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100 mm

h

0.6 m

300 mm

F I G U R E  P5.95

0.75 m

1.0 m

1.5 m 6 m

3 m

F I G U R E  P5.96

1 m

h

25
mm

F I G U R E  P5.99

A

4 ft

4 ft

12 ft

3 in.

B
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24 in.

12 in.

F I G U R E  P5.101

H

h

Mercury

F I G U R E  P5.97

Tube

Flow

Flow

Disk
to be
lifted

Disk
attached
to tube

F I G U R E  P5.98

5.98 A circular disk can be lifted up by blowing on it with the de-
vice shown in Fig. P5.98. Explain why this happens.

5.99 A siphon is used to draw water at from a large container
as indicated in Fig. P5.99. Does changing the elevation, h, of the
siphon centerline above the water level in the tank vary the flowrate
through the siphon? Explain. What is the maximum allowable
value of h?

20°C

5.100 A water siphon having a constant inside diameter of 3 in. is
arranged as shown in Fig. P5.100. If the friction loss between A and
B is where V is the velocity of flow in the siphon, deter-
mine the flowrate involved.

0.8V 2�2,

5.101 Water flows through a valve (see Fig.P5.101) at the rate of
1000 lbm/s. The pressure just upstream of the valve is 90 psi and the
pressure drop across the valve is 50 psi. The inside diameters of 
the valve inlet and exit pipes are 12 and 24 in. If the flow through
the valve occurs in a horizontal plane determine the loss in avail-
able energy across the valve.

5.102 Compare the volume flowrates associated with two differ-
ent vent configurations, a cylindrical hole in the wall having a di-
ameter of 4 in. and the same diameter cylindrical hole in the wall



but with a well-rounded entrance (see Fig. P5.102). The room is
held at a constant pressure of 1.5 psi above atmospheric. Both vents
exhaust into the atmosphere. The loss in available energy associ-
ated with flow through the cylindrical vent from the room to the
vent exit is 0.5V 2

2/2, where V2 is the uniformly distributed exit veloc-
ity of air. The loss in available energy associated with flow through
the rounded entrance vent from the room to the vent exit is
0.05V 2

2/2, where V2 is the uniformly distributed exit velocity of air.
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4 in.

4 in.

F I G U R E  P5.102

6 in.

12 in.

Section (2)

Section (1)

y

x

p1 = 15 psi
V1 = 5 ft/s
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5.103 A gas expands through a nozzle from a pressure of 300 psia
to a pressure of 5 psia. The enthalpy change involved, ,
is 150 Btu/lbm. If the expansion is adiabatic but with frictional ef-
fects and the inlet gas speed is negligibly small, determine the exit
gas velocity.

5.104 For the elbow and nozzle flow shown in Fig. P5.104,
determine the loss in available energy from section 112 to section 122.
How much additional available energy is lost from section 122 to
where the water comes to rest?

180°

ȟ1 � ȟ2

5.105 An automobile engine will work best when the back pressure
at the interface of the exhaust manifold and the engine block is min-
imized. Show how reduction of losses in the exhaust manifold, pip-
ing, and muffler will also reduce the back pressure. How could
losses in the exhaust system be reduced? What primarily limits the
minimization of exhaust system losses?

†5.106 Explain how, in terms of the loss of available energy in-
volved, a home sink water faucet valve works to vary the flow
from the shutoff condition to maximum flow. Explain how you
would estimate the size of the overflow drain holes needed in the
sink of Video V5.1 (Video V3.9 may be helpful).

5.107 (See  Fluids in the News article titled “Smart shocks,” Section
5.3.3.) A 200-lb force applied to the end of the piston of the shock ab-
sorber shown in Fig. P5.107 causes the two ends of the shock absorber
to move toward each other with a speed of . Determine the head
loss associated with the flow of the oil through the channel. Neglect
gravity and any friction force between the piston and cylinder walls.

