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CHAPTER OPENING PHOTO: Impulsive start of flow past an array of cylinders: The complex structure of lam-
inar flow past a relatively simple geometric structure illustrates why it is often difficult to obtain exact ana-
lytical results for external flows. 1Dye in water.2 (Photograph courtesy of ONERA, France.)

Lear n in g  Ob je c t ive s

After completing this chapter, you should be able to:

■ identify and discuss the features of external flow.

■ explain the fundamental characteristics of a boundary layer, including laminar,
transitional, and turbulent regimes.

■ calculate boundary layer paremeters for flow past a flat plate.

■ provide a description of boundary layer separation.

■ calculate the lift and drag forces for various objects.

In this chapter we consider various aspects of the flow over bodies that are immersed in a fluid.
Examples include the flow of air around airplanes, automobiles, and falling snowflakes, or the flow
of water around submarines and fish. In these situations the object is completely surrounded by
the fluid and the flows are termed external flows.

External flows involving air are often termed aerodynamics in response to the important exter-
nal flows produced when an object such as an airplane flies through the atmosphere. Although this
field of external flows is extremely important, there are many other examples that are of equal impor-
tance. The fluid force 1lift and drag2 on surface vehicles 1cars, trucks, bicycles2 has become a very
important topic. By correctly designing cars and trucks, it has become possible to greatly decrease the
fuel consumption and improve the handling characteristics of the vehicle. Similar efforts have resulted
in improved ships, whether they are surface vessels 1surrounded by two fluids, air and water2 or sub-
mersible vessels 1surrounded completely by water2.

Other applications of external flows involve objects that are not completely surrounded by
fluid, although they are placed in some external-type flow. For example, the proper design of a
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building 1whether it is your house or a tall skyscraper2 must include consideration of the various
wind effects involved.

As with other areas of fluid mechanics, various approaches 1theoretical, numerical and ex-
perimental2 are used to obtain information on the fluid forces developed by external flows.
Theoretical 1i.e., analytical2 techniques can provide some of the needed information about such
flows. However, because of the complexities of the governing equations and the complexities of
the geometry of the objects involved, the amount of information obtained from purely theoreti-
cal methods is limited.

Much of the information about external flows comes from experiments carried out, for the
most part, on scale models of the actual objects. Such testing includes the obvious wind tunnel
testing of model airplanes, buildings, and even entire cities. In some instances the actual device,
not a model, is tested in wind tunnels. Figure 9.1a shows a test of a vehicle in a wind tunnel. Bet-
ter performance of cars, bikes, skiers, and numerous other objects has resulted from testing in wind
tunnels. The use of water tunnels and towing tanks also provides useful information about the flow
around ships and other objects. With advancement in computational fluid dynamics, or CFD, nu-
merical methods are also capable of predicting external flows past objects. Figure 9.1b shows stream-
lines around a Formula 1 car as predicted by CFD. Appendix A provides an introduction to CFD.

In this chapter we consider characteristics of external flow past a variety of objects. We in-
vestigate the qualitative aspects of such flows and learn how to determine the various forces on
objects surrounded by a moving liquid.
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A body immersed in a moving fluid experiences a resultant force due to the interaction between
the body and the fluid surrounding it. In some instances 1such as an airplane flying through still
air2 the fluid far from the body is stationary and the body moves through the fluid with veloc-
ity U. In other instances 1such as the wind blowing past a building2 the body is stationary and
the fluid flows past the body with velocity U. In any case, we can fix the coordinate system in
the body and treat the situation as fluid flowing past a stationary body with velocity U, the up-
stream velocity. For the purposes of this book, we will assume that the upstream velocity is con-
stant in both time and location. That is, there is a uniform, constant velocity fluid flowing past the
object. In actual situations this is often not true. For example, the wind blowing past a smokestack
is nearly always turbulent and gusty 1unsteady2 and probably not of uniform velocity from the top
to the bottom of the stack. Usually the unsteadiness and nonuniformity are of minor importance.

9.1 General External Flow Characteristics

F I G U R E  9.1 (a) Flow past a
full-sized streamlined vehicle in the GM
aerodynamics laboratory wind tunnel, an 18-ft
by 34-ft test section facility driven by a 4000-
hp, 43-ft-diameter fan. (Photograph courtesy
of General Motors Corporation.) (b) Predicted
streamlines for flow past a Formula 1 race
car as obtained by using computational fluid
dynamics techniques. (Courtesy of Ansys, Inc.)

(a)

(b)

For external flows
it is usually easiest
to use a coordinate
system fixed to the
object.



Even with a steady, uniform upstream flow, the flow in the vicinity of an object may be un-
steady. Examples of this type of behavior include the flutter that is sometimes found in the flow
past airfoils 1wings2, the regular oscillation of telephone wires that “sing” in a wind, and the irreg-
ular turbulent fluctuations in the wake regions behind bodies.

The structure of an external flow and the ease with which the flow can be described and an-
alyzed often depend on the nature of the body in the flow. Three general categories of bodies are
shown in Fig. 9.2. They include 1a2 two-dimensional objects 1infinitely long and of constant cross-
sectional size and shape2, 1b2 axisymmetric bodies 1formed by rotating their cross-sectional shape
about the axis of symmetry2, and 1c2 three-dimensional bodies that may or may not possess a line
or plane of symmetry. In practice there can be no truly two-dimensional bodies—nothing extends
to infinity. However, many objects are sufficiently long so that the end effects are negligibly small.

Another classification of body shape can be made depending on whether the body is stream-
lined or blunt. The flow characteristics depend strongly on the amount of streamlining present. In
general, streamlined bodies 1i.e., airfoils, racing cars, etc.2 have little effect on the surrounding fluid,
compared with the effect that blunt bodies 1i.e., parachutes, buildings, etc.2 have on the fluid. Usu-
ally, but not always, it is easier to force a streamlined body through a fluid than it is to force a
similar-sized blunt body at the same velocity. There are important exceptions to this basic rule.

9.1.1 Lift and Drag Concepts

When any body moves through a fluid, an interaction between the body and the fluid occurs; this
effect can be given in terms of the forces at the fluid–body interface. These forces can be described
in terms of the stresses—wall shear stresses, due to viscous effects and normal stresses due to
the pressure, p. Typical shear stress and pressure distributions are shown in Figs. 9.3a and 9.3b.
Both and p vary in magnitude and direction along the surface.

It is often useful to know the detailed distribution of shear stress and pressure over the sur-
face of the body, although such information is difficult to obtain. Many times, however, only the
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F I G U R E  9.2 Flow classification: (a) two-dimensional, (b) axisymmetric,
(c) three-dimensional.
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F I G U R E  9.3 Forces from the sur-
rounding fluid on a two-dimensional object: (a)
pressure force, (b) viscous force, (c) resultant force
(lift and drag).
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integrated or resultant effects of these distributions are needed. The resultant force in the direction
of the upstream velocity is termed the drag, and the resultant force normal to the upstream ve-
locity is termed the lift, as is indicated in Fig. 9.3c. For some three-dimensional bodies there
may also be a side force that is perpendicular to the plane containing and 

The resultant of the shear stress and pressure distributions can be obtained by integrating the
effect of these two quantities on the body surface as is indicated in Fig. 9.4. The x and y compo-
nents of the fluid force on the small area element dA are

and

Thus, the net x and y components of the force on the object are

(9.1)

and

(9.2)

Of course, to carry out the integrations and determine the lift and drag, we must know the body
shape 1i.e., as a function of location along the body2 and the distribution of and p along the
surface. These distributions are often extremely difficult to obtain, either experimentally or theo-
retically. The pressure distribution can be obtained experimentally by use of a series of static pres-
sure taps along the body surface. On the other hand, it is usually quite difficult to measure the wall
shear stress distribution.

twu

 l � �  dFy � ��  p sin u dA � �  tw cos u dA

 d � �  dFx � �  p cos u dA � �  tw sin u dA

 dFy � �1 p dA2 sin u � 1tw dA2 cos u

 dFx � 1p dA2 cos u � 1tw dA2 sin u
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F I G U R E  9.4 Pressure and shear
forces on a small element of the surface of a
body.
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F l u i d s  i n  t h e  N e w s

Pressure-sensitive paint For many years, the conventional
method for measuring surface pressure has been to use static
pressure taps consisting of small holes on the surface connected
by hoses from the holes to a pressure measuring device. Pressure-
sensitive paint (PSP) is now gaining acceptance as an alternative
to the static surface pressure ports. The PSP material is typically
a luminescent compound that is sensitive to the pressure on it and
can be excited by an appropriate light which is captured by spe-
cial video imaging equipment. Thus, it provides a quantitative

measure of the surface pressure. One of the biggest advantages of
PSP is that it is a global measurement technique, measuring pres-
sure over the entire surface, as opposed to discrete points. PSP
also has the advantage of being nonintrusive to the flow field. Al-
though static pressure port holes are small, they do alter the sur-
face and can slightly alter the flow, thus affecting downstream
ports. In addition, the use of PSP eliminates the need for a large
number of pressure taps and connecting tubes. This allows pres-
sure measurements to be made in less time and at a lower cost.

It is seen that both the shear stress and pressure force contribute to the lift and drag, since
for an arbitrary body is neither zero nor along the entire body. The exception is a flat plate
aligned either parallel to the upstream flow or normal to the upstream flow as
is discussed in Example 9.1.

1u � 021u � 90°2
90°u
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GIVEN Air at standard conditions flows past a flat plate as
is indicated in Fig. E9.1. In case 1a2 the plate is parallel to the
upstream flow, and in case 1b2 it is perpendicular to the up-
stream flow. The pressure and shear stress distributions on 

the surface are as indicated 1obtained either by experiment or
theory2.

FIND Determine the lift and drag on the plate.

SOLUTION

Drag from Pressure and Shear Stress Distributions

symmetrical about the center of the plate. With the given rela-
tively large pressure on the front of the plate 1the center of the
plate is a stagnation point2 and the negative pressure 1less than
the upstream pressure2 on the back of the plate, we obtain the
following drag

or

(Ans)

COMMENTS Clearly there are two mechanisms responsible
for the drag. On the ultimately streamlined body 1a zero thickness
flat plate parallel to the flow2 the drag is entirely due to the shear
stress at the surface and, in this example, is relatively small. For
the ultimately blunted body 1a flat plate normal to the upstream
flow2 the drag is entirely due to the pressure difference between
the front and back portions of the object and, in this example, is
relatively large.

If the flat plate were oriented at an arbitrary angle relative to
the upstream flow as indicated in Fig. E9.1c, there would be both
a lift and a drag, each of which would be dependent on both the
shear stress and the pressure. Both the pressure and shear stress
distributions would be different for the top and bottom surfaces.
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E XAMPLE 9.1

For either orientation of the plate, the lift and drag are obtained
from Eqs. 9.1 and 9.2. With the plate parallel to the upstream flow
we have on the top surface and on the bottom
surface so that the lift and drag are given by

and

(1)

where we have used the fact that because of symmetry the shear
stress distribution is the same on the top and the bottom surfaces,
as is the pressure also [whether we use gage or absolute

pressure]. There is no lift generated—the plate does
not know up from down. With the given shear stress distribution,
Eq. 1 gives

or

(Ans)

With the plate perpendicular to the upstream flow, we have
on the front and on the back. Thus, from Eqs.

9.1 and 9.2

and

Again there is no lift because the pressure forces act parallel to the
upstream flow 1in the direction of not 2 and the shear stress isld
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Although Eqs. 9.1 and 9.2 are valid for any body, the difficulty in their use lies in obtaining
the appropriate shear stress and pressure distributions on the body surface. Considerable effort has
gone into determining these quantities, but because of the various complexities involved, such infor-
mation is available only for certain simple situations.

Without detailed information concerning the shear stress and pressure distributions on a body,
Eqs. 9.1 and 9.2 cannot be used. The widely used alternative is to define dimensionless lift and
drag coefficients and determine their approximate values by means of either a simplified analysis,
some numerical technique, or an appropriate experiment. The lift coefficient, and drag coeffi-
cient, are defined as

and

where A is a characteristic area of the object 1see Chapter 72. Typically, A is taken to be frontal
area—the projected area seen by a person looking toward the object from a direction parallel to
the upstream velocity, U, as indicated by the figure in the margin. It would be the area of the shadow
of the object projected onto a screen normal to the upstream velocity as formed by a light shining
along the upstream flow. In other situations A is taken to be the planform area—the projected area
seen by an observer looking toward the object from a direction normal to the upstream velocity 1i.e.,
from “above” it2. Obviously, which characteristic area is used in the definition of the lift and drag
coefficients must be clearly stated.

9.1.2 Characteristics of Flow Past an Object

External flows past objects encompass an extremely wide variety of fluid mechanics phenomena.
Clearly the character of the flow field is a function of the shape of the body. Flows past relatively
simple geometric shapes 1i.e., a sphere or circular cylinder2 are expected to have less complex flow
fields than flows past a complex shape such as an airplane or a tree. However, even the simplest-
shaped objects produce rather complex flows.

For a given-shaped object, the characteristics of the flow depend very strongly on various
parameters such as size, orientation, speed, and fluid properties. As is discussed in Chapter 7, ac-
cording to dimensional analysis arguments, the character of the flow should depend on the vari-
ous dimensionless parameters involved. For typical external flows the most important of these pa-
rameters are the Reynolds number, the Mach number, and for
flows with a free surface 1i.e., flows with an interface between two fluids, such as the flow past a
surface ship2, the Froude number, 1Recall that is some characteristic length of the
object and c is the speed of sound.2

For the present, we consider how the external flow and its associated lift and drag vary as a
function of Reynolds number. Recall that the Reynolds number represents the ratio of inertial ef-
fects to viscous effects. In the absence of all viscous effects the Reynolds number is in-
finite. On the other hand, in the absence of all inertial effects 1negligible mass or 2, the
Reynolds number is zero. Clearly, any actual flow will have a Reynolds number between 1but not
including2 these two extremes. The nature of the flow past a body depends strongly on whether

or 
Most external flows with which we are familiar are associated with moderately sized objects

with a characteristic length on the order of In addition, typical upstream ve-
locities are on the order of and the fluids involved are typically water
or air. The resulting Reynolds number range for such flows is approximately . 
This is shown by the figure in the margin for air. As a rule of thumb, flows with are
dominated by inertial effects, whereas flows with are dominated by viscous effects. Hence,
most familiar external flows are dominated by inertia.

On the other hand, there are many external flows in which the Reynolds number is consid-
erably less than 1, indicating in some sense that viscous forces are more important than inertial
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forces. The gradual settling of small particles of dirt in a lake or stream is governed by low Reynolds
number flow principles because of the small diameter of the particles and their small settling speed.
Similarly, the Reynolds number for objects moving through large viscosity oils is small because

is large. The general differences between small and large Reynolds number flow past stream-
lined and blunt objects can be illustrated by considering flows past two objects—one a flat plate
parallel to the upstream velocity and the other a circular cylinder.

Flows past three flat plates of length with and are shown in
Fig. 9.5. If the Reynolds number is small, the viscous effects are relatively strong and the plate
affects the uniform upstream flow far ahead, above, below, and behind the plate. To reach that
portion of the flow field where the velocity has been altered by less than 1% of its undisturbed
value we must travel relatively far from the plate. In low Reynolds num-
ber flows the viscous effects are felt far from the object in all directions.

As the Reynolds number is increased 1by increasing U, for example2, the region in which vis-
cous effects are important becomes smaller in all directions except downstream, as is shown in

1i.e., U � u 6 0.01 U2

107Re � rU/�m � 0.1, 10,/

m
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For low Reynolds
number flows,
viscous effects are
felt far from the 
object.
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F I G U R E  9.5 Character
of the steady, viscous flow past a flat
plate parallel to the upstream velocity:
(a) low Reynolds number flow, (b) mod-
erate Reynolds number flow, (c) large
Reynolds number flow.



Fig. 9.5b. One does not need to travel very far ahead, above, or below the plate to reach areas in
which the viscous effects of the plate are not felt. The streamlines are displaced from their origi-
nal uniform upstream conditions, but the displacement is not as great as for the situation
shown in Fig. 9.5a.

If the Reynolds number is large 1but not infinite2, the flow is dominated by inertial effects
and the viscous effects are negligible everywhere except in a region very close to the plate and in
the relatively thin wake region behind the plate, as shown in Fig. 9.5c. Since the fluid viscosity is
not zero it follows that the fluid must stick to the solid surface 1the no-slip boundary
condition2. There is a thin boundary layer region of thickness 1i.e., thin relative to
the length of the plate2 next to the plate in which the fluid velocity changes from the upstream
value of to zero velocity on the plate. The thickness of this layer increases in the direction
of flow, starting from zero at the forward or leading edge of the plate. The flow within the bound-
ary layer may be laminar or turbulent, depending on various parameters involved.

The streamlines of the flow outside of the boundary layer are nearly parallel to the plate. As
we will see in the next section, the slight displacement of the external streamlines that are outside
of the boundary layer is due to the thickening of the boundary layer in the direction of flow. The
existence of the plate has very little effect on the streamlines outside of the boundary layer—ei-
ther ahead, above, or below the plate. On the other hand, the wake region is due entirely to the
viscous interaction between the fluid and the plate.

One of the great advancements in fluid mechanics occurred in 1904 as a result of the in-
sight of Ludwig Prandtl 11875–19532, a German physicist and aerodynamicist. He conceived of
the idea of the boundary layer—a thin region on the surface of a body in which viscous effects
are very important and outside of which the fluid behaves essentially as if it were inviscid. Clearly
the actual fluid viscosity is the same throughout; only the relative importance of the viscous ef-
fects 1due to the velocity gradients2 is different within or outside of the boundary layer. As is dis-
cussed in the next section, by using such a hypothesis it is possible to simplify the analysis of
large Reynolds number flows, thereby allowing solution to external flow problems that are oth-
erwise still unsolvable.

As with the flow past the flat plate described above, the flow past a blunt object 1such as a
circular cylinder2 also varies with Reynolds number. In general, the larger the Reynolds number,
the smaller the region of the flow field in which viscous effects are important. For objects that are
not sufficiently streamlined, however, an additional characteristic of the flow is observed. This is
termed flow separation and is illustrated by the figure in the margin and in Fig. 9.6.

Low Reynolds number flow past a circular cylinder is characterized by the
fact that the presence of the cylinder and the accompanying viscous effects are felt throughout a rel-
atively large portion of the flow field. As is indicated in Fig. 9.6a, for the vis-
cous effects are important several diameters in any direction from the cylinder. A somewhat surpris-
ing characteristic of this flow is that the streamlines are essentially symmetric about the center of the
cylinder—the streamline pattern is the same in front of the cylinder as it is behind the cylinder.

As the Reynolds number is increased, the region ahead of the cylinder in which viscous ef-
fects are important becomes smaller, with the viscous region extending only a short distance ahead
of the cylinder. The viscous effects are convected downstream and the flow loses its upstream to
downstream symmetry. Another characteristic of external flows becomes important—the flow sep-
arates from the body at the separation location as indicated in Fig. 9.6b. With the increase in
Reynolds number, the fluid inertia becomes more important and at some location on the body,
denoted the separation location, the fluid’s inertia is such that it cannot follow the curved path
around to the rear of the body. The result is a separation bubble behind the cylinder in which
some of the fluid is actually flowing upstream, against the direction of the upstream flow. (See
the photograph at the beginning of this chapter.)

At still larger Reynolds numbers, the area affected by the viscous forces is forced farther down-
stream until it involves only a thin boundary layer on the front portion of the cylinder and
an irregular, unsteady 1perhaps turbulent2 wake region that extends far downstream of the cylinder.
The fluid in the region outside of the boundary layer and wake region flows as if it were inviscid. Of
course, the fluid viscosity is the same throughout the entire flow field. Whether viscous effects are
important or not depends on which region of the flow field we consider. The velocity gradients within
the boundary layer and wake regions are much larger than those in the remainder of the flow field.

1d � D2

Re � UD�n � 0.1,

1Re � UD�n 6 12

u � U

d � d 1x2 � /
1Re 6 A 2,

Re � 0.1
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Since the shear stress 1i.e., viscous effect2 is the product of the fluid viscosity and the velocity gradi-
ent, it follows that viscous effects are confined to the boundary layer and wake regions.