5 ft�s

Section 5.3.2 Application of the Energy Equation–With
Shaft Work

5.108 What is the maximum possible power output of the hydro-
electric turbine shown in Fig.P5.108?

Piston

Oil

Channel

1-in. diameter

p = 0

200 lb

Gas

F I G U R E  P5.107

50 m

6 m/s

1 m

Turbine

F I G U R E  P5.108

Hydrant

60 ft

10 psi
4-in.

diameter

F I G U R E  P5.109

5.109 The pumper truck shown in Fig. P5.109 is to deliver
to a maximum elevation of 60 ft above the hydrant. The

pressure at the 4-in.-diameter outlet of the hydrant is 10 psi. If head
losses are negligibly small, determine the power that the pump
must add to the water.

1.5 ft3/s
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20 ft

Air

Pump

p = 2 atm

F I G U R E  P5.111

Turbine

10 ft

Section (1)

p1
Q
D1   

= 60 psi
= 150 ft3/s
= 3 ft

p2

D2   

= 10-in. Hg
   vacuum
= 4 ft

Section (2)
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600 ft

Turbine

F I G U R E  P5.110

20

16

12

8

4

0
0 1 2 3

h p,
 f

t

Q, ft3/s

hp = 16 – 5Q

Pump

12 ft

V

(a) (b)
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5.110 The hydroelectric turbine shown in Fig. P5.110 passes 8 million
gal/min across a head of 600 ft. What is the maximum amount of
power output possible? Why will the actual amount be less?

5.111 A pump is to move water from a lake into a large, pressur-
ized tank as shown in Fig. P5.111 at a rate of 1000 gal in 10 min or
less. Will a pump that adds 3 hp to the water work for this purpose?
Support your answer with appropriate calculations. Repeat the prob-
lem if the tank were pressurized to 3, rather than 2, atmospheres.

5.112 A hydraulic turbine is provided with 4.25 m3/s of water at
415 kPa. A vacuum gage in the turbine discharge 3 m below the
turbine inlet centerline reads 250 mm Hg vacuum. If the turbine
shaft output power is 1100 kW, calculate the power loss through
the turbine. The supply and discharge pipe inside diameters are
identically 80 mm.

5.113 Water is supplied at and 60 psi to a hydraulic tur-
bine through a 3-ft inside diameter inlet pipe as indicated in Fig.
P5.113. The turbine discharge pipe has a 4-ft inside diameter. The
static pressure at section 122, 10 ft below the turbine inlet, is 10-in.
Hg vacuum. If the turbine develops 2500 hp, determine the power
lost between sections 112 and 122.

150 ft3�s

5.114 A centrifugal air compressor stage operates between an in-
let stagnation pressure of 14.7 psia and an exit stagnation pressure
of 60 psia. The inlet stagnation temperature is If the loss of
total pressure through the compressor stage associated with irre-
versible flow phenomena is 10 psi, estimate the actual and ideal
stagnation temperature rise through the compressor. Estimate the
ratio of ideal to actual temperature rise to obtain an approximate
value of the efficiency.

5.115 Water is pumped through a 4-in.-diameter pipe as shown in
Fig. P5.115a. The pump characteristics (pump head versus
flowrate) are given in Fig. P5.115b. Determine the flowrate if the
head loss in the pipe is .hL � 8V 2�2g

80 °F.

5.116 Water is pumped from the large tank shown in Fig. P5.116.
The head loss is known to be equal to and the pump head is

, where is in ft when Q is in Determine the
flowrate.

ft3�s.hphp � 20 � 4Q2
4V2�2g

13 ft

Q V

Pipe area = 0.10 ft2

Pump
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5.117 When a fan or pump is tested at the factory, head curves
(head across the fan or pump versus volume flowrate) are often
produced. A generic fan or pump head curve is shown in
Fig.P5.117a. For any piping system, the drop in pressure or head
involved because of loss can be estimated as a function of vol-
ume flowrate. A generic piping system loss curve is shown in
Fig.P5.117b. When the pump or fan and piping system associated
with the two curves of Fig.P5.117 are combined, what will the
flowrate be? Why? How can the flowrate through this combined
system be varied?