The characteristics described in Figs. 9.5 and 9.6 for flow past a flat plate and a circular
cylinder are typical of flows past streamlined and blunt bodies, respectively. The nature of the flow
depends strongly on the Reynolds number. (See Ref. 31 for many examples illustrating this behav-
ior.) Most familiar flows are similar to the large Reynolds number flows depicted in Figs. 9.5c and
9.6c, rather than the low Reynolds number flow situations. (See the photograph at the beginning
of Chapters 7 and 11.) In the remainder of this chapter we will investigate more thoroughly these
ideas and determine how to calculate the forces on immersed bodies.
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F I G U R E  9.6 Character of the steady, viscous flow past a circular
cylinder: (a) low Reynolds number flow, (b) moderate Reynolds number flow,
(c) large Reynolds number flow.
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GIVEN It is desired to experimentally determine the various
characteristics of flow past a car as shown in Fig E9.2. The follow-
ing tests could be carried out: 1a2 flow of glycerin
past a scale model that is 34-mm tall, 100-mm long, and 40-mm
wide, 1b2 air flow past the same scale model, or
1c2 air flow past the actual car, which is 1.7-m tall, 5-m
long, and 2-m wide.

FIND Would the flow characteristics for these three situations
be similar? Explain.

U � 25 m�s
U � 20 mm�s

U � 20 mm�s

Characteristics of Flow Past ObjectsEXAMPLE 9.2

F I G U R E  E9.2
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SOLUTION
or flow past a circular cylinder, we would expect that the flow
past the actual car would behave in some way similar to the flows
shown in Figs. 9.5c or 9.6c. That is, we would expect some type
of boundary layer characteristic in which viscous effects would
be confined to relatively thin layers near the surface of the car and
the wake region behind it. Whether the car would act more like a
flat plate or a cylinder would depend on the amount of streamlin-
ing incorporated into the car’s design.

Because of the small Reynolds number involved, the flow past
the model car in glycerin would be dominated by viscous effects, in
some way reminiscent of the flows depicted in Figs. 9.5a or 9.6a.
Similarly, with the moderate Reynolds number involved for the air
flow past the model, a flow with characteristics similar to those in-
dicated in Figs. 9.5b and 9.6b would be expected. Viscous effects
would be important—not as important as with the glycerin flow, but
more important than with the full-sized car.

It would not be a wise decision to expect the flow past the full-
sized car to be similar to the flow past either of the models. The
same conclusions result regardless of whether we use or

As is indicated in Chapter 7, the flows past the model car and
the full-sized prototype will not be similar unless the Reynolds
numbers for the model and prototype are the same. It is not al-
ways an easy task to ensure this condition. One 1expensive2 solu-
tion is to test full-sized prototypes in very large wind tunnels 1see
Fig. 9.12.

Re/.
Reh, Reb,

The characteristics of flow past an object depend on the Reynolds
number. For this instance we could pick the characteristic length
to be the height, h, width, b, or length, of the car to obtain three
possible Reynolds numbers, and

These numbers will be different because of the dif-
ferent values of h, b, and Once we arbitrarily decide on the
length we wish to use as the characteristic length, we must stick
with it for all calculations when using comparisons between
model and prototype.

With the values of kinematic viscosity for air and glycerin ob-
tained from Tables 1.8 and 1.6 as and

we obtain the following Reynolds
numbers for the flows described.

Clearly, the Reynolds numbers for the three flows are quite
different 1regardless of which characteristic length we choose2.
Based on the previous discussion concerning flow past a flat plate

nglycerin � 1.19 � 10�3 m2�s,
nair � 1.46 � 10�5 m2�s

/.
Re/ � U/�n.

Uh�n, Reb � Ub�n,Reh �
/,

Reynolds (a) Model in (b) Model in (c) Car in Air
Number Glycerin Air

0.571 46.6
0.672 54.8
1.68 137.0 8.56 � 106Re/

3.42 � 106Reb

2.91 � 106Reh

As was discussed in the previous section, it is often possible to treat flow past an object as a com-
bination of viscous flow in the boundary layer and inviscid flow elsewhere. If the Reynolds num-
ber is large enough, viscous effects are important only in the boundary layer regions near the ob-
ject 1and in the wake region behind the object2. The boundary layer is needed to allow for the no-slip
boundary condition that requires the fluid to cling to any solid surface that it flows past. Outside of
the boundary layer the velocity gradients normal to the flow are relatively small, and the fluid acts
as if it were inviscid, even though the viscosity is not zero. A necessary condition for this structure
of the flow is that the Reynolds number be large.

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate

There can be a wide variety in the size of a boundary layer and the structure of the flow within it.
Part of this variation is due to the shape of the object on which the boundary layer forms. In this
section we consider the simplest situation, one in which the boundary layer is formed on an infi-
nitely long flat plate along which flows a viscous, incompressible fluid as is shown in Fig. 9.7. If
the surface were curved 1i.e., a circular cylinder or an airfoil2, the boundary layer structure would
be more complex. Such flows are discussed in Section 9.2.6.

If the Reynolds number is sufficiently large, only the fluid in a relatively thin boundary layer
on the plate will feel the effect of the plate. That is, except in the region next to the plate the flow
velocity will be essentially the upstream velocity. For the infinitely long flat plate extend-
ing from to it is not obvious how to define the Reynolds number because there is
no characteristic length. The plate has no thickness and is not of finite length!

For a finite length plate, it is clear that the plate length, can be used as the characteristic
length. For an infinitely long plate we use x, the coordinate distance along the plate from the lead-
ing edge, as the characteristic length and define the Reynolds number as Thus, forRex � Ux�n.

/,

x � A,x � 0
V � U î,
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any fluid or upstream velocity the Reynolds number will be sufficiently large for boundary layer
type flow 1i.e., Fig. 9.5c2 if the plate is long enough. Physically, this means that the flow situations
illustrated in Fig. 9.5 could be thought of as occurring on the same plate, but should be viewed by
looking at longer portions of the plate as we step away from the plate to see the flows in Fig. 9.5a,
9.5b, and 9.5c, respectively.

If the plate is sufficiently long, the Reynolds number is sufficiently large so that
the flow takes on its boundary layer character 1except very near the leading edge2. The details of
the flow field near the leading edge are lost to our eyes because we are standing so far from the
plate that we cannot make out these details. On this scale 1Fig. 9.5c2 the plate has negligible effect
on the fluid ahead of the plate. The presence of the plate is felt only in the relatively thin bound-
ary layer and wake regions. As previously noted, Prandtl in 1904 was the first to hypothesize such
a concept. It has become one of the major turning points in fluid mechanics analysis.

A better appreciation of the structure of the boundary layer flow can be obtained by con-
sidering what happens to a fluid particle that flows into the boundary layer. As is indicated in
Fig. 9.7, a small rectangular particle retains its original shape as it flows in the uniform flow
outside of the boundary layer. Once it enters the boundary layer, the particle begins to distort
because of the velocity gradient within the boundary layer—the top of the particle has a larger
speed than its bottom. The fluid particles do not rotate as they flow along outside the boundary
layer, but they begin to rotate once they pass through the fictitious boundary layer surface and
enter the world of viscous flow. The flow is said to be irrotational outside the boundary layer
and rotational within the boundary layer. 1In terms of the kinematics of fluid particles as is dis-
cussed in Section 6.1, the flow outside the boundary layer has zero vorticity, and the flow within
the boundary layer has nonzero vorticity.2

At some distance downstream from the leading edge, the boundary layer flow becomes tur-
bulent and the fluid particles become greatly distorted because of the random, irregular nature of
the turbulence. One of the distinguishing features of turbulent flow is the occurrence of irregular
mixing of fluid particles that range in size from the smallest fluid particles up to those compara-
ble in size with the object of interest. For laminar flow, mixing occurs only on the molecular
scale. This molecular scale is orders of magnitude smaller in size than typical size scales for tur-
bulent flow mixing. The transition from a laminar boundary layer to a turbulent boundary layer
occurs at a critical value of the Reynolds number, on the order of to de-
pending on the roughness of the surface and the amount of turbulence in the upstream flow, as is
discussed in Section 9.2.4. As shown by the figure in the margin, the location along the plate
where the flow becomes turbulent, xcr, moves towards the leading edge as the free-stream veloc-
ity increases.

The purpose of the boundary layer is to allow the fluid to change its velocity from the upstream
value of U to zero on the surface. Thus, V 0 at y 0 and V  U î at the edge of the boundary layer,
with the velocity profile, u u(x, y) bridging the boundary layer thickness. This boundary layer char-
acteristic occurs in a variety of flow situations, not just on flat plates. For example, boundary lay-
ers form on the surfaces of cars, in the water running down the gutter of the street, and in the at-
mosphere as the wind blows across the surface of the earth (land or water).

3 106,2 105Rexcr,

Re U/ n
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F I G U R E  9.7 Distortion of a fluid particle as it flows within the
boundary layer.
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In actuality (both mathematically and physically), there is no sharp “edge” to the boundary
layer; that is, as we get farther from the plate. We define the boundary layer thickness, E,
as that distance from the plate at which the fluid velocity is within some arbitrary value of the
upstream velocity. Typically, as indicated in Fig. 9.8a,

where u � 0.99UE � y

uSU
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F l u i d s  i n  t h e  N e w s

The Albatross: Nature’s Aerodynamic Solution for Long
Flights The albatross is a phenomenal seabird that soars just
above ocean waves, taking advantage of the local boundary layer
to travel incredible distances with little to no wing flapping. This
limited physical exertion results in minimal energy consumption
and, combined with aerodynamic optimization, allows the alba-
tross to easily travel 1000 km (620 miles) per day, with some
tracking data showing almost double that amount. The albatross
has high aspect ratio wings (up to 11 ft in wingspan) and a lift-
to-drag ratio (l/d) of approximately 27, both similar to high-
performance sailplanes. With this aerodynamic configuration,

the albatross then makes use of a technique called “dynamic
soaring” to take advantage of the wind profile over the ocean sur-
face. Based on the boundary layer profile, the albatross uses the
rule of dynamic soaring, which is to climb when pointed upwind
and dive when pointed downwind, thus constantly exchanging
kinetic and potential energy. Though the albatross loses energy
to drag, it can periodically regain energy due to vertical and di-
rectional motions within the boundary layer by changing local
airspeed and direction. This is not a direct line of travel, but it
does provide the most fuel-efficient method of long-distance
flight. 

To remove this arbitrariness 1i.e., what is so special about 99%; why not 98%?2, the fol-
lowing definitions are introduced. Shown in Fig. 9.8b are two velocity profiles for flow past
a flat plate—one if there were no viscosity 1a uniform profile2 and the other if there are vis-
cosity and zero slip at the wall 1the boundary layer profile2. Because of the velocity deficit,

within the boundary layer, the flowrate across section b–b is less than that across sec-
tion a–a. However, if we displace the plate at section a–a by an appropriate amount the
boundary layer displacement thickness, the flowrates across each section will be identical. This
is true if

where b is the plate width. Thus,

(9.3)

The displacement thickness represents the amount that the thickness of the body must be
increased so that the fictitious uniform inviscid flow has the same mass flowrate properties as
the actual viscous flow. It represents the outward displacement of the streamlines caused by the

d* � �
A

0
 a1 � u

U
b dy

d*b U � �
A

0

 1U � u2b dy

d*,
U � u,

F I G U R E  9.8 Boundary layer thickness: (a) standard boundary
layer thickness, (b) boundary layer displacement thickness.
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GIVEN Air flowing into a 2-ft-square duct with a uniform ve-
locity of 10 ftZs forms a boundary layer on the walls as shown in
Fig. E9.3a. The fluid within the core region 1outside the boundary
layers2 flows as if it were inviscid. From advanced calculations it
is determined that for this flow the boundary layer displacement
thickness is given by

(1)

where and x are in feet.

FIND Determine the velocity of the air within the
duct but outside of the boundary layer.

U � U1x2

d*

d* � 0.00701x21�2

SOLUTION

F I G U R E  E9.3

Boundary Layer Displacement Thickness

ever, valid for the inviscid flow outside the boundary layer.2
Thus,

Hence, with and we obtain

or

For example, at 
If it were desired to maintain a constant velocity along the

centerline of this entrance region of the duct, the walls could be
displaced outward by an amount equal to the boundary layer dis-
placement thickness, d*.

x � 100 ft.p � �0.0401 lb�ft2

 p � 0.119 c 1 � 1

11 � 0.0070x 1�224 d  lb�ft
2

� c 110 ft�s22 � 102

11 � 0.0079x 1�224 ft2�s2 d

 �
1

2
 12.38 � 10�3 slugs�ft32 

 p �
1

2
 r 1U2

1 � U22

p1 � 0r � 2.38 � 10�3 slugs�ft3

p1 �
1
2rU

2
1 � p � 1

2rU
2

(1) (2)

Inviscid core
2-ft square U(x)

x

δ∗

Viscous effects important
U1 =
10 ft/s

E XAMPLE 9.3

If we assume incompressible flow 1a reasonable assumption be-
cause of the low velocities involved2, it follows that the volume
flowrate across any section of the duct is equal to that at the en-
trance 1i.e., 2. That is,

According to the definition of the displacement thickness, the
flowrate across section 122 is the same as that for a uniform flow
with velocity U through a duct whose walls have been moved in-
ward by That is,

(2)

By combining Eqs. 1 and 2 we obtain

or

(Ans)

COMMENTS Note that U increases in the downstream di-
rection. For example, as shown in Fig. E9.3b, at

The viscous effects that cause the fluid to stick to the
walls of the duct reduce the effective size of the duct, thereby
1from conservation of mass principles2 causing the fluid to ac-
celerate. The pressure drop necessary to do this can be obtained
by using the Bernoulli equation 1Eq. 3.72 along the inviscid
streamlines from section 112 to 122. 1Recall that this equation is
not valid for viscous flows within the boundary layer. It is, how-

x � 100 ft.
U � 11.6 ft�s

U �
10

11 � 0.0070x 1�222 ft�s

40 ft3�s � 4U11 � 0.0070x 1�222

40 ft3�s � �
122

 
u dA � U12 ft � 2d*22

d*.

d*,
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u dA

Q1 � Q2
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U
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0
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viscous effects on the plate. This idea allows us to simulate the presence that the boundary layer
has on the flow outside of the boundary layer by adding the displacement thickness to the ac-
tual wall and treating the flow over the thickened body as an inviscid flow. The displacement
thickness concept is illustrated in Example 9.3.

1a2

1b2



Another boundary layer thickness definition, the boundary layer momentum thickness, is
often used when determining the drag on an object. Again because of the velocity deficit,
in the boundary layer, the momentum flux across section b–b in Fig. 9.8 is less than that across
section a–a. This deficit in momentum flux for the actual boundary layer flow on a plate of width
b is given by

which by definition is the momentum flux in a layer of uniform speed U and thickness That is,

or

(9.4)

All three boundary layer thickness definitions, and are of use in boundary layer analyses.
The boundary layer concept is based on the fact that the boundary layer is thin. For the flat

plate flow this means that at any location x along the plate, Similarly, and 
Again, this is true if we do not get too close to the leading edge of the plate 1i.e., not closer than

or so2.
The structure and properties of the boundary layer flow depend on whether the flow is lami-

nar or turbulent. As is illustrated in Fig. 9.9 and discussed in Sections 9.2.2 through 9.2.5, both the
boundary layer thickness and the wall shear stress are different in these two regimes.

9.2.2 Prandtl/Blasius Boundary Layer Solution

In theory, the details of viscous, incompressible flow past any object can be obtained by solving
the governing Navier–Stokes equations discussed in Section 6.8.2. For steady, two-dimensional
laminar flows with negligible gravitational effects, these equations 1Eqs. 6.127a, b, and c2 reduce
to the following:

(9.5)

(9.6)

which express Newton’s second law. In addition, the conservation of mass equation, Eq. 6.31, for
incompressible flow is

(9.7)
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F I G U R E  9.9 Typical characteristics of boundary
layer thickness and wall shear stress for laminar and turbulent
boundary layers.

τ

δ

w

x

x

x

Laminar Turbulent

Re
cr

The boundary layer
momentum thick-
ness is defined in
terms of momentum
flux.



The appropriate boundary conditions are that the fluid velocity far from the body is the upstream
velocity and that the fluid sticks to the solid body surfaces. Although the mathematical problem is
well-posed, no one has obtained an analytical solution to these equations for flow past any shaped
body! Currently much work is being done to obtain numerical solutions to these governing equa-
tions for many flow geometries.

By using boundary layer concepts introduced in the previous sections, Prandtl was able to
impose certain approximations 1valid for large Reynolds number flows2, and thereby to simplify
the governing equations. In 1908, H. Blasius 11883–19702, one of Prandtl’s students, was able to
solve these simplified equations for the boundary layer flow past a flat plate parallel to the flow.
A brief outline of this technique and the results are presented below. Additional details may be
found in the literature 1Refs. 1–32.

Since the boundary layer is thin, it is expected that the component of velocity normal to the
plate is much smaller than that parallel to the plate and that the rate of change of any parameter
across the boundary layer should be much greater than that along the flow direction. That is,

Physically, the flow is primarily parallel to the plate and any fluid property is convected down-
stream much more quickly than it is diffused across the streamlines.

With these assumptions it can be shown that the governing equations 1Eqs. 9.5, 9.6, and 9.72
reduce to the following boundary layer equations:

(9.8)

(9.9)

Although both these boundary layer equations and the original Navier–Stokes equations are non-
linear partial differential equations, there are considerable differences between them. For one, the
y momentum equation has been eliminated, leaving only the original, unaltered continuity equa-
tion and a modified x momentum equation. One of the variables, the pressure, has been eliminated,
leaving only the x and y components of velocity as unknowns. For boundary layer flow over a flat
plate the pressure is constant throughout the fluid. The flow represents a balance between viscous
and inertial effects, with pressure playing no role.

As shown by the figure in the margin, the boundary conditions for the governing boundary
layer equations are that the fluid sticks to the plate

(9.10)

and that outside of the boundary layer the flow is the uniform upstream flow That is,

(9.11)

Mathematically, the upstream velocity is approached asymptotically as one moves away from the
plate. Physically, the flow velocity is within 1% of the upstream velocity at a distance of from
the plate.

In mathematical terms, the Navier–Stokes equations 1Eqs. 9.5 and 9.62 and the continuity
equation 1Eq. 9.72 are elliptic equations, whereas the equations for boundary layer flow 1Eqs. 9.8
and 9.92 are parabolic equations. The nature of the solutions to these two sets of equations, there-
fore, is different. Physically, this fact translates to the idea that what happens downstream of a
given location in a boundary layer cannot affect what happens upstream of that point. That is,
whether the plate shown in Fig. 9.5c ends with length or is extended to length the flow within
the first segment of length will be the same. In addition, the presence of the plate has no effect
on the flow ahead of the plate. On the other hand, ellipticity allows flow information to propagate
in all directions, including upstream.

In general, the solutions of nonlinear partial differential equations 1such as the boundary layer
equations, Eqs. 9.8 and 9.92 are extremely difficult to obtain. However, by applying a clever coordi-
nate transformation and change of variables, Blasius reduced the partial differential equations to an
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The Navier –Stokes
equations can be
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boundary layer flow
analysis.
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ordinary differential equation that he was able to solve. A brief description of this process is given be-
low. Additional details can be found in standard books dealing with boundary layer flow 1Refs. 1, 22.

It can be argued that in dimensionless form the boundary layer velocity profiles on a flat
plate should be similar regardless of the location along the plate. That is,

where is an unknown function to be determined. In addition, by applying an order of magnitude
analysis of the forces acting on fluid within the boundary layer, it can be shown that the boundary layer
thickness grows as the square root of x and inversely proportional to the square root of U. That is,

Such a conclusion results from a balance between viscous and inertial forces within the boundary
layer and from the fact that the velocity varies much more rapidly in the direction across the bound-
ary layer than along it.

Thus, we introduce the dimensionless similarity variable and the stream func-
tion where is an unknown function. Recall from Section 6.2.3 that
the velocity components for two-dimensional flow are given in terms of the stream function as

and which for this flow become

(9.12)

and

(9.13)

with the notation We substitute Eqs. 9.12 and 9.13 into the governing equations, Eqs.
9.8 and 9.9, to obtain 1after considerable manipulation2 the following nonlinear, third-order ordi-
nary differential equation:

(9.14a)

As shown by the figure in the margin, the boundary conditions given in Eqs. 9.10 and 9.11 can be
written as

(9.14b)

The original partial differential equation and boundary conditions have been reduced to an ordi-
nary differential equation by use of the similarity variable The two independent variables, x and
y, were combined into the similarity variable in a fashion that reduced the partial differential equa-
tion 1and boundary conditions2 to an ordinary differential equation. This type of reduction is not
generally possible. For example, this method does not work on the full Navier–Stokes equations,
although it does on the boundary layer equations 1Eqs. 9.8 and 9.92.

Although there is no known analytical solution to Eq. 9.14, it is relatively easy to integrate
this equation on a computer. The dimensionless boundary layer profile, obtained by
numerical solution of Eq. 9.14 1termed the Blasius solution2, is sketched in Fig. 9.10a and is tab-
ulated in Table 9.1. The velocity profiles at different x locations are similar in that there is only
one curve necessary to describe the velocity at any point in the boundary layer. Because the sim-
ilarity variable contains both x and y, it is seen from Fig. 9.10b that the actual velocity profiles
are a function of both x and y. The profile at location is the same as that at except that the y
coordinate is stretched by a factor of 

From the solution it is found that when Thus,
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or

where It can also be shown that the displacement and momentum thicknesses are
given by

(9.16)

and

(9.17)

As postulated, the boundary layer is thin provided that is large as RexS A2.1i.e., d�xS 0Rex
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F I G U R E  9.10 Blasius boundary layer profile: (a) boundary layer profile in
dimensionless form using the similarity variable (b) similar boundary layer profiles at
different locations along the flat plate.
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With the velocity profile known, it is an easy matter to determine the wall shear stress,
where the velocity gradient is evaluated at the plate. The value of at

can be obtained from the Blasius solution to give

(9.18)

As indicated by Eq. 9.18 and illustrated in the figure in the margin, the shear stress decreases with
increasing x because of the increasing thickness of the boundary layer—the velocity gradient at
the wall decreases with increasing x. Also, varies as not as U as it does for fully devel-
oped laminar pipe flow. These variations are discussed in Section 9.2.3.

9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate

One of the important aspects of boundary layer theory is the determination of the drag caused by
shear forces on a body. As was discussed in the previous section, such results can be obtained from
the governing differential equations for laminar boundary layer flow. Since these solutions are ex-
tremely difficult to obtain, it is of interest to have an alternative approximate method. The momen-
tum integral method described in this section provides such an alternative.

We consider the uniform flow past a flat plate and the fixed control volume as shown in Fig.
9.11. In agreement with advanced theory and experiment, we assume that the pressure is constant
throughout the flow field. The flow entering the control volume at the leading edge of the plate [sec-
tion 112] is uniform, while the velocity of the flow exiting the control volume [section 122] varies
from the upstream velocity at the edge of the boundary layer to zero velocity on the plate.

The fluid adjacent to the plate makes up the lower portion of the control surface. The upper
surface coincides with the streamline just outside the edge of the boundary layer at section 122. It
need not 1in fact, does not2 coincide with the edge of the boundary layer except at section 122. If
we apply the x component of the momentum equation 1Eq. 5.222 to the steady flow of fluid within
this control volume we obtain

where for a plate of width b

(9.19)

and is the drag that the plate exerts on the fluid. Note that the net force caused by the uniform
pressure distribution does not contribute to this flow. Since the plate is solid and the upper surface
of the control volume is a streamline, there is no flow through these areas. Thus,

or
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F I G U R E  9.11 Control volume used in the derivation of the
momentum integral equation for boundary layer flow.
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Although the height h is not known, it is known that for conservation of mass the flowrate
through section 112 must equal that through section 122, or

which can be written as

(9.21)

Thus, by combining Eqs. 9.20 and 9.21 we obtain the drag in terms of the deficit of momentum
flux across the outlet of the control volume as

(9.22)

The idea of a momentum deficit is illustrated in the figure in the margin. If the flow
were inviscid, the drag would be zero, since we would have and the right-hand side of
Eq. 9.22 would be zero. 1This is consistent with the fact that if .2 Equation 9.22
points out the important fact that boundary layer flow on a flat plate is governed by a balance
between shear drag 1the left-hand side of Eq. 9.222 and a decrease in the momentum of the
fluid 1the right-hand side of Eq. 9.222. As x increases, increases and the drag increases. The
thickening of the boundary layer is necessary to overcome the drag of the viscous shear stress
on the plate. This is contrary to horizontal fully developed pipe flow in which the momentum
of the fluid remains constant and the shear force is overcome by the pressure gradient along
the pipe.

The development of Eq. 9.22 and its use was first put forth in 1921 by T. von 
Kármán 11881–19632, a Hungarian /German aerodynamicist. By comparing Eqs. 9.22 and 9.4 we
see that the drag can be written in terms of the momentum thickness, as

(9.23)

Note that this equation is valid for laminar or turbulent flows.
The shear stress distribution can be obtained from Eq. 9.23 by differentiating both sides with

respect to x to obtain

(9.24)

The increase in drag per length of the plate, occurs at the expense of an increase of the
momentum boundary layer thickness, which represents a decrease in the momentum of the fluid.

Since 1see Eq. 9.192 it follows that

(9.25)

Hence, by combining Eqs. 9.24 and 9.25 we obtain the momentum integral equation for the bound-
ary layer flow on a flat plate

(9.26)

The usefulness of this relationship lies in the ability to obtain approximate boundary layer
results easily by using rather crude assumptions. For example, if we knew the detailed velocity
profile in the boundary layer 1i.e., the Blasius solution discussed in the previous section2, we could
evaluate either the right-hand side of Eq. 9.23 to obtain the drag, or the right-hand side of Eq. 9.26
to obtain the shear stress. Fortunately, even a rather crude guess at the velocity profile will allow
us to obtain reasonable drag and shear stress results from Eq. 9.26. This method is illustrated in
Example 9.4.

tw � rU
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� btw
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m � 0tw � 0
u K U
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Drag on a flat plate
is related to mo-
mentum deficit
within the bound-
ary layer.
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As is illustrated in Example 9.4, the momentum integral equation, Eq. 9.26, can be used
along with an assumed velocity profile to obtain reasonable, approximate boundary layer results.
The accuracy of these results depends on how closely the shape of the assumed velocity profile
approximates the actual profile.

Thus, we consider a general velocity profile

and

where the dimensionless coordinate varies from 0 to 1 across the boundary layer. The
dimensionless function can be any shape we choose, although it should be a reasonableg1Y 2

Y � y�d

 
u

U
� 1 for Y 7 1

 
u

U
� g1Y 2 for 0 � Y � 1
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GIVEN Consider the laminar flow of an incompressible fluid
past a flat plate at The boundary layer velocity profile is
approximated as for and for 
as is shown in Fig. E9.4.

FIND Determine the shear stress by using the momentum inte-
gral equation. Compare these results with the Blasius results
given by Eq. 9.18.

y 7 d,u � U0 � y � du � Uy�d
y � 0.

SOLUTION

F I G U R E  E9.4

Momentum Integral Boundary Layer Equation

or

This can be integrated from the leading edge of the plate,
1where 2 to an arbitrary location x where the boundary layer
thickness is The result is

or

(4)

Note that this approximate result 1i.e., the velocity profile is not ac-
tually the simple straight line we assumed2 compares favorably with
the 1much more laborious to obtain2Blasius result given by Eq. 9.15.

The wall shear stress can also be obtained by combining Eqs.
1, 3, and 4 to give

(Ans)

Again this approximate result is close 1within 13%2 to the 
Blasius value of given by Eq. 9.18.tw
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u = Uy/δ

δ

u = U

EXAMPLE 9.4

From Eq. 9.26 the shear stress is given by

(1)

while for laminar flow we know that For the
assumed profile we have

(2)

and from Eq. 9.4

or

(3)

Note that as yet we do not know the value of 1but suspect that it
should be a function of x2. 

By combining Eqs. 1, 2, and 3 we obtain the following differ-
ential equation for 

 
mU

d
�
rU2

6
 
dd

dx

d:

d

™ �
d

6

 � �
d

0

 ay

d
b a1 � y

d
b dy

 ™ � �
q

0

 
u

U
 a1 � u

U
b dy � �

d

0

 
u

U
 a1 � u

U
b dy

tw � m 
U

d

tw � m10u�0y2y�0.

tw � rU
2 

d™

dx

Approximate veloc-
ity profiles are used
in the momentum
integral equation.



approximation to the boundary layer profile, as shown by the figure in the margin. In partic-
ular, it should certainly satisfy the boundary conditions at and at 
That is,

The linear function used in Example 9.4 is one such possible profile. Other conditions,
such as at could also be incorporated into the func-
tion to more closely approximate the actual profile.

For a given the drag can be determined from Eq. 9.22 as

or

(9.27)

where the dimensionless constant has the value

Also, the wall shear stress can be written as

(9.28)

where the dimensionless constant has the value

By combining Eqs. 9.25, 9.27, and 9.28 we obtain

which can be integrated from at to give

or

(9.29)

By substituting this expression back into Eqs. 9.28 we obtain

(9.30)

To use Eqs. 9.29 and 9.30 we must determine the values of and Several assumed ve-
locity profiles and the resulting values of are given in Fig. 9.12 and Table 9.2. The more closely
the assumed shape approximates the actual 1i.e., Blasius2 profile, the more accurate the final re-
sults. For any assumed profile shape, the functional dependence of and on the physical para-
meters and x is the same. Only the constants are different. That is, or

and where 
It is often convenient to use the dimensionless local friction coefficient, defined as
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to express the wall shear stress. From Eq. 9.30 we obtain the approximate value

while the Blasius solution result is given by

(9.32)

These results are also indicated in Table 9.2.
For a flat plate of length and width b, the net friction drag, can be expressed in terms

of the friction drag coefficient, as

or

(9.33)CDf �
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0
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F I G U R E  9.12 Typical 
approximate boundary layer profiles
used in the momentum integral equation.

TA BLE 9 . 2
Flat Plate Momentum Integral Results for Various Assumed
Laminar Flow Velocity Profiles

Profile Character

a. Blasius solution 5.00 0.664 1.328
b. Linear 

3.46 0.578 1.156
c. Parabolic 

5.48 0.730 1.460
d. Cubic 

4.64 0.646 1.292
e. Sine wave 

4.79 0.655 1.310u�U � sin 3p1 y�d2�2 4

u�U � 31 y�d2�2 � 1y�d23�2

u�U � 2y�d � 1y�d22
u�U � y�d

CDfRe�
1�2cfRex

1�2DRex
1�2�x

The friction drag
coefficient is an in-
tegral of the local
friction coefficient.



We use the above approximate value of to obtain

where is the Reynolds number based on the plate length. The corresponding value ob-
tained from the Blasius solution 1Eq. 9.322 and shown by the figure in the margin gives

These results are also indicated in Table 9.2.
The momentum integral boundary layer method provides a relatively simple technique to ob-

tain useful boundary layer results. As is discussed in Sections 9.2.5 and 9.2.6, this technique can
be extended to boundary layer flows on curved surfaces 1where the pressure and fluid velocity at
the edge of the boundary layer are not constant2 and to turbulent flows.

9.2.4 Transition from Laminar to Turbulent Flow

The analytical results given in Table 9.2 are restricted to laminar boundary layer flows along a flat
plate with zero pressure gradient. They agree quite well with experimental results up to the point
where the boundary layer flow becomes turbulent, which will occur for any free-stream velocity
and any fluid provided the plate is long enough. This is true because the parameter that governs
the transition to turbulent flow is the Reynolds number—in this case the Reynolds number based
on the distance from the leading edge of the plate,

The value of the Reynolds number at the transition location is a rather complex function of
various parameters involved, including the roughness of the surface, the curvature of the surface 1for
example, a flat plate or a sphere2, and some measure of the disturbances in the flow outside the
boundary layer. On a flat plate with a sharp leading edge in a typical airstream, the transition takes
place at a distance x from the leading edge given by to Unless otherwise
stated, we will use in our calculations.

The actual transition from laminar to turbulent boundary layer flow may occur over a region
of the plate, not at a specific single location. This occurs, in part, because of the spottiness of the
transition. Typically, the transition begins at random locations on the plate in the vicinity of

These spots grow rapidly as they are convected downstream until the entire width of the
plate is covered with turbulent flow. The photo shown in Fig. 9.13 illustrates this transition process.

The complex process of transition from laminar to turbulent flow involves the instability of the
flow field. Small disturbances imposed on the boundary layer flow 1i.e., from a vibration of the plate,
a roughness of the surface, or a “wiggle” in the flow past the plate2 will either grow 1instability2 or
decay 1stability2, depending on where the disturbance is introduced into the flow. If these disturbances
occur at a location with they will die out, and the boundary layer will return to laminar
flow at that location. Disturbances imposed at a location with will grow and transform
the boundary layer flow downstream of this location into turbulence. The study of the initiation,
growth, and structure of these turbulent bursts or spots is an active area of fluid mechanics research.

Rex 7 Rexcr

Rex 6 Rexcr

Rex � Rexcr.

Rexcr � 5 � 105
3 � 106.Rexcr � 2 � 105

Rex � Ux�n.

CDf �
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1Re/
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cf � 12C1C2m�rUx 21�2
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F I G U R E  9.13
Turbulent spots and the tran-
sition from laminar to turbulent
boundary layer flow on a flat
plate. Flow from left to right.
(Photograph courtesy of 
B. Cantwell, Stanford University.)

V9.5 Transition on
flat plate

The boundary layer
on a flat plate will
become turbulent if
the plate is long
enough.



Transition from laminar to turbulent flow also involves a noticeable change in the shape of
the boundary layer velocity profile. Typical profiles obtained in the neighborhood of the transition
location are indicated in Fig. 9.14. The turbulent profiles are flatter, have a larger velocity gradi-
ent at the wall, and produce a larger boundary layer thickness than do the laminar profiles.
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F I G U R E  9.14 Typical boundary layer
profiles on a flat plate for laminar, transitional, and turbu-
lent flow (Ref. 1).
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GIVEN A fluid flows steadily past a flat plate with a velocity
of 

FIND At approximately what location will the boundary layer
become turbulent, and how thick is the boundary layer at that

U � 10 ft�s.
point if the fluid is 1a2 water at 1b2 standard air, or 
1c2 glycerin at 68 °F?

60 °F,

SOLUTION

Boundary Layer Transition

where is in and and are in feet. The values of the
kinematic viscosity obtained from Tables 1.5 and 1.7 are listed in
Table E9.5 along with the corresponding and 

COMMENT Laminar flow can be maintained on a longer
portion of the plate if the viscosity is increased. However, the
boundary layer flow eventually becomes turbulent, provided the
plate is long enough. Similarly, the boundary layer thickness is
greater if the viscosity is increased.

dcr.xcr

dcrxcrft2�sn

E XAMPLE 9.5

For any fluid, the laminar boundary layer thickness is found from
Eq. 9.15 as

The boundary layer remains laminar up to

Thus, if we assume we obtain

and

dcr � d 0 x�xcr
� 5 c n

10
 15 � 104 n2 d

1�2

� 354 n

 xcr �
5 � 105

10 ft�s
 n � 5 � 104 n

Rexcr � 5 � 105

xcr �
nRexcr

U

d � 5 
A
nx

U

TA B LE E 9 . 5

Fluid ( ) (ft) (ft)

a. Water 0.605 0.00428
b. Air 7.85 0.0556
c. Glycerin 640.0 4.53 1.28 � 10�2

1.57 � 10�4

1.21 � 10�5

Dcrxcrft2�sN

(Ans)



9.2.5 Turbulent Boundary Layer Flow

The structure of turbulent boundary layer flow is very complex, random, and irregular. It shares
many of the characteristics described for turbulent pipe flow in Section 8.3. In particular, the veloc-
ity at any given location in the flow is unsteady in a random fashion. The flow can be thought of as
a jumbled mix of intertwined eddies 1or swirls2 of different sizes 1diameters and angular velocities2.
The figure in the margin shows a laser-induced fluorescence visualization of a turbulent boundary
layer on a flat plate (side view). The various fluid quantities involved 1i.e., mass, momentum, en-
ergy2 are convected downstream in the free-stream direction as in a laminar boundary layer. For tur-
bulent flow they are also convected across the boundary layer 1in the direction perpendicular to the
plate2 by the random transport of finite-sized fluid particles associated with the turbulent eddies.
There is considerable mixing involved with these finite-sized eddies—considerably more than is
associated with the mixing found in laminar flow where it is confined to the molecular scale. Al-
though there is considerable random motion of fluid particles perpendicular to the plate, there is
very little net transfer of mass across the boundary layer—the largest flowrate by far is parallel to
the plate.

There is, however, a considerable net transfer of x component of momentum perpendicular
to the plate because of the random motion of the particles. Fluid particles moving toward the plate
1in the negative y direction2 have some of their excess momentum 1they come from areas of higher
velocity2 removed by the plate. Conversely, particles moving away from the plate 1in the positive
y direction2 gain momentum from the fluid 1they come from areas of lower velocity2. The net re-
sult is that the plate acts as a momentum sink, continually extracting momentum from the fluid.
For laminar flows, such cross-stream transfer of these properties takes place solely on the mole-
cular scale. For turbulent flow the randomness is associated with fluid particle mixing. Conse-
quently, the shear force for turbulent boundary layer flow is considerably greater than it is for
laminar boundary layer flow 1see Section 8.3.22.

There are no “exact” solutions for turbulent boundary layer flow. As is discussed in Section
9.2.2, it is possible to solve the Prandtl boundary layer equations for laminar flow past a flat plate
to obtain the Blasius solution 1which is “exact” within the framework of the assumptions involved
in the boundary layer equations2. Since there is no precise expression for the shear stress in turbu-
lent flow 1see Section 8.32, solutions are not available for turbulent flow. However, considerable
headway has been made in obtaining numerical 1computer2 solutions for turbulent flow by using
approximate shear stress relationships. Also, progress is being made in the area of direct, full nu-
merical integration of the basic governing equations, the Navier–Stokes equations.

Approximate turbulent boundary layer results can also be obtained by use of the momen-
tum integral equation, Eq. 9.26, which is valid for either laminar or turbulent flow. What is
needed for the use of this equation are reasonable approximations to the velocity profile

where and u is the time-averaged velocity 1the overbar notation, of Sec-
tion 8.3.2 has been dropped for convenience2, and a functional relationship describing the wall
shear stress. For laminar flow the wall shear stress was used as In theory,
such a technique should work for turbulent boundary layers also. However, as is discussed in
Section 8.3, the details of the velocity gradient at the wall are not well understood for turbulent
flow. Thus, it is necessary to use some empirical relationship for the wall shear stress. This is
illustrated in Example 9.6.

tw � m10u�0y2y�0.

u,Y � y�du � U g1Y 2,
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Random transport
of finite-sized fluid
particles occurs
within turbulent
boundary layers.

Plate

GIVEN Consider turbulent flow of an incompressible fluid
past a flat plate. The boundary layer velocity profile is assumed
to be for and for

as shown in Fig. E9.6. This is a reasonable approxima-
tion of experimentally observed profiles, except very near the
plate where this formula gives at Note the
differences between the assumed turbulent profile and the lami-
nar profile. Also assume that the shear stress agrees with the

y � 0.0u�0y � q

Y 7 1
u � UY � y�d � 1u�U � 1y�d21� 7 � Y1� 7

experimentally determined formula:

(1)

FIND Determine the boundary layer thicknesses and 
and the wall shear stress, as a function of x. Determine the
friction drag coefficient, CDf.

tw,
™d, d*,

tw � 0.0225rU2 a n
Ud
b

1�4

Turbulent Boundary Layer PropertiesEXAMPLE 9.6
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SOLUTION

Similarly, from Eq. 2,

(4) (Ans)

The functional dependence for and is the same; only the
constants of proportionality are different. Typically,

By combining Eqs. 1 and 3, we obtain the following result for
the wall shear stress

(Ans)

This can be integrated over the length of the plate to obtain the
friction drag on one side of the plate, as

or

where is the area of the plate. 1This result can also be ob-
tained by combining Eq. 9.23 and the expression for the momen-
tum thickness given in Eq. 4.2 The corresponding friction drag
coefficient, is

(Ans)

COMMENT Note that for the turbulent boundary layer flow
the boundary layer thickness increases with x as and the
shear stress decreases as For laminar flow these de-
pendencies are and respectively. The random charac-
ter of the turbulent flow causes a different structure of the flow.