Q, Volume flowrate

H
, 

H
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ss
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n 
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(a)

Q, Volume flowrate

H
, 

H
ea

d 
lo

ss
 in

pi
pi

ng
 s

ys
te

m

(b)

F I G U R E  P5.117



5.118 Water flows by gravity from one lake to another as sketched in
Fig. P5.118 at the steady rate of 80 gpm. What is the loss in available
energy associated with this flow? If this same amount of loss is asso-
ciated with pumping the fluid from the lower lake to the higher one at
the same flowrate, estimate the amount of pumping power required.
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50 ft

F I G U R E  P5.118

5.119 Water is pumped from a tank, point (1), to the top of a wa-
ter plant aerator, point (2), as shown in Video V5.14 and Fig.
P5.119 at a rate of (a) Determine the power that the pump
adds to the water if the head loss from (1) to (2) where is 4 ft.
(b) Determine the head loss from (2) to the bottom of the aerator
column, point (3), if the average velocity at (3) is V3 � 2 ft/s.

V2 � 0
3.0 ft3/s.

Aerator column

(1)

(3)

(2)

Pump

5 ft
3 ft

10 ft

F I G U R E  P5.119

5.120 A liquid enters a fluid machine at section 112 and leaves at
sections 122 and 132 as shown in Fig. P5.120. The density of the fluid
is constant at 2 All of the flow occurs in a horizontal plane
and is frictionless and adiabatic. For the above-mentioned and ad-
ditional conditions indicated in Fig. P5.120, determine the amount
of shaft power involved.

slugs�ft3.

Section (1)

Section (2)

Section (3)

p2 = 50 psia
V2 = 35 ft/s

p3 = 14.7 psia
V3 = 45 ft/s
A3 = 5 in.2

p1 = 80 psia
V1 = 15 ft/s
A1 = 30 in.2

F I G U R E  P5.120

Pump

8-in. inside-
diameter pipe

Section (1)

50 ft

Section (2)

F I G U R E  P5.121

energy associated with being pumped from sections 112 to
122 is loss � where is the average velocity of wa-
ter in the 8-in. inside diameter piping involved. Determine the
amount of shaft power required.

5.122 Water is to be pumped from the large tank shown in Fig.
P5.122 with an exit velocity of . It was determined that the
original pump (pump 1) that supplies 1 kW of power to the water
did not produce the desired velocity. Hence, it is proposed that an
additional pump (pump 2) be installed as indicated to increase the
flowrate to the desired value. How much power must pump 2 add to
the water? The head loss for this flow is where is in
m when Q is in .m3�s

hLhL � 250Q2,

6 m�s

V61V 2�2 ft2�s2,
2.5 ft3�s

V = 6 m/s
Pump

#2

Pipe area = 0.02 m2
Nozzle area = 0.01 m2

2 m

Pump
#1

F I G U R E  P5.122

5.123 (See Fluids in the News article titled “Curtain of air,” Sec-
tion 5.3.3.) The fan shown in Fig. P5.123 produces an air curtain to
separate a loading dock from a cold storage room. The air curtain is
a jet of air 10 ft wide, 0.5 ft thick moving with speed The
loss associated with this flow is loss , where . How
much power must the fan supply to the air to produce this flow?

KL � 5� KLV
2�2

V � 30 ft�s.

Air curtain
(0.5-ft thickness)

Open door

10 ft

V = 30 ft/s

Fan

F I G U R E  P5.123

Section 5.3.2 Application of the Energy Equation—
Combined with Linear momentum
5.124 If a -hp motor is required by a ventilating fan to produce a
24-in. stream of air having a velocity of as shown in
Fig. P5.124, estimate (a) the efficiency of the fan and (b) the thrust
of the supporting member on the conduit enclosing the fan.