Obviously the results presented in this example are valid only
in the range of validity of the original data—the assumed veloc-
ity profile and shear stress. This range covers smooth flat plates
with 5 � 105 6 Re/ 6 107.
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Whether the flow is laminar or turbulent, it is true that the drag
force is accounted for by a reduction in the momentum of the
fluid flowing past the plate. The shear is obtained from Eq. 9.26
in terms of the rate at which the momentum boundary layer thick-
ness, increases with distance along the plate as

For the assumed velocity profile, the boundary layer momen-
tum thickness is obtained from Eq. 9.4 as

or by integration

(2)

where is an unknown function of x. By combining the assumed
shear force dependence 1Eq. 12 with Eq. 2, we obtain the follow-
ing differential equation for 

or

This can be integrated from at to obtain

(3) (Ans)

or in dimensionless form

Strictly speaking, the boundary layer near the leading edge of
the plate is laminar, not turbulent, and the precise boundary
condition should be the matching of the initial turbulent bound-
ary layer thickness 1at the transition location2 with the thickness
of the laminar boundary layer at that point. In practice, how-
ever, the laminar boundary layer often exists over a relatively
short portion of the plate, and the error associated with starting
the turbulent boundary layer with at can be negli-
gible.

The displacement thickness, and the momentum thickness,
can be obtained from Eqs. 9.3 and 9.4 by integrating as fol-

lows:

Thus, by combining this with Eq. 3 we obtain
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In general, the drag coefficient for a flat plate of length is a function of the Reynolds num-
ber, and the relative roughness, The results of numerous experiments covering a wide range
of the parameters of interest are shown in Fig. 9.15. For laminar boundary layer flow the drag co-
efficient is a function of only the Reynolds number—surface roughness is not important. This is
similar to laminar flow in a pipe. However, for turbulent flow, the surface roughness does affect the
shear stress and, hence, the drag coefficient. This is similar to turbulent pipe flow in which the sur-
face roughness may protrude into or through the viscous sublayer next to the wall and alter the flow
in this thin, but very important, layer 1see Section 8.4.12. Values of the roughness, for different
materials can be obtained from Table 8.1.

The drag coefficient diagram of Fig. 9.15 1boundary layer flow2 shares many characteris-
tics in common with the familiar Moody diagram 1pipe flow2 of Fig. 8.23, even though the mech-
anisms governing the flow are quite different. Fully developed horizontal pipe flow is governed
by a balance between pressure forces and viscous forces. The fluid inertia remains constant
throughout the flow. Boundary layer flow on a horizontal flat plate is governed by a balance be-
tween inertia effects and viscous forces. The pressure remains constant throughout the flow. 1As
is discussed in Section 9.2.6, for boundary layer flow on curved surfaces, the pressure is not
constant.2

It is often convenient to have an equation for the drag coefficient as a function of the Reynolds
number and relative roughness rather than the graphical representation given in Fig. 9.15. Although
there is not one equation valid for the entire range, the equations presented in Table 9.3
do work well for the conditions indicated.

Re/ � e�/

e,

e�/.Re/,
/
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F I G U R E  9.15 Friction drag coefficient for a flat
plate parallel to the upstream flow (Ref. 18, with permission).

The flat plate drag
coefficient is a
function of relative
roughness and
Reynolds number.

TA BLE 9 . 3
Empirical Equations for the Flat Plate Drag Coefficient (Ref. 1)

Equation Flow Conditions

Laminar flow
Transitional with 
Turbulent, smooth plate
Completely turbulentCDf � 31.89 � 1.62 log1e�/2 4�2.5

CDf � 0.455� 1log Re/22.58

Rexcr � 5 � 105CDf � 0.455� 1log Re/22.58 � 1700�Re/

CDf � 1.328� 1Re/20.5



9.2.6 Effects of Pressure Gradient

The boundary layer discussions in the previous parts of Section 9.2 have dealt with flow along a
flat plate in which the pressure is constant throughout the fluid. In general, when a fluid flows past
an object other than a flat plate, the pressure field is not uniform. As shown in Fig. 9.6, if the
Reynolds number is large, relatively thin boundary layers will develop along the surfaces. Within
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GIVEN The water ski shown in Fig. E9.7a moves through
water with a velocity U.70 °F

FIND Estimate the drag caused by the shear stress on the bot-
tom of the ski for 0 6 U 6 30 ft�s.

SOLUTION

Drag on a Flat Plate

From Eq. 1 the corresponding drag is 

By covering the range of upstream velocities of interest we obtain
the results shown in Fig. E9.7b. (Ans)

COMMENTS If the results of boundary layer
theory are not valid—inertia effects are not dominant enough and
the boundary layer is not thin compared with the length of the
plate. For our problem this corresponds to 
For all practical purposes U is greater than this value, and the flow
past the ski is of the boundary layer type.

The approximate location of the transition from laminar to tur-
bulent boundary layer flow as defined by 

is indicated in Fig. E9.7b. Up to the entire
boundary layer is laminar. The fraction of the boundary layer that
is laminar decreases as U increases until only the front 0.18 ft is
laminar when 

For anyone who has water skied, it is clear that it can require
considerably more force to be pulled along at than the

1two skis2 indicated in Fig. E9.7b. As is
discussed in Section 9.3, the total drag on an object such as a wa-
ter ski consists of more than just the friction drag. Other compo-
nents, including pressure drag and wave-making drag, add con-
siderably to the total resistance.

2 � 4.88 lb � 9.76 lb
30 ft�s

U � 30 ft�s.

U � 1.31 ft�s5 � 105
Recr � rUxcr�m �

U � 2.63 � 10�3 ft�s.

Re f 1000,

df � 1.941102210.003082 � 0.598 lb

0.00308.

E XAMPLE 9.7

Clearly the ski is not a flat plate, and it is not aligned exactly
parallel to the upstream flow. However, we can obtain a reason-
able approximation to the shear force by using the flat plate re-
sults. That is, the friction drag, caused by the shear stress on
the bottom of the ski 1the wall shear stress2 can be determined as

With and 
1see Table B.12 we obtain

(1)

where and U are in pounds and respectively.
The friction coefficient, can be obtained from Fig. 9.15 or

from the appropriate equations given in Table 9.3. As we will see,
for this problem, much of the flow lies within the transition
regime where both the laminar and turbulent portions of the
boundary layer flow occupy comparable lengths of the plate. We
choose to use the values of from the table.

For the given conditions we obtain

where U is in With or we
obtain from Table 9.3 CDf� 0.455�1log Re/22.58�1700�Re/ �

Re/ � 3.80 � 106,U � 10 ft�s,ft�s.

Re/ �
rU/

m
�
11.94 slugs�ft32 14 ft2U
2.04 � 10�5 lb # s�ft2 � 3.80 � 105 U

CDf

CDf,
ft�s,df

 � 1.94 U2CDf

 df �
1
2 11.94 slugs�ft32 12.0 ft22U2CDf

2.04 � 10�5 lb # s�ft2
m �A� /b � 4 ft � 0.5 ft � 2 ft2, r � 1.94 slugs�ft3,

df �
1
2rU

2/bCDf

df,

0
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these layers the component of the pressure gradient in the streamwise direction 1i.e., along the body
surface2 is not zero, although the pressure gradient normal to the surface is negligibly small. That
is, if we were to measure the pressure while moving across the boundary layer from the body to
the boundary layer edge, we would find that the pressure is essentially constant. However, the pres-
sure does vary in the direction along the body surface if the body is curved, as shown by the fig-
ure in the margin. The variation in the free-stream velocity, the fluid velocity at the edge of
the boundary layer, is the cause of the pressure gradient in this direction. The characteristics of the
entire flow 1both within and outside of the boundary layer2 are often highly dependent on the pres-
sure gradient effects on the fluid within the boundary layer.

For a flat plate parallel to the upstream flow, the upstream velocity 1that far ahead of the
plate2 and the free-stream velocity 1that at the edge of the boundary layer2 are equal—
This is a consequence of the negligible thickness of the plate. For bodies of nonzero thickness,
these two velocities are different. This can be seen in the flow past a circular cylinder of diame-
ter D. The upstream velocity and pressure are U and respectively. If the fluid were completely
inviscid the Reynolds number would be infinite and the stream-
lines would be symmetrical, as are shown in Fig. 9.16a. The fluid velocity along the surface would
vary from at the very front and rear of the cylinder 1points A and F are stagnation points2
to a maximum of at the top and bottom of the cylinder 1point C 2. This is also indicated
in the figure in the margin. The pressure on the surface of the cylinder would be symmetrical
about the vertical midplane of the cylinder, reaching a maximum value of 1the stag-
nation pressure2 at both the front and back of the cylinder, and a minimum of at the
top and bottom of the cylinder. The pressure and free-stream velocity distributions are shown in
Figs. 9.16b and 9.16c. These characteristics can be obtained from potential flow analysis of Sec-
tion 6.6.3.

Because of the absence of viscosity 1therefore, 2 and the symmetry of the pressure
distribution for inviscid flow past a circular cylinder, it is clear that the drag on the cylinder is zero.
Although it is not obvious, it can be shown that the drag is zero for any object that does not produce
a lift 1symmetrical or not2 in an inviscid fluid 1Ref. 42. Based on experimental evidence, however, we
know that there must be a net drag. Clearly, since there is no purely inviscid fluid, the reason for the
observed drag must lie on the shoulders of the viscous effects.

To test this hypothesis, we could conduct an experiment by measuring the drag on an object
1such as a circular cylinder2 in a series of fluids with decreasing values of viscosity. To our initial
surprise we would find that no matter how small we make the viscosity 1provided it is not pre-
cisely zero2 we would measure a finite drag, essentially independent of the value of As was
noted in Section 6.6.3, this leads to what has been termed d’Alembert’s paradox—the drag on an

m.

tw 0

p0 3rU2 2
p0 rU2 2

Ufs 2U
Ufs 0

rUD m 21Re 1m 02,
p0,

U Ufs.

Ufs,
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object in an inviscid fluid is zero, but the drag on an object in a fluid with vanishingly small 1but
nonzero2 viscosity is not zero.

The reason for the above paradox can be described in terms of the effect of the pressure
gradient on boundary layer flow. Consider large Reynolds number flow of a real 1viscous2 fluid
past a circular cylinder. As was discussed in Section 9.1.2, we expect the viscous effects to be
confined to thin boundary layers near the surface. This allows the fluid to stick to the
surface —a necessary condition for any fluid, provided The basic idea of boundary layer
theory is that the boundary layer is thin enough so that it does not greatly disturb the flow out-
side the boundary layer. Based on this reasoning, for large Reynolds numbers the flow through-
out most of the flow field would be expected to be as is indicated in Fig. 9.16a, the inviscid
flow field.

The pressure distribution indicated in Fig. 9.16b is imposed on the boundary layer flow along
the surface of the cylinder. In fact, there is negligible pressure variation across the thin boundary
layer so that the pressure within the boundary layer is that given by the inviscid flow field. This
pressure distribution along the cylinder is such that the stationary fluid at the nose of the cylinder

is accelerated to its maximum velocity at and then is de-
celerated back to zero velocity at the rear of the cylinder at This is accom-
plished by a balance between pressure and inertia effects; viscous effects are absent for the invis-
cid flow outside the boundary layer.

Physically, in the absence of viscous effects, a fluid particle traveling from the front to
the back of the cylinder coasts down the “pressure hill” from to 1from point A
to C in Fig. 9.16b2 and then back up the hill to 1from point C to F 2 without any loss
of energy. There is an exchange between kinetic and pressure energy, but there are no energy
losses. The same pressure distribution is imposed on the viscous fluid within the boundary layer.
The decrease in pressure in the direction of flow along the front half of the cylinder is termed
a favorable pressure gradient. The increase in pressure in the direction of flow along the rear
half of the cylinder is termed an adverse pressure gradient.

Consider a fluid particle within the boundary layer indicated in Fig. 9.17a. In its attempt
to flow from A to F it experiences the same pressure distribution as the particles in the free
stream immediately outside the boundary layer —the inviscid flow field pressure. However,
because of the viscous effects involved, the particle in the boundary layer experiences a loss
of energy as it flows along. This loss means that the particle does not have enough energy to
coast all of the way up the pressure hill 1from C to F 2 and to reach point F at the rear of the
cylinder. This kinetic energy deficit is seen in the velocity profile detail at point C, shown in
Fig. 9.17a. Because of friction, the boundary layer fluid cannot travel from the front to the
rear of the cylinder. 1This conclusion can also be obtained from the concept that due to vis-
cous effects the particle at C does not have enough momentum to allow it to coast up the pres-
sure hill to F.2

The situation is similar to a bicyclist coasting down a hill and up the other side of the val-
ley. If there were no friction, the rider starting with zero speed could reach the same height from
which he or she started. Clearly friction 1rolling resistance, aerodynamic drag, etc.2 causes a loss
of energy 1and momentum2, making it impossible for the rider to reach the height from which he
or she started without supplying additional energy 1i.e., pedaling2. The fluid within the boundary
layer does not have such an energy supply. Thus, the fluid flows against the increasing pressure as
far as it can, at which point the boundary layer separates from 1lifts off 2 the surface. This bound-
ary layer separation is indicated in Fig. 9.17a as well as the figures in the margin. (See the pho-
tograph at the beginning of Chapters 7, 9, and 11.) Typical velocity profiles at representative lo-
cations along the surface are shown in Fig. 9.17b. At the separation location 1profile D2, the velocity
gradient at the wall and the wall shear stress are zero. Beyond that location 1from D to E 2 there is
reverse flow in the boundary layer.

As is indicated in Fig. 9.17c, because of the boundary layer separation, the average pressure
on the rear half of the cylinder is considerably less than that on the front half. Thus, a large pres-
sure drag is developed, even though 1because of small viscosity2 the viscous shear drag may be
quite small. D’Alembert’s paradox is explained. No matter how small the viscosity, provided it is
not zero, there will be a boundary layer that separates from the surface, giving a drag that is, for
the most part, independent of the value of m.

u � 180°
u � 90°u � 0

u � 180°2.1Ufs � 0
u � 90°21Ufs � 2U1Ufs � 0 at u � 02

m q 0.
1V � 02
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The location of separation, the width of the wake region behind the object, and the pressure
distribution on the surface depend on the nature of the boundary layer flow. Compared with a lam-
inar boundary layer, a turbulent boundary layer flow has more kinetic energy and momentum as-
sociated with it because: 112 as is indicated in Fig. E9.6, the velocity profile is fuller, more nearly
like the ideal uniform profile, and 122 there can be considerable energy associated with the swirling,
random components of the velocity that do not appear in the time-averaged x component of veloc-
ity. Thus, as is indicated in Fig. 9.17c, the turbulent boundary layer can flow farther around the
cylinder 1farther up the pressure hill2 before it separates than can the laminar boundary layer.

The structure of the flow field past a circular cylinder is completely different for a zero vis-
cosity fluid than it is for a viscous fluid, no matter how small the viscosity is, provided it is not
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F I G U R E  9.17 Boundary layer characteristics on a circular cylinder: (a) boundary
layer separation location, (b) typical boundary layer velocity profiles at various locations on the 
cylinder, (c) surface pressure distributions for inviscid flow and boundary layer flow.
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Increasing truck mpg A large portion of the aerodynamic drag
on semis (tractor-trailer rigs) is a result of the low pressure on
the flat back end of the trailer. Researchers have recently devel-
oped a drag-reducing attachment that could reduce fuel costs on
these big rigs by 10 percent. The device consists of a set of flat
plates (attached to the rear of the trailer) that fold out into a box

shape, thereby making the originally flat rear of the trailer a
somewhat more “aerodynamic” shape. Based on thorough wind
tunnel testing and actual tests conducted with a prototype design
used in a series of cross-country runs, it is estimated that trucks
using the device could save approximately $6,000 a year in fuel
costs.

Viscous effects
within the bound-
ary layer cause
boundary layer
separation.



zero. This is due to boundary layer separation. Similar concepts hold for other shaped bodies as
well. The flow past an airfoil at zero angle of attack 1the angle between the upstream flow and the
axis of the object2 is shown in Fig. 9.18a; flow past the same airfoil at a angle of attack is shown
in Fig. 9.18b. Over the front portion of the airfoil the pressure decreases in the direction of flow—
a favorable pressure gradient. Over the rear portion the pressure increases in the direction of flow—
an adverse pressure gradient. The boundary layer velocity profiles at representative locations are
similar to those indicated in Fig. 9.17b for flow past a circular cylinder. If the adverse pressure
gradient is not too great 1because the body is not too “thick” in some sense2, the boundary layer
fluid can flow into the slightly increasing pressure region 1i.e., from C to the trailing edge in Fig.
9.18a2 without separating from the surface. However, if the pressure gradient is too adverse 1because
the angle of attack is too large2, the boundary layer will separate from the surface as indicated in
Fig. 9.18b. Such situations can lead to the catastrophic loss of lift called stall, which is discussed
in Section 9.4.

Streamlined bodies are generally those designed to eliminate 1or at least to reduce2 the ef-
fects of separation, whereas nonstreamlined bodies generally have relatively large drag due to the
low pressure in the separated regions 1the wake2. Although the boundary layer may be quite thin,
it can appreciably alter the entire flow field because of boundary layer separation. These ideas are
discussed in Section 9.3.

9.2.7 Momentum Integral Boundary Layer Equation with Nonzero
Pressure Gradient

The boundary layer results discussed in Sections 9.2.2 and 9.2.3 are valid only for boundary lay-
ers with zero pressure gradients. They correspond to the velocity profile labeled C in Fig. 9.17b.
Boundary layer characteristics for flows with nonzero pressure gradients can be obtained from
nonlinear, partial differential boundary layer equations similar to Eqs. 9.8 and 9.9, provided the
pressure gradient is appropriately accounted for. Such an approach is beyond the scope of this
book 1Refs. 1, 22.

5°
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F I G U R E  9.18 Flow visualization photographs of flow past an airfoil (the boundary layer
velocity profiles for the points indicated are similar to those indicated in Fig. 9.17b): (a) zero angle of attack,
no separation, (b) angle of attack, flow separation. Dye in water. (Photograph courtesy of ONERA, France.)5�

Streamlined bodies
generally have no
separated flow.



An alternative approach is to extend the momentum integral boundary layer equation technique
1Section 9.2.32 so that it is applicable for flows with nonzero pressure gradients. The momentum in-
tegral equation for boundary layer flows with zero pressure gradient, Eq. 9.26, is a statement of the
balance between the shear force on the plate 1represented by 2 and rate of change of momentum of
the fluid within the boundary layer [represented by ]. For such flows the free-stream ve-
locity is constant If the free-stream velocity is not constant [ where x is the
distance measured along the curved body], the pressure will not be constant. This follows from the
Bernoulli equation with negligible gravitational effects, since is constant along the stream-
lines outside the boundary layer. Thus,

(9.34)

For a given body the free-stream velocity and the corresponding pressure gradient on the surface
can be obtained from inviscid flow techniques 1potential flow2 discussed in Section 6.7. 1This is
how the circular cylinder results of Fig. 9.16 were obtained.2

Flow in a boundary layer with nonzero pressure gradient is very similar to that shown in Fig.
9.11, except that the upstream velocity, U, is replaced by the free-stream velocity, and the
pressures at sections 112 and 122 are not necessarily equal. By using the x component of the mo-
mentum equation 1Eq. 5.222 with the appropriate shear forces and pressure forces acting on the
control surface indicated in Fig. 9.11, the following integral momentum equation for boundary
layer flows is obtained:

(9.35)

The derivation of this equation is similar to that of the corresponding equation for constant-pressure
boundary layer flow, Eq. 9.26, although the inclusion of the pressure gradient effect brings in ad-
ditional terms 1Refs. 1, 2, 32. For example, both the boundary layer momentum thickness, and
the displacement thickness, are involved.

Equation 9.35, the general momentum integral equation for two-dimensional boundary layer
flow, represents a balance between viscous forces 1represented by 2, pressure forces 1represented
by 2, and the fluid momentum 1represented by the boundary layer mo-
mentum thickness2. In the special case of a flat plate, constant, and Eq. 9.35 reduces
to Eq. 9.26.

Equation 9.35 can be used to obtain boundary layer information in a manner similar to that
done for the flat plate boundary layer 1Section 9.2.32. That is, for a given body shape the free-
stream velocity, is determined, and a family of approximate boundary layer profiles is assumed.
Equation 9.35 is then used to provide information about the boundary layer thickness, wall shear
stress, and other properties of interest. The details of this technique are not within the scope of this
book 1Refs. 1, 32.
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9.3 Drag

As was discussed in Section 9.1, any object moving through a fluid will experience a drag, —a net
force in the direction of flow due to the pressure and shear forces on the surface of the object. This net
force, a combination of flow direction components of the normal and tangential forces on the body,
can be determined by use of Eqs. 9.1 and 9.2, provided the distributions of pressure, p, and wall shear
stress, are known. Only in very rare instances can these distributions be determined analytically.
The boundary layer flow past a flat plate parallel to the upstream flow as is discussed in Section 9.2
is one such case. Current advances in computational fluid dynamics, CFD, 1i.e., the use of computers
to solve the governing equations of the flow field2 have provided encouraging results for more com-
plex shapes. However, much work in this area remains.

Most of the information pertaining to drag on objects is a result of numerous experiments with
wind tunnels, water tunnels, towing tanks, and other ingenious devices that are used to measure the
drag on scale models. As was discussed in Chapter 7, these data can be put into dimensionless form

tw,

d

Pressure gradient
effects can be in-
cluded in the mo-
mentum integral
equation.



and the results can be appropriately ratioed for prototype calculations. Typically, the result for a
given-shaped object is a drag coefficient, where

(9.36)

and is a function of other dimensionless parameters such as Reynolds number, Re, Mach num-
ber, Ma, Froude number, Fr, and relative roughness of the surface, That is,

The character of as a function of these parameters is discussed in this section.

9.3.1 Friction Drag

Friction drag, is that part of the drag that is due directly to the shear stress, on the object.
It is a function of not only the magnitude of the wall shear stress, but also of the orientation of the
surface on which it acts. This is indicated by the factor in Eq. 9.1. If the surface is parallel
to the upstream velocity, the entire shear force contributes directly to the drag. This is true for the
flat plate parallel to the flow as was discussed in Section 9.2. If the surface is perpendicular to the
upstream velocity, the shear stress contributes nothing to the drag. Such is the case for a flat plate
normal to the upstream velocity as was discussed in Section 9.1.

In general, the surface of a body will contain portions parallel to and normal to the upstream
flow, as well as any direction in between. A circular cylinder is such a body. Because the viscos-
ity of most common fluids is small, the contribution of the shear force to the overall drag on a
body is often quite small. Such a statement should be worded in dimensionless terms. That is, be-
cause the Reynolds number of most familiar flows is quite large, the percent of the drag caused
directly by the shear stress is often quite small. For highly streamlined bodies or for low Reynolds
number flow, however, most of the drag may be due to friction drag.

The friction drag on a flat plate of width b and length oriented parallel to the upstream
flow can be calculated from

where is the friction drag coefficient. The value of given as a function of Reynolds num-
ber, and relative surface roughness, in Fig. 9.15 and Table 9.3, is a result of
boundary layer analysis and experiments 1see Section 9.22. Typical values of roughness, for var-
ious surfaces are given in Table 8.1. As with the pipe flow discussed in Chapter 8, the flow is di-
vided into two distinct categories—laminar or turbulent, with a transitional regime connecting
them. The drag coefficient 1and, hence, the drag2 is not a function of the plate roughness if the
flow is laminar. However, for turbulent flow the roughness does considerably affect the value of

As with pipe flow, this dependence is a result of the surface roughness elements protruding
into or through the laminar sublayer 1see Section 8.32.

Most objects are not flat plates parallel to the flow; instead, they are curved surfaces along
which the pressure varies. As was discussed in Section 9.2.6, this means that the boundary layer char-
acter, including the velocity gradient at the wall, is different for most objects from that for a flat plate.
This can be seen in the change of shape of the boundary layer profile along the cylinder in Fig. 9.17b.

The precise determination of the shear stress along the surface of a curved body is quite
difficult to obtain. Although approximate results can be obtained by a variety of techniques 1Refs.
1, 22, these are outside the scope of this text. As is shown by the following example, if the shear
stress is known, its contribution to the drag can be determined.
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Friction (viscous)
drag is the drag
produced by viscous
shear stresses.

GIVEN A viscous, incompressible fluid flows past the circu-
lar cylinder shown in Fig. E9.8a. According to a more advanced
theory of boundary layer flow, the boundary layer remains
attached to the cylinder up to the separation location at

with the dimensionless wall shear stress as is indi-u � 108.8°,

Drag Coefficient Based on Friction DragE XAMPLE 9.8

cated in Fig. E9.8b 1Ref. 12. The shear stress on the cylinder in
the wake region, is negligible. 

FIND Determine the drag coefficient for the cylinder
based on the friction drag only.

CDf,

108.8 6 u 6 180°,



9.3.2 Pressure Drag

Pressure drag, is that part of the drag that is due directly to the pressure, p, on an object.
It is often referred to as form drag because of its strong dependency on the shape or form of the
object. Pressure drag is a function of the magnitude of the pressure and the orientation of the
surface element on which the pressure force acts. For example, the pressure force on either side
of a flat plate parallel to the flow may be very large, but it does not contribute to the drag be-
cause it acts in the direction normal to the upstream velocity. On the other hand, the pressure
force on a flat plate normal to the flow provides the entire drag.

As previously noted, for most bodies, there are portions of the surface that are parallel to the
upstream velocity, others normal to the upstream velocity, and the majority of which are at some
angle in between, as shown by the figure in the margin. The pressure drag can be obtained from
Eq. 9.1 provided a detailed description of the pressure distribution and the body shape is given.
That is,

dp � �  p cos u dA

dp,
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SOLUTION
where b is the length of the cylinder. Note that is in radians 1not
degrees2 to ensure the proper dimensions of 
Thus,

This can be put into dimensionless form by using the dimension-
less shear stress parameter, given in
Fig. E9.8b as follows:

where Thus,

(1)

The function obtained from Fig. E9.8b, is plotted in
Fig. E9.8c. The necessary integration to obtain from Eq. 1 can
be done by an appropriate numerical technique or by an approxi-
mate graphical method to determine the area under the given
curve.

The result is or

(Ans)

COMMENTS Note that the total drag must include both the
shear stress 1friction2 drag and the pressure drag. As we will see in
Example 9.9, for the circular cylinder most of the drag is due to
the pressure force.

The above friction drag result is valid only if the boundary layer
flow on the cylinder is laminar. As is discussed in Section 9.3.3, for
a smooth cylinder this means that It is
also valid only for flows that have a Reynolds number sufficiently
large to ensure the boundary layer structure to the flow. For the
cylinder, this means Re 7 100.
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uThe friction drag, can be determined from Eq. 9.1 as
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which can be rewritten in terms of the pressure drag coefficient, as

(9.37)

Here is the pressure coefficient, where is a reference pressure. The level
of the reference pressure does not influence the drag directly because the net pressure force on a
body is zero if the pressure is constant 1i.e., 2 on the entire surface.

For flows in which inertial effects are large relative to viscous effects 1i.e., large Reynolds
number flows2, the pressure difference, scales directly with the dynamic pressure,
and the pressure coefficient is independent of Reynolds number. In such situations we expect the
drag coefficient to be relatively independent of Reynolds number.

For flows in which viscous effects are large relative to inertial effects 1i.e., very small Reynolds
number flows2, it is found that both the pressure difference and wall shear stress scale with the
characteristic viscous stress, where is a characteristic length. In such situations we expect
the drag coefficient to be proportional to That is,

These characteristics are similar to the friction factor dependence of for
laminar pipe flow and constant for large Reynolds number flow 1see Section 8.42.

If the viscosity were zero, the pressure drag on any shaped object 1symmetrical or not2 in a
steady flow would be zero. There perhaps would be large pressure forces on the front portion of
the object, but there would be equally large 1and oppositely directed2 pressure forces on the rear
portion. If the viscosity is not zero, the net pressure drag may be nonzero because of boundary
layer separation as is discussed in Section 9.2.6. Example 9.9 illustrates this.

f 
f  1� Rem�rU/ � 1�Re.

CD  d� 1rU2�22  1mU�/2� 1rU2�22 1�Re.
/mU�/,

rU2�2,p � p0,

p0

p0Cp � 1p � p02� 1rU 2�22

 CDp �
dp

1
2rU

2A
�
�  p cos u dA

1
2rU

2A
�
�Cp cos u dA

A

CDp,
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The pressure coeffi-
cient is a dimen-
sionless form of the
pressure.

GIVEN A viscous, incompressible fluid flows past the circular
cylinder shown in Fig. E9.8a. The pressure coefficient on the
surface of the cylinder 1as determined from experimental measure-
ments2 is as indicated in Fig. E9.9a.

SOLUTION

Drag Coefficient Based on Pressure Drag

cylinder reduces the drag by pulling on the cylin-
der in the upstream direction. The positive area under the 
curve is greater than the negative area—there is a net pressure drag.
In the absence of viscosity, these two contributions would be
equal—there would be no pressure 1or friction2 drag.

The net drag on the cylinder is the sum of friction and pressure
drag. Thus, from Eq. 1 of Example 9.8 and Eq. 1 of this example,
we obtain the drag coefficient

(2) (Ans)

This result is compared with the standard experimental value 1ob-
tained from Fig. 9.212 in Fig. E9.9c. The agreement is very good
over a wide range of Reynolds numbers. For the curves
diverge because the flow is not a boundary layer type flow—the
shear stress and pressure distributions used to obtain Eq. 2 are not
valid in this range. The drastic divergence in the curves for

is due to the change from a laminar to turbulent
boundary layer, with the corresponding change in the pressure
distribution. This is discussed in Section 9.3.3.

Re 7 3 � 105

Re 6 10

CD � CDf � CDp �
5.93

1Re
� 1.17

Cp cos u
130 6 u 6 90°2

E XAMPLE 9.9

The pressure 1form2 drag coefficient, can be determined from
Eq. 9.37 as

or because of symmetry

where b and D are the length and diameter of the cylinder. To ob-
tain we must integrate the function from

radians. Again, this can be done by some numer-
ical integration scheme or by determining the area under the
curve shown in Fig. E9.9b. The result is

(1) (Ans)

Note that the positive pressure on the front portion of the cylinder
and the negative pressure 1less than the upstream

value2 on the rear portion produce positive contri-
butions to the drag. The negative pressure on the front portion of the

190 � u � 180°2
10 � u � 30°2

CDp � 1.17

u � 0 to u � p
Cp cos uCDp,

CDp � �
p

0

 Cp cos u du

CDp �
1

A
 �  Cp cos u  dA �

1

bD
 �

2p

0

 Cp cos u b aD

2
b du

CDp,

FIND Determine the pressure drag coefficient for this flow.
Combine the results of Examples 9.8 and 9.9 to determine the drag
coefficient for a circular cylinder. Compare your results with those
given in Fig. 9.21.



9.3.3 Drag Coefficient Data and Examples

As was discussed in previous sections, the net drag is produced by both pressure and shear stress
effects. In most instances these two effects are considered together, and an overall drag coefficient,

as defined in Eq. 9.36 is used. There is an abundance of such drag coefficient data available
in the literature. This information covers incompressible and compressible viscous flows past ob-
jects of almost any shape of interest—both man-made and natural objects. In this section we con-
sider a small portion of this information for representative situations. Additional data can be ob-
tained from various sources 1Refs. 5, 62.

Shape Dependence. Clearly the drag coefficient for an object depends on the shape of
the object, with shapes ranging from those that are streamlined to those that are blunt. The drag
on an ellipse with aspect ratio where D and are the thickness and length parallel to the
flow, illustrates this dependence. The drag coefficient based on the frontal
area, where b is the length normal to the flow, is as shown in Fig. 9.19. The more blunt
the body, the larger the drag coefficient. With 1i.e., a flat plate normal to the flow2 we
obtain the flat plate value of With the corresponding value for a circular cylin-
der is obtained. As becomes larger the value of decreases.

For very large aspect ratios the ellipse behaves as a flat plate parallel to the flow.
For such cases, the friction drag is greater than the pressure drag, and the value of based on the
frontal area, would increase with increasing 1This occurs for larger values than
those shown in the figure.2 For such extremely thin bodies 1i.e., an ellipse with a flat plate,
or very thin airfoils2 it is customary to use the planform area, in defining the drag coefficient.A � b/,

/�DSA,
/�D/�D.A � bD,
CD

1/�DS A2
CD/�D

/�D � 1CD � 1.9.
/�D � 0

A � bD,
CD � d� 1rU2 bD�22,

//�D,

CD,
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COMMENT It is of interest to compare the friction drag to
the total drag on the cylinder. That is,

df

d
�

CDf

CD
�

5.93�1Re

15.93�1Re2 � 1.17
�

1

1 � 0.1971Re

For and this ratio is 0.138, 0.0483, and 0.0158,
respectively. Most of the drag on the blunt cylinder is pressure
drag—a result of the boundary layer separation.

105Re � 103, 104,

Experimental value
Eq. 2
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V9.7 Skydiving
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After all, it is the planform area on which the shear stress acts, rather than the much smaller 1for thin
bodies2 frontal area. The ellipse drag coefficient based on the planform area, is
also shown in Fig. 9.19. Clearly the drag obtained by using either of these drag coefficients would be
the same. They merely represent two different ways to package the same information.

The amount of streamlining can have a considerable effect on the drag. Incredibly, the drag
on the two two-dimensional objects drawn to scale in Fig. 9.20 is the same. The width of the wake
for the streamlined strut is very thin, on the order of that for the much smaller diameter circular
cylinder.

Reynolds Number Dependence. Another parameter on which the drag coefficient can
be very dependent is the Reynolds number. The main categories of Reynolds number dependence
are 112 very low Reynolds number flow, 122 moderate Reynolds number flow 1laminar boundary
layer2, and 132 very large Reynolds number flow 1turbulent boundary layer2. Examples of these three
situations are discussed below.

Low Reynolds number flows are governed by a balance between viscous and pres-
sure forces. Inertia effects are negligibly small. In such instances the drag on a three-
dimensional body is expected to be a function of the upstream velocity, U, the body size, and
the viscosity, Thus, for a small grain of sand settling in a lake 1see margin figure2

From dimensional considerations 1see Section 7.7.12
(9.38)

where the value of the constant C depends on the shape of the body. If we put Eq. 9.38 into di-
mensionless form using the standard definition of the drag coefficient, we obtain

CD �
d

1
2rU

2/2
�

2Cm/U

rU2/2 �
2C

Re

d � Cm/U

d � f 1U, /, m2
m.

/,

1Re 6 12

CD � d� 1rU2b/�22,
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F I G U R E  9.20 Two objects of considerably different size that have the same drag force:
(a) circular cylinder CD � 1.2; (b) streamlined strut CD � 0.12.

F I G U R E  9.19 Drag coefficient
for an ellipse with the characteristic area either
the frontal area, A � bD, or the planform area,
A � b (Ref. 5)./
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where The use of the dynamic pressure, in the definition of the drag coeffi-
cient is somewhat misleading in the case of creeping flows because it introduces the
fluid density, which is not an important parameter for such flows 1inertia is not important2. Use of
this standard drag coefficient definition gives the dependence for small Re drag coefficients.

Typical values of for low Reynolds number flows past a variety of objects are given in
Table 9.4. It is of interest that the drag on a disk normal to the flow is only 1.5 times greater than
that on a disk parallel to the flow. For large Reynolds number flows this ratio is considerably larger
1see Example 9.12. Streamlining 1i.e., making the body slender2 can produce a considerable drag
reduction for large Reynolds number flows; for very small Reynolds number flows it can actually
increase the drag because of an increase in the area on which shear forces act. For most objects,
the low Reynolds number flow results are valid up to a Reynolds number of about 1.

CD

1�Re

1Re 6 12
rU2�2,Re � rU/�m.
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For very small
Reynolds number
flows, the drag co-
efficient varies in-
versely with the
Reynolds number.

TAB LE 9 . 4
Low Reynolds Number Drag Coefficients (Ref. 7) ( )

( )

Object ( ) Object

a. Circular disk normal c. Sphere
to flow

b. Circular disk parallel d. Hemisphere
to flow

22.2�Re13.6�Re

24.0�Re20.4�Re

CDfor Re f 1

RU2A�2CD � d�

Re � RUD�M, A � PD2�4

U D

U

D

U D

U D

GIVEN A small grain of sand, diameter and
specific gravity settles to the bottom of a lake after
having been stirred up by a passing boat. 

SG � 2.3,
D � 0.10 mm

SOLUTION

Low Reynolds Number Flow Drag

From the free-body diagram, we obtain

where

(1)

and

(2)

We assume 1because of the smallness of the object2 that the
flow will be creeping flow with 1see Table
9.42 so that

 d �
1

2
 rH2OU2 

p

4
 D2CD �

1

2 
 rH2OU 2 

p

4
 D2 a 24

rH2OUD�mH2O
b

CD � 24�Re1Re 6 12

FB � gH2O V� � gH2O 
p

6
 D3

w � gsand V� � SG gH2O 
p

6
 D3

w � d � FB

E XAMPLE 9.10

A free-body diagram of the particle 1relative to the moving particle2
is shown in Fig. E9.10a. The particle moves downward with a con-
stant velocity U that is governed by a balance between the weight
of the particle, the buoyancy force of the surrounding water,
and the drag of the water on the particle, d.

FB,w,

FIND Determine how fast it falls through the still water.

FB

�

�

U
F I G U R E  E9.10a



Moderate Reynolds number flows tend to take on a boundary layer flow structure. For such
flows past streamlined bodies, the drag coefficient tends to decrease slightly with Reynolds num-
ber. The dependence for a laminar boundary layer on a flat plate 1see Table 9.32 is
such an example. Moderate Reynolds number flows past blunt bodies generally produce drag co-
efficients that are relatively constant. The values for the spheres and circular cylinders shown
in Fig. 9.21a indicate this character in the range 

The structure of the flow field at selected Reynolds numbers indicated in Fig. 9.21a is shown
in Fig. 9.21b. For a given object there is a wide variety of flow situations, depending on the Reynolds
number involved. The curious reader is strongly encouraged to study the many beautiful pho-
tographs and videos of these 1and other2 flow situations found in Refs. 8 and 31. (See also the pho-
tograph at the beginning of Chapter 7.)

For many shapes there is a sudden change in the character of the drag coefficient when the
boundary layer becomes turbulent. This is illustrated in Fig. 9.15 for the flat plate and in Fig. 9.21
for the sphere and the circular cylinder. The Reynolds number at which this transition takes place
is a function of the shape of the body.

For streamlined bodies, the drag coefficient increases when the boundary layer becomes tur-
bulent because most of the drag is due to the shear force, which is greater for turbulent flow than
for laminar flow. On the other hand, the drag coefficient for a relatively blunt object, such as a
cylinder or sphere, actually decreases when the boundary layer becomes turbulent. As is discussed
in Section 9.2.6, a turbulent boundary layer can travel further along the surface into the adverse
pressure gradient on the rear portion of the cylinder before separation occurs. The result is a thin-
ner wake and smaller pressure drag for turbulent boundary layer flow. This is indicated in Fig. 9.21

103 6 Re 6 105.
CD

CD  Re�1�2
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or

(3)

We must eventually check to determine if this assumption 1Re  12
is valid or not. Equation 3 is called Stokes’s law in honor of G. G.
Stokes 11819–19032, a British mathematician and physicist. By
combining Eqs. 1, 2, and 3, we obtain

or, since 

(4)

From Table 1.6 for water at we obtain 
and Thus, from Eq. 4 we obtain

or

(Ans)

Since

we see that and the form of the drag coefficient used is
valid.

Re 6 1,

 � 0.564

Re �
rDU

m
�
1999 kg�m32 10.10 � 10�3 m2 10.00632 m�s2

1.12 � 10�3 N # s�m2

U � 6.32 � 10�3 m�s

U �
12.3 � 12 1999 kg�m32 19.81 m�s22 10.10 � 10�3 m22

1811.12 � 10�3 N # s�m22

N # s�m2.mH2O � 1.12 � 10�3
rH2O � 999 kg�m315.6 °C

U �
1SG � 12rH2O gD 

2

18 m

g � rg,

SG gH2O 
p

6
 D3 � 3pmH2OUD � gH2O 

p

6
 D3

d � 3pmH2OUD

COMMENTS By repeating the calculations for various parti-
cle diameters, D, the results shown in Fig. E9.10b are obtained.
Note that very small particles fall extremely slowly. Thus, it can
take considerable time for silt to settle to the bottom of a river or
lake.