5.125 Air flows past an object in a pipe of 2-m diameter and exits
as a free jet as shown in Fig. P5.125. The velocity and pressure up-
stream are uniform at 10 mZs and respectively. At the50  N�m2,

40 ft/s

3
4

5.121 Water is to be moved from one large reservoir to another at
a higher elevation as indicated in Fig. P5.121. The loss of available
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24 in. 40 ft/s

F I G U R E  P5.124

2-m-dia. 1-m dia.
4 m/s

12 m/s

Exit

Wake

Air

p = 50 N/m2
V = 10 m/s

F I G U R E  P5.125

pipe exit the velocity is nonuniform as indicated. The shear stress
along the pipe wall is negligible. (a) Determine the head loss asso-
ciated with a particle as it flows from the uniform velocity upstream
of the object to a location in the wake at the exit plane of the pipe.
(b) Determine the force that the air puts on the object.

5.126 Water flows through a 2-ft-diameter pipe arranged horizon-
tally in a circular arc as shown in Fig. P5.126. If the pipe discharges
to the atmosphere (p � 14.7 psia) determine the x and y components
of the resultant force exerted by the water on the piping between
sections (1) and (2). The steady flowrate is 3000 ft3/min. The loss in
pressure due to fluid friction between sections (1) and (2) is 60 psi.

y

x

Section (2)90°

Section (1)

Flow

1000 ft

F I G U R E  P5.126

5.127 Water flows steadily down the inclined pipe as indicated in
Fig. P5.127. Determine the following: (a) the difference in pressure

5 ft

6 in.

30°

Mercury

Section (2)

Section (1)

Flow

6 in.

F I G U R E  P5.127

(b) the loss between sections 112 and 122, (c) the net axial
force exerted by the pipe wall on the flowing water between sec-
tions 112 and 122.
5.128 Water flows steadily in a pipe and exits as a free jet through
an end cap that contains a filter as shown in Fig. P5.128. The flow
is in a horizontal plane. The axial component, , of the anchoring
force needed to keep the end cap stationary is 60 lb. Determine the
head loss for the flow through the end cap.

Ry

p1 � p2,

Area = 0.10 ft2

Area = 0.12 ft2

Ry = 60 lb

V = 10 ft/s

Rx

Pipe

Filter
30°

F I G U R E  P5.128

5.129 When fluid flows through an abrupt expansion as indicated
in Fig. P5.129, the loss in available energy across the expansion,

is often expressed as

where cross-sectional area upstream of expansion,
cross-sectional area downstream of expansion, and velocity
of flow upstream of expansion. Derive this relationship.

V1 �
A2 �A1 �

lossex � a1 �
A1

A2
b

2

  
V 21
2

lossex,

Section (1)

Section (2)

F I G U R E  P5.129

5.130 Two water jets collide and form one homogeneous jet as
shown in Fig. P5.130. (a) Determine the speed, V, and direction,
of the combined jet. (b) Determine the loss for a fluid particle flow-
ing from 112 to 132, from 122 to 132. Gravity is negligible.

u,

V2 = 6 m/s

V

V1 = 4 m/s

θ

0.12 m

0.10 m
(1)

(2)

(3)

90°

F I G U R E  P5.130



Section 5.3.4 Application of the Energy Equation to
Nonuniform Flows

5.131 Water flows vertically upward in a circular cross-sectional
pipe. At section 112, the velocity profile over the cross-sectional area
is uniform. At section 122, the velocity profile is

where local velocity vector, centerline velocity in the
axial direction, pipe inside radius, and, radius from pipe
axis. Develop an expression for the loss in available energy be-
tween sections 112 and 122.
5.132 The velocity profile in a turbulent pipe flow may be approx-
imated with the expression

where local velocity in the axial direction, centerline ve-
locity in the axial direction, pipe inner radius from pipe axis,

local radius from pipe axis, and constant. Determine the
kinetic energy coefficient, for (a) (b) (c)
(d) (e) (f)

5.133 A small fan moves air at a mass flowrate of 0.004 lbmZs. Up-
stream of the fan, the pipe diameter is 2.5 in., the flow is laminar, the
velocity distribution is parabolic, and the kinetic energy coefficient,

is equal to 2.0. Downstream of the fan, the pipe diameter is 1 in.,
the flow is turbulent, the velocity profile is quite flat, and the kinetic
energy coefficient, is equal to 1.08. If the rise in static pressure
across the fan is 0.015 psi and the fan shaft draws 0.00024 hp, com-
pare the value of loss calculated: (a) assuming uniform velocity dis-
tributions, (b) considering actual velocity distributions.