Note that if the density of the particle were the same as the sur-
rounding water (i.e., SG � 1), from Eq. 4 we would obtain

This is reasonable since the particle would be neutrally
buoyant and there would be no force to overcome the motion-
induced drag. Note also that we have assumed that the particle falls
at its steady terminal velocity. That is, we have neglected the ac-
celeration of the particle from rest to its terminal velocity. Since
the terminal velocity is small, this acceleration time is quite small.
For faster objects 1such as a free-falling sky diver2 it may be im-
portant to consider the acceleration portion of the fall.

U � 0.

F I G U R E  E9.10b
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der can take on a
variety of different
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V9.8 Karman 
vortex street



by the sudden decrease in for In a portion of this range the actual drag 1not
just the drag coefficient2 decreases with increasing speed. It would be very difficult to control the
steady flight of such an object in this range—an increase in velocity requires a decrease in thrust
1drag2. In all other Reynolds number ranges the drag increases with an increase in the upstream ve-
locity 1even though may decrease with Re2.

For extremely blunt bodies, like a flat plate perpendicular to the flow, the flow separates at
the edge of the plate regardless of the nature of the boundary layer flow. Thus, the drag coefficient
shows very little dependence on the Reynolds number.

The drag coefficients for a series of two-dimensional bodies of varying bluntness are
given as a function of Reynolds number in Fig. 9.22. The characteristics described above are
evident.

CD

105 6 Re 6 106.CD

9.3 Drag 501

A

B C D

E

Smooth cylinder

Smooth sphere

CD = 24

        

___

        

Re

400

200

100
60
40

20

10
6
4

2

1

0.6
0.4

0.2

0.1
0.06

10–1 100 101 102 103 104 105 106 107

Re =    UD

         

____ρ
µ

(a)

CD

No separation

(A)

Steady separation bubble

(B)

Oscillating Karman vortex street wake

(C)

Laminar boundary layer,
wide turbulent wake

(D)

Turbulent boundary layer,
narrow turbulent wake

(E)

(b)

F I G U R E  9.21 (a) Drag coefficient as
a function of Reynolds number for a smooth circular
cylinder and a smooth sphere. (b) Typical flow pat-
terns for flow past a circular cylinder at various
Reynolds numbers as indicated in (a).

V9.10 Flow past a
flat plate

V9.9 Oscillating
sign
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Flat plate
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F I G U R E  9.22 Character of the drag coefficient as a function
of Reynolds number for objects with various degrees of streamlining, from a
flat plate normal to the upstream flow to a flat plate parallel to the flow (two-
dimensional flow) (Ref. 5).

V9.11 Flow past an
ellipse

GIVEN Hail is produced by the repeated rising and falling of
ice particles in the updraft of a thunderstorm, as is indicated in
Fig. E9.11a. When the hail becomes large enough, the aerody-
namic drag from the updraft can no longer support the weight of
the hail, and it falls from the storm cloud. 

SOLUTION

F I G U R E  E9.11a

Terminal Velocity of a Falling Object

or

(3)

where U is in To determine U, we must know Unfortu-
nately, is a function of the Reynolds number 1see Fig. 9.212,
which is not known unless U is known. Thus, we must use an it-
erative technique similar to that done with the Moody chart for
certain types of pipe flow problems 1see Section 8.52.

From Fig. 9.21 we expect that is on the order of 0.5. Thus,
we assume and from Eq. 3 obtain

U �
64.5

10.5
� 91.2 ft�s

CD � 0.5
CD

CD

CD.ft�s.

U �
64.5

1CD

Anvil

Storm
movement

Ground

Hail
Updraft

Rain

40,000
to

50,000 ft Down
draft

E XAMPLE 9.11

As is discussed in Example 9.10, for steady-state conditions a
force balance on an object falling through a fluid at its terminal
velocity, U, gives

where is the buoyant force of the air on the particle,
is the particle weight, and is the aerodynamic drag.

This equation can be rewritten as

(1)

With and since 1i.e., 2, Eq. 1 can
be simplified to

(2)

By using and
Eq. 2 becomes

U � c 411.84 slugs�ft32 132.2 ft�s22 10.125 ft 2
312.38 � 10�3 slugs�ft32CD

d
1�2

D � 1.5 in. � 0.125 ft,
rice � 1.84 slugs�ft3, rair � 2.38 � 10�3 slugs�ft3,

U � a4

3

rice

rair

gD

CD
b

1�2

w ! FBgice ! gairV� � pD3�6

1
2rairU

2 p

4
D2CD �w � FB

dw � gice V�
FB � gair V�

w � d � FB

FIND Estimate the velocity, U, of the updraft needed to make
-in.-diameter 1i.e., “golf ball-sized”2 hail.D � 1.5



Compressibility Effects. The above discussion is restricted to incompressible flows. If
the velocity of the object is sufficiently large, compressibility effects become important and the
drag coefficient becomes a function of the Mach number, where c is the speed of sound
in the fluid. The introduction of Mach number effects complicates matters because the drag
coefficient for a given object is then a function of both Reynolds number and Mach number—

The Mach number and Reynolds number effects are often closely connected be-
cause both are directly proportional to the upstream velocity. For example, both Re and Ma in-
crease with increasing flight speed of an airplane. The changes in due to a change in U are due
to changes in both Re and Ma.

The precise dependence of the drag coefficient on Re and Ma is generally quite complex
1Ref. 132. However, the following simplifications are often justified. For low Mach numbers, the
drag coefficient is essentially independent of Ma as is indicated in Fig. 9.23. For this situation, if

or so, compressibility effects are unimportant. On the other hand, for larger Mach num-
ber flows, the drag coefficient can be strongly dependent on Ma, with only secondary Reynolds
number effects.

For most objects, values of increase dramatically in the vicinity of 1i.e., sonic
flow2. This change in character, indicated by Fig. 9.24, is due to the existence of shock waves as

Ma � 1CD

Ma 6 0.5

CD

CD � f1Re, Ma2.

Ma � U�c,
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The corresponding Reynolds number 1assuming 
2 is

For this value of Re we obtain from Fig. 9.21, Thus,
our assumed value of was correct. The corresponding
value of U is

(Ans)

COMMENTS By repeating the calculations for various alti-
tudes, z, above sea level (using the properties of the U.S. Standard
Atmosphere given in Appendix C), the results shown in Fig.
E9.11b are obtained. Because of the decrease in density with alti-
tude, the hail falls even faster through the upper portions of the
storm than when it hits the ground.

Clearly, an airplane flying through such an updraft would feel
its effects 1even if it were able to dodge the hail2. As seen from
Eq. 2, the larger the hail, the stronger the necessary updraft.

U � 91.2 ft�s � 62.2 mph

CD � 0.5
CD � 0.5.

Re �
UD
n
�

91.2 ft�s 10.125 ft 2
1.57 � 10�4 ft2�s

� 7.26 � 104

10�4 ft2�s
v � 1.57 � Hailstones greater than 6 in. in diameter have been reported. In re-

ality, a hailstone is seldom spherical and often not smooth. How-
ever, the calculated updraft velocities are in agreement with mea-
sured values.
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Drag coefficient as a func-
tion of Mach number for
two-dimensional objects in
subsonic flow (Ref. 5).



indicated by the figure in the margin. Shock waves are extremely narrow regions in the flow field
across which the flow parameters change in a nearly discontinuous manner, which are discussed
in Chapter 11. Shock waves, which cannot exist in subsonic flows, provide a mechanism for the
generation of drag that is not present in the relatively low-speed subsonic flows. (See the photo-
graph at the beginning of Chapter 11.)

The character of the drag coefficient as a function of Mach number is different for blunt bod-
ies than for sharp bodies. As is shown in Fig. 9.24, sharp-pointed bodies develop their maximum
drag coefficient in the vicinity of 1sonic flow2, whereas the drag coefficient for blunt bod-
ies increases with Ma far above This behavior is due to the nature of the shock wave
structure and the accompanying flow separation. The leading edges of wings for subsonic aircraft
are usually quite rounded and blunt, while those of supersonic aircraft tend to be quite pointed and
sharp. More information on these important topics can be found in standard texts about compress-
ible flow and aerodynamics 1Refs. 9, 10, 292.

Surface Roughness. As is indicated in Fig. 9.15, the drag on a flat plate parallel to the
flow is quite dependent on the surface roughness, provided the boundary layer flow is turbulent. In
such cases the surface roughness protrudes through the laminar sublayer adjacent to the surface 1see
Section 8.42 and alters the wall shear stress. In addition to the increased turbulent shear stress, sur-
face roughness can alter the Reynolds number at which the boundary layer flow becomes turbulent.
Thus, a rough flat plate may have a larger portion of its length covered by a turbulent boundary
layer than does the corresponding smooth plate. This also acts to increase the net drag on the plate.

In general, for streamlined bodies, the drag increases with increasing surface roughness. Great
care is taken to design the surfaces of airplane wings to be as smooth as possible, since protrud-
ing rivets or screw heads can cause a considerable increase in the drag. On the other hand, for an
extremely blunt body, such as a flat plate normal to the flow, the drag is independent of the sur-
face roughness, since the shear stress is not in the upstream flow direction and contributes noth-
ing to the drag.

For blunt bodies like a circular cylinder or sphere, an increase in surface roughness can actu-
ally cause a decrease in the drag. This is illustrated for a sphere in Fig. 9.25. As is discussed in Sec-
tion 9.2.6, when the Reynolds number reaches the critical value 1 for a smooth sphere2,Re � 3 � 105

Ma � 1.
Ma � 1
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Drag coefficient as a function of
Mach number for supersonic 
flow (adapted from Ref. 19).

Depending on the
body shape, an in-
crease in surface
roughness may in-
crease or decrease
drag.



the boundary layer becomes turbulent and the wake region behind the sphere becomes considerably
narrower than if it were laminar 1see Fig. 9.172. The result is a considerable drop in pressure drag
with a slight increase in friction drag, combining to give a smaller overall drag 1and 2.

The boundary layer can be tripped into turbulence at a smaller Reynolds number by using a
rough-surfaced sphere. For example, the critical Reynolds number for a golf ball is approximately

In the range the drag on the standard rough 1i.e., dim-
pled2 golf ball is considerably less than for the smooth ball. As
is shown in Example 9.12, this is precisely the Reynolds number range for well-hit golf balls—hence,
a reason for dimples on golf balls. The Reynolds number range for well-hit table tennis balls is less
than Thus, table tennis balls are smooth.Re � 4 � 104.

1CDrough�CDsmooth � 0.25�0.5 � 0.52
4 � 104 6 Re 6 4 � 105,Re � 4 � 104.

CD
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F I G U R E  9.25 The effect of surface roughness on the drag coefficient of a sphere in the
Reynolds number range for which the laminar boundary layer becomes turbulent (Ref. 5).
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ρ
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GIVEN A well-hit golf ball 1diameter in., weight
2 can travel at as it leaves the tee. A

well-hit table tennis ball 1diameter weight 
can travel at as it leaves the paddle. U � 60 ft�s0.00551 lb2

w �D�1.50 in.,
U � 200 ft�sw � 0.0992 lb

D � 1.69

SOLUTION

Effect of Surface Roughness

while for the table tennis ball

The corresponding drag coefficients are for the stan-
dard golf ball, for the smooth golf ball, and 
for the table tennis ball. Hence, from Eq. 1 for the standard golf ball

(Ans)� 0.185 lb

d �
1

2
 10.00238 slugs�ft32 1200 ft�s22 p

4
 a1.69

12
 ftb

2

 10.252

CD � 0.50CD � 0.51
CD � 0.25

Re �
UD
n
�
160 ft�s2 11.50�12 ft 2
1.57 � 10�4 ft2�s

� 4.78 � 104

E XAMPLE 9.12

For either ball, the drag can be obtained from

(1)

where the drag coefficient, is given in Fig. 9.25 as a function
of the Reynolds number and surface roughness. For the golf ball
in standard air

Re �
UD
n
�
1200 ft�s2 11.69�12 ft 2

1.57 � 10�4 ft2�s
� 1.79 � 105

CD,

d �
1

2
 rU 2 

p

4
 D2CD

FIND Determine the drag on a standard golf ball, a smooth
golf ball, and a table tennis ball for the conditions given. Also de-
termine the deceleration of each ball for these conditions.

Surface roughness
can cause the
boundary layer to
become turbulent.



Froude Number Effects. Another parameter on which the drag coefficient may be strongly
dependent is the Froude number, As is discussed in Chapter 10, the Froude number
is a ratio of the free-stream speed to a typical wave speed on the interface of two fluids, such as the
surface of the ocean. An object moving on the surface, such as a ship, often produces waves that
require a source of energy to generate. This energy comes from the ship and is manifest as a drag.
[Recall that the rate of energy production 1power2 equals speed times force.] The nature of the waves
produced often depends on the Froude number of the flow and the shape of the object— the waves
generated by a water skier “plowing” through the water at a low speed 1low Fr2 are different than
those generated by the skier “planing” along the surface at high speed 1large Fr2.

Thus, the drag coefficient for surface ships is a function of Reynolds number 1viscous ef-
fects2 and Froude number 1wave-making effects2; As was discussed in Chapter
7, it is often quite difficult to run model tests under conditions similar to those of the prototype
1i.e., same Re and Fr for surface ships2. Fortunately, the viscous and wave effects can often be
separated, with the total drag being the sum of the drag of these individual effects. A detailed ac-
count of this important topic can be found in standard texts 1Ref. 112.

As is indicated in Fig. 9.26, the wave-making drag, can be a complex function of the
Froude number and the body shape. The rather “wiggly” dependence of the wave drag coefficient,

dw,

CD f1Re, Fr2.

Fr U 1g/.
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for the smooth golf ball

(Ans)

and for the table tennis ball

(Ans)

The corresponding decelerations are 
where m is the mass of the ball. Thus, the deceleration relative to
the acceleration of gravity, 1i.e., the number of g’s de-
celeration2 is or

(Ans)

(Ans)

(Ans)

COMMENTS Note that there is a considerably smaller decel-
eration for the rough golf ball than for the smooth one. Because of
its much larger drag-to-mass ratio, the table tennis ball slows down
relatively quickly and does not travel as far as the golf ball. Note
that with the standard golf ball has a drag of

and a deceleration of considerably
less than the of the table tennis ball. Conversely, aa g 4.77

a g 0.202,d 0.0200 lb
U 60 ft s

a

g

0.0263 lb

0.00551 lb
4.77 for the table tennis ball

a
g

0.378 lb

0.0992 lb
3.81 for the smooth golf ball

a
g

0.185 lb

0.0992 lb
1.86 for the standard golf ball

a g d w
a g

a d m gd w,

 0.0263 lb

d
1

2
 10.00238 slugs ft32 160 ft s22 p

4
 a1.50

12
 ftb

2

 10.502

 0.378 lb

d
1

2
 10.00238 slugs ft32 1200 ft s22 p

4
 a1.69

12
 ftb

2

 10.512

table tennis ball hit from a tee at would decelerate at a
rate of or It would not travel nearly
as far as the golf ball.

By repeating the above calculations, the drag as a function of
speed for both a standard golf ball and a smooth golf ball is shown
in Fig. E9.12.

The Reynolds number range for which a rough golf ball has
smaller drag than a smooth one (i.e., 4  104 to 3.6 105) cor-
responds to a flight velocity range of 45 U 400 ft/s. This is
comfortably within the range of most golfers. (The fastest tee
shot by top professional golfers is approximately 280 ft/s.) As
discussed in Section 9.4.2, the dimples (roughness) on a golf
ball also help produce a lift (due to the spin of the ball) that al-
lows the ball to travel farther than a smooth ball.

a g 54.1.a 1740 ft s2,
200 ft s

F I G U R E  E9.12
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300

Smooth
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golf ball
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Dimpled baseball bats For many years it has been known that
dimples on golf balls can create a turbulent boundary layer and re-
duce the aerodynamic drag, allowing longer drives than with
smooth balls. Thus, why not put dimples on baseball bats so that to-
morrow’s baseball sluggers can swing the bat faster and, therefore,
hit the ball farther? MIT instructor Jeffery De Tullio pondered that

question, performed experiments with dimpled bats to determine
the answer, and received a patent for his dimpled bat invention.
The result is that a batter can swing a dimpled bat approximately
3 to 5% faster than a smooth bat. Theoretically, this extra speed
will translate to an extra 10 to 15 ft distance on a long hit. (See
Problem 9.89.)

The drag coefficient
for surface ships is
a function of the
Froude number.

V9.12 Jet ski



on the Froude number shown is typical. It results from the fact that the struc-
ture of the waves produced by the hull is a strong function of the ship speed or, in dimensionless
form, the Froude number. This wave structure is also a function of the body shape. For example,
the bow wave, which is often the major contributor to the wave drag, can be reduced by use of an
appropriately designed bulb on the bow, as is indicated in Fig. 9.26. In this instance the stream-
lined body 1hull without a bulb2 has more drag than the less streamlined one.

Composite Body Drag. Approximate drag calculations for a complex body can often be
obtained by treating the body as a composite collection of its various parts. For example, the total
force on a flag pole because of the wind (see the figure in the margin) can be approximated by
adding the aerodynamic drag produced by the various components involved—the drag on the flag
and the drag on the pole. In some cases considerable care must be taken in such an approach be-
cause of the interactions between the various parts. It may not be correct to merely add the drag
of the components to obtain the drag of the entire object, although such approximations are often
reasonable.

CDw � dw� 1rU 2/2�22,
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F I G U R E  9.26 Typical drag coefficient data as a function of Froude number and hull
characteristics for that portion of the drag due to the generation of waves (adapted from Ref. 25).

Design speed, Fr = 0.267
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CD =CDw
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    U2 �2
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Fr = U____
√�g
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The drag on a com-
plex body can be
approximated as
the sum of the drag
on its parts.

GIVEN A 60-mph 1i.e., 88-fps2 wind blows past the water
tower shown in Fig. E9.13a. 

FIND Estimate the moment 1torque2, M, needed at the base to
keep the tower from tipping over.

F I G U R E  E9.13

Drag on a Composite Body

U = 60 mph
   = 88 fps

Ds = 40 ft
Dc = 15 ft
b = 50 ft

�s

�c

b + Ds /2

b/2

Rx

Ry

M

(b)(a)

�

Dc

Ds

b

E XAMPLE 9.13

SOLUTION

We treat the water tower as a sphere resting on a circular cylinder
and assume that the total drag is the sum of the drag from these
parts. The free-body diagram of the tower is shown in Fig.



The aerodynamic drag on automobiles provides an example of the use of adding component
drag forces. The power required to move a car along a level street is used to overcome the rolling
resistance and the aerodynamic drag. For speeds above approximately 30 mph, the aerodynamic
drag becomes a significant contribution to the net propulsive force needed. The contribution of the
drag due to various portions of car 1i.e., front end, windshield, roof, rear end, windshield peak, rear
roofZtrunk, and cowl2 have been determined by numerous model and full-sized tests as well as by
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E9.13b. By summing moments about the base of the tower, we
obtain

(1)

where

(2)

and

(3)

are the drag on the sphere and cylinder, respectively. For standard
atmospheric conditions, the Reynolds numbers are

and

The corresponding drag coefficients, and can be approx-
imated from Fig. 9.21 as

CDs � 0.3 and CDc � 0.7

CDc,CDs

Rec �
UDc

n
�
188 ft�s2 115 ft 2

1.57 � 10�4 ft2�s
� 8.41 � 106

 Res �
UDs

n
�
188 ft�s2 140 ft 2

1.57 � 10�4 ft2�s
� 2.24 � 107

dc �
1

2
 rU 2bDcCDc

ds �
1

2
 rU2 

p

4
 D2

sCDs

M � ds ab �
Ds

2
b � dc ab

2
b

Note that the value of was obtained by an extrapolation of the
given data to Reynolds numbers beyond those given 1a potentially
dangerous practice!2. From Eqs. 2 and 3 we obtain

and

From Eq. 1 the corresponding moment needed to prevent the
tower from tipping is

(Ans)

COMMENT The above result is only an estimate because 1a2
the wind is probably not uniform from the top of the tower to the
ground, 1b2 the tower is not exactly a combination of a smooth
sphere and a circular cylinder, 1c2 the cylinder is not of infinite
length, 1d2 there will be some interaction between the flow past
the cylinder and that past the sphere so that the net drag is not ex-
actly the sum of the two, and 1e2 a drag coefficient value was ob-
tained by extrapolation of the given data. However, such approxi-
mate results are often quite accurate.

� 3.64 � 105 ft # lb

M � 3470 lb a50 ft �
40

2
 ftb � 4840 lb a50

2
 ftb

 � 4840 lb

 dc � 0.510.00238 slugs�ft32 188 ft�s22150 ft � 15 ft2 10.72

 � 3470 lb

 ds � 0.510.00238 slugs�ft32 188 ft�s22 p
4

 140 ft 2210.32

CDs

V9.13 Drag on a
truck

V9.14 Automobile
streamlining

F I G U R E  9.27 The historical trend of streamlining automobiles to reduce their
aerodynamic drag and increase their miles per gallon (adapted from Ref. 5).
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numerical calculations. As a result it is possible to predict the aerodynamic drag on cars of a wide
variety of body styles.

As is indicated in Fig. 9.27, the drag coefficient for cars has decreased rather continuously
over the years. This reduction is a result of careful design of the shape and the details 1such as
window molding, rear view mirrors, etc.2. An additional reduction in drag has been accomplished
by a reduction of the projected area. The net result is a considerable increase in the gas mileage,
especially at highway speeds. Considerable additional information about the aerodynamics of
road vehicles can be found in the literature 1Ref. 302.

The effect of several important parameters 1shape, Re, Ma, Fr, and roughness2 on the drag co-
efficient for various objects has been discussed in this section. As stated previously, drag coefficient
information for a very wide range of objects is available in the literature. Some of this information
is given in Figs. 9.28, 9.29, and 9.30 below for a variety of two- and three-dimensional, natural and
man-made objects. Recall that a drag coefficient of unity is equivalent to the drag produced by the
dynamic pressure acting on an area of size A. That is, if Typical
nonstreamlined objects have drag coefficients on this order.

CD � 1.d � 1
2rU

2ACD �
1
2rU

2A
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At 10,240 mpg it doesn’t cost much to “fill ’er up” Typical
gas consumption for a Formula 1 racer, a sports car, and a sedan
is approximately 2 mpg, 15 mpg, and 30 mpg, respectively.
Thus, just how did the winning entry in the 2002 Shell Eco-
Marathon achieve an incredible 10,240 mpg? To be sure, this
vehicle is not as fast as a Formula 1 racer (although the rules re-
quire it to average at least 15 mph) and it can’t carry as large a
load as your family sedan can (the vehicle has barely enough
room for the driver). However, by using a number of clever

engineering design considerations, this amazing fuel efficiency
was obtained. The type (and number) of tires, the appropriate
engine power and weight, the specific chassis design, and the
design of the body shell are all important and interrelated con-
siderations. To reduce drag, the aerodynamic shape of the high-
efficiency vehicle was given special attention through theoreti-
cal considerations and wind tunnel model testing. The result is
an amazing vehicle that can travel a long distance without hear-
ing the usual “fill ’er up.” (See Problem 9.90.)

As is indicated in Section 9.1, any object moving through a fluid will experience a net force
of the fluid on the object. For objects symmetrical perpendicular to the upstream flow, this force
will be in the direction of the free stream—a drag, If the object is not symmetrical 1or if it
does not produce a symmetrical flow field, such as the flow around a rotating sphere2, there
may also be a force normal to the free stream—a lift, Considerable effort has been put forth
to understand the various properties of the generation of lift. Some objects, such as an airfoil,
are designed to generate lift. Other objects are designed to reduce the lift generated. For exam-
ple, the lift on a car tends to reduce the contact force between the wheels and the ground, caus-
ing reduction in traction and cornering ability. It is desirable to reduce this lift.

9.4.1 Surface Pressure Distribution

The lift can be determined from Eq. 9.2 if the distributions of pressure and wall shear stress around
the entire body are known. As is indicated in Section 9.1, such data are usually not known. Typi-
cally, the lift is given in terms of the lift coefficient,

(9.39)CL �
l

1
2rU

2A

l.

d.

9.4 Lift

The lift coefficient
is a dimensionless
form of the lift.

Considerable effort
has gone into re-
ducing the aerody-
namic drag of auto-
mobiles.



which is obtained from experiments, advanced analysis, or numerical considerations. The lift co-
efficient is a function of the appropriate dimensionless parameters and, as the drag coefficient, can
be written as

The Froude number, Fr, is important only if there is a free surface present, as with an under-
water “wing” used to support a high-speed hydrofoil surface ship. Often the surface roughness,

is relatively unimportant in terms of lift —it has more of an effect on the drag. The Mach
number, Ma, is of importance for relatively high-speed subsonic and supersonic flows

and the Reynolds number effect is often not great. The most important
parameter that affects the lift coefficient is the shape of the object. Considerable effort has gone
into designing optimally shaped lift-producing devices. We will emphasize the effect of the
shape on lift— the effects of the other dimensionless parameters can be found in the literature
1Refs. 13, 14, 292.

1i.e., Ma 7 0.82,

e,

CL � f1shape, Re, Ma, Fr, e�/2
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F I G U R E  9.28 Typical drag coefficients for regular two-dimensional
objects (Refs. 5, 6).

The lift coefficient
is a function of
other dimensionless
parameters.



Most common lift-generating devices 1i.e., airfoils, fans, spoilers on cars, etc.2 operate in the
large Reynolds number range in which the flow has a boundary layer character, with viscous ef-
fects confined to the boundary layers and wake regions. For such cases the wall shear stress,
contributes little to the lift. Most of the lift comes from the surface pressure distribution. A typi-
cal pressure distribution on a moving car is shown in Fig. 9.31. The distribution, for the most part,
is consistent with simple Bernoulli equation analysis. Locations with high-speed flow 1i.e., over
the roof and hood2 have low pressure, while locations with low-speed flow 1i.e., on the grill and
windshield2 have high pressure. It is easy to believe that the integrated effect of this pressure dis-
tribution would provide a net upward force.

For objects operating in very low Reynolds number regimes viscous effects
are important, and the contribution of the shear stress to the lift may be as important as that of the
pressure. Such situations include the flight of minute insects and the swimming of microscopic or-
ganisms. The relative importance of and p in the generation of lift in a typical large Reynolds
number flow is shown in Example 9.14.

tw

1i.e., Re 6 12,

tw,

9.4 Lift 511

F I G U R E  9.29 Typical drag coefficients for regular three-dimensional
objects (Ref. 5).
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F I G U R E  9.30 Typical drag coefficients for objects of interest
(Refs. 5, 6, 15, 20).
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GIVEN When a uniform wind of velocity U blows past the
semicircular building shown in Fig. E9.14a,b, the wall shear
stress and pressure distributions on the outside of the building are
as given previously in Figs. E9.8b and E9.9a, respectively. 

Lift from Pressure and Shear Stress DistributionsEXAMPLE 9.14

FIND If the pressure in the building is atmospheric 1i.e., the
value, far from the building2, determine the lift coefficient and
the lift on the roof.

p0,

SOLUTION

curves of and 
plotted in Figs. E9.14c and E9.14d. The results are

and

Thus, the lift is

or

(Ans)

and

(4) (Ans)

COMMENTS Consider a typical situation with 
and standard atmospheric conditions

which
gives a Reynolds number of

Hence, the lift coefficient is

CL � 0.88 �
1.96

13.82 � 10621� 2 � 0.88 � 0.001 � 0.881

Re �
UD
n
�
130 ft�s2 120 ft 2

1.57 � 10�4 ft2�s
� 3.82 � 106

� 10�4 ft2�s2,10�3 slugs�ft3 and n � 1.571r � 2.38 �
b � 50 ft,U � 30 ft�s,

D � 20 ft,

CL �
l

1
2rU

2A
� 0.88 �

1.96

1Re

l � a0.88 �
1.96

1Re
b a1

2
 rU 2Ab

l �
1

2
 rU2A c a�1

2
b 1�1.762 � 1

21Re
 13.922 d

�
p

0

 F1u2 cos u du � 3.92

�
p

0

 
1p � p02

1
2rU

2
 sin u du � �1.76

versus u
F1u2 cos usin u versus u3 1p� p02� 1rU2�22 4From Eq. 9.2 we obtain the lift as

(1)

As is indicated in Fig. E9.14b, we assume that on the inside of the
building the pressure is uniform, and that there is no
shear stress. Thus, Eq. 1 can be written as

or

(2)

where b and D are the length and diameter of the building,
respectively, and Equation 2 can be put into
dimensionless form by using the dynamic pressure, plan-
form area, and dimensionless shear stress

to give

(3)

From the data in Figs. E9.8b and E9.9a, the values of the two in-
tegrals in Eq. 3 can be obtained by determining the area under the

�
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 �
p

0
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F1u2 � tw1Re21�2� 1rU 2�22
A � bD,

rU2�2,
dA � b1D�22du.
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0

 1 p � p02 sin u du � �
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0
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� �
p

0

 tw cos u b aD

2
b du

l � ��
p

0

 1 p � p02 sin u b aD

2
b du

p � p0,

l � ��  p sin u dA � �  tw cos u dA

U, p0

Denotes p > p0

Denotes p < p0

F I G U R E  9.31 Pressure distribution on the surface of
an automobile.
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A typical device designed to produce lift does so by generating a pressure distribution that
is different on the top and bottom surfaces. For large Reynolds number flows these pressure dis-
tributions are usually directly proportional to the dynamic pressure, with viscous effects
being of secondary importance. Hence, as indicated by the figure in the margin, for a given airfoil
the lift is proportional to the square of the airspeed. Two airfoils used to produce lift are indicated
in Fig. 9.32. Clearly the symmetrical one cannot produce lift unless the angle of attack, is nonzero.
Because of the asymmetry of the nonsymmetric airfoil, the pressure distributions on the upper and
lower surfaces are different, and a lift is produced even with Of course, there will be a
certain value of 1less than zero for this case2 for which the lift is zero. For this situation, the
pressure distributions on the upper and lower surfaces are different, but their resultant 1integrated2
pressure forces will be equal and opposite.

Since most airfoils are thin, it is customary to use the planform area, in the defini-
tion of the lift coefficient. Here b is the length of the airfoil and c is the chord length—the length
from the leading edge to the trailing edge as indicated in Fig. 9.32. Typical lift coefficients so de-
fined are on the order of unity. That is, the lift force is on the order of the dynamic pressure times
the planform area of the wing, The wing loading, defined as the average lift per
unit area of the wing, therefore, increases with speed. For example, the wing loading of thel�A,

l � 1rU 2�22A.

A � bc,

a

a � 0.

a,

rU2�2,

Note that the pressure contribution to the lift coefficient is
0.88 whereas that due to the wall shear stress is only

The Reynolds number dependency of is
quite minor. The lift is pressure dominated. Recall from Example
9.9 that this is also true for the drag on a similar shape.

From Eq. 4 with , we obtain the
lift for the assumed conditions as

l � 1
2rU

2ACL �
1
2 10.00238 slugs�ft32 130 ft�s2211000 ft22 10.8812

A � 20 ft � 50 ft � 1000 ft2

CL1.96� 1Re1�22 � 0.001.

or

There is a considerable tendency for the building to lift off the
ground. Clearly this is due to the object being nonsymmetrical.
The lift force on a complete circular cylinder is zero, although
the fluid forces do tend to pull the upper and lower halves
apart.

l � 944 lb
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1903 Wright Flyer aircraft was while for the present-day Boeing 747 aircraft it is
The wing loading for a bumble bee is approximately 1Ref. 152.

Typical lift and drag coefficient data as a function of angle of attack, and aspect ratio,
are indicated in Figs. 9.33a and 9.33b. The aspect ratio is defined as the ratio of the square of the
wing length to the planform area, If the chord length, c, is constant along the length of
the wing 1a rectangular planform wing2, this reduces to 

In general, the lift coefficient increases and the drag coefficient decreases with an increase
in aspect ratio. Long wings are more efficient because their wing tip losses are relatively more mi-
nor than for short wings. The increase in drag due to the finite length of the wing is of-
ten termed induced drag. It is due to the interaction of the complex swirling flow structure near
the wing tips 1see Fig. 9.372 and the free stream 1Ref. 132. High-performance soaring airplanes and
highly efficient soaring birds 1i.e., the albatross and sea gull2 have long, narrow wings. Such wings,
however, have considerable inertia that inhibits rapid maneuvers. Thus, highly maneuverable fighter
or acrobatic airplanes and birds 1i.e., the falcon2 have small-aspect-ratio wings.

Although viscous effects and the wall shear stress contribute little to the direct generation of
lift, they play an extremely important role in the design and use of lifting devices. This is because of
the viscosity-induced boundary layer separation that can occur on nonstreamlined bodies such as
airfoils that have too large an angle of attack 1see Fig. 9.182. As is indicated in Fig. 9.33, up to a cer-
tain point, the lift coefficient increases rather steadily with the angle of attack. If is too large, the
boundary layer on the upper surface separates, the flow over the wing develops a wide, turbulent
wake region, the lift decreases, and the drag increases. This condition, as indicated by the figures in
the margin, is termed stall. Such conditions are extremely dangerous if they occur while the airplane
is flying at a low altitude where there is not sufficient time and altitude to recover from the stall.

a

1a 6 A 2

a � b�c.
a � b2�A.

a,a,
1 lb�ft2150 lb�ft2.

1.5 lb�ft2,
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α
U

Symmetrical

Nonsymmetrical

c

α
U

F I G U R E  9.32 Symmetrical and
nonsymmetrical airfoils.
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In many lift-generating devices the important quantity is the ratio of the lift to drag devel-
oped, Such information is often presented in terms of versus as is shown
in Fig. 9.34a, or in a lift-drag polar of versus with as a parameter, as is shown in Fig.
9.34b. The most efficient angle of attack 1i.e., largest 2 can be found by drawing a line tan-
gent to the curve from the origin, as is shown in Fig. 9.34b. High-performance airfoils
generate lift that is perhaps 100 or more times greater than their drag. This translates into the fact
that in still air they can glide a horizontal distance of 100 m for each 1 m drop in altitude.

CL � CD

CL �CD

aCDCL

a,CL �CDl�d � CL �CD.

As is indicated above, the lift and drag on an airfoil can be altered by changing the angle
of attack. This actually represents a change in the shape of the object. Other shape changes can
be used to alter the lift and drag when desirable. In modern airplanes it is common to utilize lead-
ing edge and trailing edge flaps as is shown in Fig. 9.35. To generate the necessary lift during
the relatively low-speed landing and takeoff procedures, the airfoil shape is altered by extending
special flaps on the front andZor rear portions of the wing. Use of the flaps considerably enhances
the lift, although it is at the expense of an increase in the drag 1the airfoil is in a “dirty” config-
uration2. This increase in drag is not of much concern during landing and takeoff operations—
the decrease in landing or takeoff speed is more important than is a temporary increase in drag.
During normal flight with the flaps retracted 1the “clean” configuration2, the drag is relatively
small, and the needed lift force is achieved with the smaller lift coefficient and the larger dynamic
pressure 1higher speed2.
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F I G U R E  9.34 Two representations of the same lift and drag data for a typical airfoil:
(a) lift-to-drag ratio as a function of angle of attack, with the onset of boundary layer separation on the
upper surface indicated by the occurrence of stall, (b) the lift and drag polar diagram with the angle of
attack indicated (Ref. 27).
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V9.16 Bat flying
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Bats feel turbulence Researchers have discovered that at certain
locations on the wings of bats, there are special touch-sensing
cells with a tiny hair poking out of the center of the cell. These cells,
which are very sensitive to air flowing across the wing surface, can
apparently detect turbulence in the flow over the wing. If these hairs
are removed the bats fly well in a straight line, but when maneuver-

ing to avoid obstacles, their elevation control is erratic. When the
hairs grow back, the bats regain their complete flying skills. It is pro-
posed that these touch-sensing cells are used to detect turbulence on
the wing surface and thereby tell bats when to adjust the angle of at-
tack and curvature of their wings in order to avoid stalling out in
midair.

V9.15 Stalled
airfoil

V9.17 Trailing edge
flap



A wide variety of lift and drag information for airfoils can be found in standard aerodynam-
ics books 1Ref. 13, 14, 292.
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F I G U R E  9.35 Typi-
cal lift and drag alterations possible
with the use of various types of flap
designs (Ref. 21).

No flaps
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trailing edge flaps

(Data not
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V9.18 Leading
edge flap
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Learning from nature For hundreds of years humans looked
toward nature, particularly birds, for insight about flying. How-
ever, all early airplanes that closely mimicked birds proved to be
unsuccessful. Only after much experimenting with rigid (or at
least nonflapping) wings did human flight become possible. Re-
cently, however, engineers have been turning to living sys-
tems—birds, insects, and other biological models—in an at-
tempt to produce breakthroughs in aircraft design. Perhaps it is
possible that nature’s basic design concepts can be applied to
airplane systems. For example, by morphing and rotating their
wings in three dimensions, birds have remarkable maneuver-

ability that to date has no technological parallel. Birds can con-
trol the airflow over their wings by moving the feathers on their
wingtips and the leading edges of their wings, providing designs
that are more efficient than the flaps and rigid, pivoting tail sur-
faces of current aircraft (Ref. 15). On a smaller scale, under-
standing the mechanism by which insects dynamically manage
unstable flow to generate lift may provide insight into the devel-
opment of microscale air vehicles. With new hi-tech materials,
computers, and automatic controls, aircraft of the future may
mimic nature more than was once thought possible. (See Prob-
lem 9.110.)

GIVEN In 1977 the Gossamer Condor, shown in Fig. E9.15a,
won the Kremer prize by being the first human-powered aircraft to
complete a prescribed figure-of-eight course around two turning
points 0.5 mi apart 1Ref. 222.The following data pertain to this aircraft:

� power to overcome drag�pilot power�0.8

power train efficiency � h

drag coefficient � CD� 0.046 1based on planform area 2
weight 1including pilot2 �w � 210 lb

wing size � b � 96 ft, c � 7.5 ft 1average 2
flight speed � U � 15 ft�s

Lift and Power for Human Powered FlightEXAMPLE 9.15

FIND Determine

(a) the lift coefficient, CL, and

(b) the power, required by the pilot.p,

U

F I G U R E  E9.15a
(Photograph copyright © Don Monroe.)



9.4.2 Circulation

Since viscous effects are of minor importance in the generation of lift, it should be possible to cal-
culate the lift force on an airfoil by integrating the pressure distribution obtained from the equa-
tions governing inviscid flow past the airfoil. That is, the potential flow theory discussed in Chap-
ter 6 should provide a method to determine the lift. Although the details are beyond the scope of
this book, the following is found from such calculations 1Ref. 42.

The calculation of the inviscid flow past a two-dimensional airfoil gives a flow field as in-
dicated in Fig. 9.36. The predicted flow field past an airfoil with no lift 1i.e., a symmetrical airfoil
at zero angle of attack, Fig. 9.36a2 appears to be quite accurate 1except for the absence of thin
boundary layer regions2. However, as is indicated in Fig. 9.36b, the calculated flow past the same
airfoil at a nonzero angle of attack 1but one small enough so that boundary layer separation would
not occur2 is not proper near the trailing edge. In addition, the calculated lift for a nonzero angle
of attack is zero—in conflict with the known fact that such airfoils produce lift.

In reality, the flow should pass smoothly over the top surface as is indicated in Fig. 9.36c, with-
out the strange behavior indicated near the trailing edge in Fig. 9.36b. As is shown in Fig. 9.36d, the
unrealistic flow situation can be corrected by adding an appropriate clockwise swirling flow around
the airfoil. The results are twofold: 112 The unrealistic behavior near the trailing edge is eliminated 1i.e.,
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SOLUTION
COMMENT This power level is obtainable by a well-condi-
tioned athlete 1as is indicated by the fact that the flight was suc-
cessfully completed2. Note that only 80% of the pilot’s power
1i.e., which corresponds to a drag of

2 is needed to force the aircraft through the air. The
other 20% is lost because of the power train inefficiency.

By repeating the calculations for various flight speeds, the
results shown in Fig. E9.15b are obtained. Note from Eq. 1 that
for a constant drag coefficient, the power required increases as
U3—a doubling of the speed to 30 ft/s would require an eight-
fold increase in power (i.e., 2.42 hp, well beyond the range of
any human).

d � 8.86 lb
0.8 � 0.302 � 0.242 hp,

(a) For steady flight conditions the lift must be exactly balanced
by the weight, or

Thus,

where and 
for standard air. This gives

(Ans)

a reasonable number. The overall lift-to-drag ratio for the aircraft is
23.7.