Section 5.3.5 Combination of the Energy Equation
and the Moment-of-Momentum Equation

5.134 Air enters a radial blower with zero angular momentum. It
leaves with an absolute tangential velocity, of 200 ftZs. The ro-
tor blade speed at rotor exit is 170 ftZs. If the stagnation pressure
rise across the rotor is 0.4 psi, calculate the loss of available energy
across the rotor and the rotor efficiency.

5.135 Water enters a pump impeller radially. It leaves the impeller
with a tangential component of absolute velocity of 10 mZs. The
impeller exit diameter is 60 mm, and the impeller speed is 1800
rpm. If the stagnation pressure rise across the impeller is 45 kPa,
determine the loss of available energy across the impeller and the
hydraulic efficiency of the pump.

5.136 Water enters an axial-flow turbine rotor with an absolute ve-
locity tangential component, of 15 ftZs. The corresponding blade
velocity, U, is 50 ft s. The water leaves the rotor blade row with no
angular momentum. If the stagnation pressure drop across the tur-
bine is 12 psi, determine the hydraulic efficiency of the turbine.

5.137 An inward flow radial turbine 1see Fig. P5.1372 involves a
nozzle angle, of and an inlet rotor tip speed, of 30 ftZs.
The ratio of rotor inlet to outlet diameters is 2.0. The radial compo-
nent of velocity remains constant at 20 ftZs through the rotor, and
the flow leaving the rotor at section 122 is without angular momen-
tum. If the flowing fluid is water and the stagnation pressure drop
across the rotor is 16 psi, determine the loss of available energy
across the rotor and the hydraulic efficiency involved.

5.138 An inward flow radial turbine 1see Fig. P5.1372 involves a
nozzle angle, of and an inlet rotor tip speed of 30 ftZs. The
ratio of rotor inlet to outlet diameters is 2.0. The radial component
of velocity remains constant at 20 ftZs through the rotor, and the
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U1,60°a1,

�
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Vu,

a2,

a1,

n � 10.n � 9,n � 8,
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R �

uc �u �

u
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U1 =
30 ft/s

Vr1 =
20 ft/s

60

12

r1
r2
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flow leaving the rotor at section 122 is without angular momentum.
If the flowing fluid is air and the static pressure drop across the ro-
tor is 0.01 psi, determine the loss of available energy across the ro-
tor and the rotor aerodynamic efficiency.

Section 5.4 Second Law of Thermodynamics—
Irreversible Flow

5.139 Why do all actual fluid flows involve loss of available energy?

■ Lab Problems

5.140 This problem involves the force that a jet of air exerts on a
flat plate as the air is deflected by the plate. To proceed with this
problem, go to Appendix H which is located on the book’s web site,
www.wiley.com/college/munson.

5.141 This problem involves the pressure distribution produced on
a flat plate that deflects a jet of air. To proceed with this problem, go
to Appendix H which is located on the book’s web site, www.
wiley.com/college/munson.

5.142 This problem involves the force that a jet of water exerts on
a vane when the vane turns the jet through a given angle. To proceed
with this problem, go to Appendix H which is located on the book’s
web site, www.wiley.com/college/munson.

5.143 This problem involves the force needed to hold a pipe elbow
stationary. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

■ Life Long Learning Problems

5.144 What are typical efficiencies associated with swimming
and how can they be improved?

5.145 Explain how local ionization of flowing air can accelerate
it. How can this be useful?

5.146 Discuss the main causes of loss of available energy in a
turbo-pump and how they can be minimized. What are typical
turbo-pump efficiencies?

5.147 Discuss the main causes of loss of available energy in a
turbine and how they can be minimized. What are typical turbine
efficiencies?

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.