(b) The product of the power that the pilot supplies and the power
train efficiency equals the useful power needed to overcome the
drag, That is,

where

Thus,

(1)

or

(Ans) p � 166 ft # lb�s a 1 hp

550 ft # lb�s
b � 0.302 hp

 p �
12.38 � 10�3 slugs�ft32 1720 ft22 10.0462 115 ft�s23

210.82

p �
dU
h
�

1
2rU

2ACDU

h
�
rACDU3

2h

d � 1
2rU

2ACD

hp � dU

d.

CL �CD � 1.09�0.046 �

 � 1.09

CL �
21210 lb2

12.38 � 10�3 slugs�ft32 115 ft�s221720 ft22

2.38 � 10�3 slugs�ft3
r �A � bc � 96 ft � 7.5 ft � 720 ft2, w � 210 lb,

CL �
2w

rU2A

w � l � 1
2rU

2ACL

2.5

2.0

1.5

1.0

0.5

�
, 

hp

0
15 20 25 30

U, ft/s

100 5

(15, 0.302)

F I G U R E  E9.15b

Inviscid flow analy-
sis can be used to
obtain ideal flow
past airfoils.



the flow pattern of Fig. 9.36b is changed to that of Fig. 9.36c2, and 122 the average velocity on the
upper surface of the airfoil is increased while that on the lower surface is decreased. From the Bernoulli
equation concepts 1i.e., 2, the average pressure on the upper surface is
decreased and that on the lower surface is increased. The net effect is to change the original zero lift
condition to that of a lift-producing airfoil.

The addition of the clockwise swirl is termed the addition of circulation. The amount of
swirl 1circulation2 needed to have the flow leave the trailing edge smoothly is a function of the
airfoil size and shape and can be calculated from potential flow 1inviscid2 theory 1see Section 6.6.3
and Ref. 292. Although the addition of circulation to make the flow field physically realistic may
seem artificial, it has well-founded mathematical and physical grounds. For example, consider the
flow past a finite length airfoil, as is indicated in Fig. 9.37. For lift-generating conditions the av-
erage pressure on the lower surface is greater than that on the upper surface. Near the tips of the
wing this pressure difference will cause some of the fluid to attempt to migrate from the lower
to the upper surface, as is indicated in Fig. 9.37b. At the same time, this fluid is swept down-
stream, forming a trailing vortex 1swirl2 from each wing tip 1see Fig. 4.32. It is speculated that the
reason some birds migrate in vee-formation is to take advantage of the updraft produced by the
trailing vortex of the preceding bird. [It is calculated that for a given expenditure of energy, a flock
of 25 birds flying in vee-formation could travel 70% farther than if each bird were to fly sepa-
rately 1Ref. 152.]

The trailing vortices from the right and left wing tips are connected by the bound vortex
along the length of the wing. It is this vortex that generates the circulation that produces the
lift. The combined vortex system 1the bound vortex and the trailing vortices2 is termed a horse-
shoe vortex. The strength of the trailing vortices 1which is equal to the strength of the bound
vortex2 is proportional to the lift generated. Large aircraft 1for example, a Boeing 7472 can gen-
erate very strong trailing vortices that persist for a long time before viscous effects and insta-
bility mechanisms finally cause them to die out. Such vortices are strong enough to flip smaller
aircraft out of control if they follow too closely behind the large aircraft. The figure in the mar-
gin clearly shows a trailing vortex produced during a wake vortex study in which an airplane
flew through a column of smoke.

p�g � V 2�2g � z � constant
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F I G U R E  9.36 Inviscid
flow past an airfoil: (a) symmetrical flow
past the symmetrical airfoil at a zero
angle of attack; (b) same airfoil at a
nonzero angle of attack—no lift, flow
near trailing edge not realistic; (c) same
conditions as for (b) except circulation
has been added to the flow—nonzero
lift, realistic flow; (d) superposition of
flows to produce the final flow past the
airfoil.

(a)

(b)

(c)

+ =

(d)

   = 0
� = 0
α

   > 0
� = 0
α

   > 0
� > 0
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"(a) + circulation = (c)"

V9.19 Wing tip 
vortices

(Photograph courtesy of
NASA.)
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F I G U R E  9.37 Flow past a finite length wing: (a) the horseshoe
vortex system produced by the bound vortex and the trailing vortices; (b) the
leakage of air around the wing tips produces the trailing vortices.
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Why winglets? Winglets, those upward turning ends of airplane
wings, boost the performance by reducing drag. This is accom-
plished by reducing the strength of the wingtip vortices formed by
the difference between the high pressure on the lower surface of
the wing and the low pressure on the upper surface of the wing.
These vortices represent an energy loss and an increase in drag. In
essence, the winglet provides an effective increase in the aspect
ratio of the wing without extending the wingspan. Winglets come
in a variety of styles—the Airbus A320 has a very small upper and

lower winglet; the Boeing 747-400 has a conventional, vertical
upper winglet; and the Boeing Business Jet (a derivative of the
Boeing 737) has an eight-foot winglet with a curving transition
from wing to winglet. Since the airflow around the winglet is
quite complicated, the winglets must be carefully designed and
tested for each aircraft. In the past, winglets were more likely to
be retrofitted to existing wings, but new airplanes are being de-
signed with winglets from the start. Unlike tailfins on cars,
winglets really do work. (See Problem 9.111.)

As is indicated above, the generation of lift is directly related to the production of a swirl or
vortex flow around the object. A nonsymmetric airfoil, by design, generates its own prescribed
amount of swirl and lift. A symmetric object like a circular cylinder or sphere, which normally
provides no lift, can generate swirl and lift if it rotates.

As is discussed in Section 6.6.3, the inviscid flow past a circular cylinder has the symmet-
rical flow pattern indicated in Fig. 9.38a. By symmetry the lift and drag are zero. However, if the
cylinder is rotated about its axis in a stationary real fluid, the rotation will drag some of
the fluid around, producing circulation about the cylinder as in Fig. 9.38b. When this circulation
is combined with an ideal, uniform upstream flow, the flow pattern indicated in Fig. 9.38c is ob-
tained. The flow is no longer symmetrical about the horizontal plane through the center of the
cylinder; the average pressure is greater on the lower half of the cylinder than on the upper half,
and a lift is generated. This effect is called the Magnus effect, after Heinrich Magnus 11802–18702,
a German chemist and physicist who first investigated this phenomenon. A similar lift is generated
on a rotating sphere. It accounts for the various types of pitches in baseball 1i.e., curve ball, floater,
sinker, etc.2, the ability of a soccer player to hook the ball, and the hook or slice of a golf ball.

Typical lift and drag coefficients for a smooth, spinning sphere are shown in Fig. 9.39. Al-
though the drag coefficient is fairly independent of the rate of rotation, the lift coefficient is strongly

1m q 02

A spinning sphere
or cylinder can
generate lift.



dependent on it. In addition 1although not indicated in the figure2, both and are dependent on
the roughness of the surface. As was discussed in Section 9.3, in a certain Reynolds number range
an increase in surface roughness actually decreases the drag coefficient. Similarly, an increase in sur-
face roughness can increase the lift coefficient because the roughness helps drag more fluid around
the sphere increasing the circulation for a given angular velocity. Thus, a rotating, rough golf ball
travels farther than a smooth one because the drag is less and the lift is greater. However, do not ex-
pect a severely roughed up 1cut2 ball to work better—extensive testing has gone into obtaining the
optimum surface roughness for golf balls.

CDCL
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F I G U R E  9.38 Inviscid flow past a circular cylinder: (a) uniform upstream flow without
circulation, (b) free vortex at the center of the cylinder, (c) combination of free vortex and uniform flow
past a circular cylinder giving nonsymmetric flow and a lift.
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F I G U R E  9.39 Lift and drag
coefficients for a spinning smooth sphere (Ref. 23).
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GIVEN A table tennis ball weighing with di-
ameter is hit at a velocity of with
a back spin of angular velocity as is shown in Fig. E9.16.v

U � 12 m�sD � 3.8 � 10�2 m
2.45 � 10�2 N FIND What is the value of if the ball is to travel on a hori-

zontal path, not dropping due to the acceleration of gravity?
v

Lift on a Rotating SphereEXAMPLE 9.16

A dimpled golf ball
has less drag and
more lift than a
smooth one.
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In this chapter the flow past objects is discussed. It is shown how the pressure and shear
stress distributions on the surface of an object produce the net lift and drag forces on the
object.

The character of flow past an object is a function of the Reynolds number. For large
Reynolds number flows a thin boundary layer forms on the surface. Properties of this boundary
layer flow are discussed. These include the boundary layer thickness, whether the flow is lami-
nar or turbulent, and the wall shear stress exerted on the object. In addition, boundary layer sep-
aration and its relationship to the pressure gradient are considered.

The drag, which contains portions due to friction (viscous) effects and pressure effects, is
written in terms of the dimensionless drag coefficient. It is shown how the drag coefficient is a
function of shape, with objects ranging from very blunt to very streamlined. Other parameters
affecting the drag coefficient include the Reynolds number, Froude number, Mach number, and
surface roughness.

The lift is written in terms of the dimensionless lift coefficient, which is strongly depen-
dent on the shape of the object. Variation of the lift coefficient with shape is illustrated by the
variation of an airfoil’s lift coefficient with angle of attack.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

9.5 Chapter Summary and Study Guide

drag 
lift 
lift coefficient 
drag coefficient 
wake region 
boundary layer
laminar boundary layer
turbulent boundary layer
boundary layer thickness
transition 
free-stream velocity
favorable pressure 

gradient 
adverse pressure 

gradient 
boundary layer 

separation
friction drag 
pressure drag 
stall 
circulation 
Magnus effect

SOLUTION

COMMENT Is it possible to impart this angular velocity to
the ball? With larger angular velocities the ball will rise and fol-
low an upward curved path. Similar trajectories can be produced
by a well-hit golf ball—rather than falling like a rock, the golf
ball trajectory is actually curved up and the spinning ball travels a
greater distance than one without spin. However, if topspin is im-
parted to the ball 1as in an improper tee shot2 the ball will curve
downward more quickly than under the action of gravity alone—
the ball is “topped” and a negative lift is generated. Similarly, ro-
tation about a vertical axis will cause the ball to hook or slice to
one side or the other.

For horizontal flight, the lift generated by the spinning of the
ball must exactly balance the weight, of the ball so that

or

where the lift coefficient, can be obtained from Fig. 9.39. For

standard atmospheric conditions with we obtain

which, according to Fig. 9.39, can be achieved if

or

Thus,

(Ans)� 5420 rpm

v � 1568 rad�s2 160 s�min2 11 rev�2p rad 2

v �
2U10.92

D
�

2112 m�s2 10.92
3.8 � 10�2 m

� 568 rad�s

vD

2U
� 0.9

� 0.244

CL �
212.45 � 10�2 N2

11.23 kg�m32 112 m�s221p�42 13.8 � 10�2 m22

r � 1.23 kg�m3

CL,

CL �
2w

rU 21p�42D2

w � l � 1
2rU

2ACL

w,
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ω U

Horizontal path
with backspin

Path without
spin



determine the lift and drag on an object from the given pressure and shear stress distribu-
tions on the object.

for flow past a flat plate, calculate the boundary layer thickness, the wall shear stress, the
friction drag, and determine whether the flow is laminar or turbulent.

explain the concept of the pressure gradient and its relationship to boundary layer separation.

for a given object, obtain the drag coefficient from appropriate tables, figures, or equations
and calculate the drag on the object.

explain why golf balls have dimples.

for a given object, obtain the lift coefficient from appropriate figures and calculate the lift
on the object.

Some of the important equations in this chapter are:

Lift coefficient and drag coefficient (9.39), (9.36)

Boundary layer displacement thickness (9.3)

Boundary layer momentum thickness (9.4)

Blasius boundary layer  

, , (9.15), (9.16), (9.17)thickness, displacement 
thickness, and momentum 
thickness for flat plate

Blasius wall shear stress for flat plate (9.18)

Drag on flat plate (9.23)

Blasius wall friction coefficient 
, (9.32)and friction drag coefficient 

for flat plate
CDf �

1.328

1Re/
cf �

0.664

1Rex

d � rbU2 ™

tw � 0.332U3�2 B
rm

x

™

x
�

0.664

1Rex

d*

x
�

1.721

1Rex

d

x
�

5

1Rex

™ � �
A

0
 
u

U
 a1 � u

U
b dy

d* � �
A

0

 a1 � u

U
b dy

CD �
d

1
2rU

2A
CL �

l
1
2rU

2A
,

References 523

1. Schlichting, H., Boundary Layer Theory, 8th Ed., McGraw-Hill, New York, 2000.
2. Rosenhead, L., Laminar Boundary Layers, Oxford University Press, London, 1963.
3. White, F. M., Viscous Fluid Flow, 3rd Ed., McGraw-Hill, New York, 2005.
4. Currie, I. G., Fundamental Mechanics of Fluids, McGraw-Hill, New York, 1974.
5. Blevins, R. D., Applied Fluid Dynamics Handbook, Van Nostrand Reinhold, New York, 1984.
6. Hoerner, S. F., Fluid-Dynamic Drag, published by the author, Library of Congress No. 64,19666,

1965.
7. Happel, J., Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1965.
8. Van Dyke, M., An Album of Fluid Motion, Parabolic Press, Stanford, Calif., 1982.
9. Thompson, P. A., Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972.

10. Zucrow, M. J., and Hoffman, J. D., Gas Dynamics, Vol. I, Wiley, New York, 1976.
11. Clayton, B. R., and Bishop, R. E. D., Mechanics of Marine Vehicles, Gulf Publishing Co., Houston,

1982.
12. CRC Handbook of Tables for Applied Engineering Science, 2nd Ed., CRC Press, Boca Raton, Florida,

1973.
13. Shevell, R. S., Fundamentals of Flight, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1989.
14. Kuethe, A. M., and Chow, C. Y., Foundations of Aerodynamics, Bases of Aerodynamics Design, 4th

Ed., Wiley, New York, 1986.

References



15. Vogel, J., Life in Moving Fluids, 2nd Ed., Willard Grant Press, Boston, 1994.
16. Kreider, J. F., Principles of Fluid Mechanics, Allyn and Bacon, Newton, Mass., 1985.
17. Dobrodzicki, G. A., Flow Visualization in the National Aeronautical Establishment’s Water Tun-

nel, National Research Council of Canada, Aeronautical Report LR-557, 1972.
18. White, F. M., Fluid Mechanics, 6th Ed., McGraw-Hill, New York, 2008.
19. Vennard, J. K., and Street, R. L., Elementary Fluid Mechanics, 7th Ed., Wiley, New York, 1995.
20. Gross, A. C., Kyle, C. R., and Malewicki, D. J., The Aerodynamics of Human Powered Land Vehi-

cles, Scientific American, Vol. 249, No. 6, 1983.
21. Abbott, I. H., and Von Doenhoff, A. E., Theory of Wing Sections, Dover Publications, New York,

1959.
22. MacReady, P. B., “Flight on 0.33 Horsepower: The Gossamer Condor,” Proc. AIAA 14th Annual Meet-

ing 1Paper No. 78-3082, Washington, DC, 1978.
23. Goldstein, S., Modern Developments in Fluid Dynamics, Oxford Press, London, 1938.
24. Achenbach, E., Distribution of Local Pressure and Skin Friction around a Circular Cylinder in Cross-

Flow up to Journal of Fluid Mechanics, Vol. 34, Pt. 4, 1968.
25. Inui, T., Wave-Making Resistance of Ships, Transactions of the Society of Naval Architects and Marine

Engineers, Vol. 70, 1962.
26. Sovran, G., et al. 1ed.2, Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles, Plenum

Press, New York, 1978.
27. Abbott, I. H., von Doenhoff, A. E., and Stivers, L. S., Summary of Airfoil Data, NACA Report No.

824, Langley Field, Va., 1945.
28. Society of Automotive Engineers Report HSJ1566, “Aerodynamic Flow Visualization Techniques and

Procedures,” 1986.
29. Anderson, J. D., Fundamentals of Aerodynamics, 4th Ed., McGraw-Hill, New York, 2007.
30. Hucho, W. H., Aerodynamics of Road Vehicles, Butterworth–Heinemann, 1987.
31. Homsy, G. M., et al., Multimedia Fluid Mechanics, 2nd Ed., CD-ROM, Cambridge University Press,

New York, 2008.

Re � 5 � 106,

524 Chapter 9 ■ Flow over Immersed Bodies

Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. 
(© 2009 John Wiley and Sons, Inc.).

pressure on the back side is a vacuum (i.e., less than the free stream
pressure) with a magnitude 0.4 times the stagnation pressure.
Determine the drag coefficient for this square.

9.3 A small 15-mm-long fish swims with a speed of 20 mm/s.
Would a boundary layer type flow be developed along the sides of
the fish? Explain.

9.4 The average pressure and shear stress acting on the surface
of the 1-m-square flat plate are as indicated in Fig. P9.4.
Determine the lift and drag generated. Determine the lift and
drag if the shear stress is neglected. Compare these two sets
of results.

Problems

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a 1†2 are “open ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems and FlowLab problems
can also be accessed on this web site.

Section 9.1 General External Flow Characteristics

9.1 Obtain photographs/images of external flow objects that are
exposed to both a low Reynolds number and high Reynolds num-
ber. Print these photos and write a brief paragraph that describes
the situations involved.

9.2 A thin square is oriented perpendicular to the upstream
velocity in a uniform flow. The average pressure on the front side
of the square is 0.7 times the stagnation pressure and the average F I G U R E  P9.4

U

pave = –1.2 kN/m2

  ave = 5.8 × 10–2 kN/m2τ

pave = 2.3 kN/m2

  ave = 7.6 × 10–2 kN/m2τ

α  = 7°



*9.5 The pressure distribution on the 1-m-diameter circular
disk in Fig. P9.5 is given in the table. Determine the drag on
the disk.

9.6 When you walk through still air at a rate of 1 m/s, would you
expect the character of the air flow around you to be most like that
depicted in Fig. 9.6a, b, or c? Explain.

9.7 A 0.10 m-diameter circular cylinder moves through air with
a speed U. The pressure distribution on the cylinder’s surface is
approximated by the three straight line segments shown in Fig.
P9.7. Determine the drag coefficient on the cylinder. Neglect shear
forces.

9.8 Typical values of the Reynolds number for various animals
moving through air or water are listed below. For which cases is
inertia of the fluid important? For which cases do viscous effects
dominate? For which cases would the flow be laminar; turbulent?
Explain.

†9.9 Estimate the Reynolds numbers associated with the following
objects moving through water: (a) a kayak, (b) a minnow, (c) a
submarine, (d) a grain of sand settling to the bottom, (e) you
swimming.

Section 9.2 Boundary Layer Characteristics (Also see
Lab Problems 9.112 and 9.113.)

9.10 Obtain a photograph/image of an object that can be ap-
proximated as flow past a flat plate, in which you could use equa-
tions from Section 9.2 to approximate the boundary layer char-
acteristics. Print this photo and write a brief paragraph that
describes the situation involved.

9.11 Discuss any differences in boundary layers between internal
flows (e.g., pipe flow) and external flows.

9.12 Water flows past a flat plate that is oriented parallel to the flow
with an upstream velocity of 0.5 m/s. Determine the approximate
location downstream from the leading edge where the boundary layer
becomes turbulent. What is the boundary layer thickness at this
location?

9.13 A viscous fluid flows past a flat plate such that the boundary
layer thickness at a distance 1.3 m from the leading edge is 12 mm.
Determine the boundary layer thickness at distances of 0.20, 2.0, and
20 m from the leading edge. Assume laminar flow.

9.14 If the upstream velocity of the flow in Problem 9.13 is
determine the kinematic viscosity of the fluid.

9.15 Water flows past a flat plate with an upstream velocity of
Determine the water velocity a distance of 10 mm

from the plate at distances of and from the
leading edge.

9.16 Approximately how fast can the wind blow past a 0.25-
in.-diameter twig if viscous effects are to be of importance
throughout the entire flow field 1i.e., 2? Explain. Repeat for
a 0.004-in.-diameter hair and a 6-ft-diameter smokestack.

9.17 As is indicated in Table 9.2, the laminar boundary layer
results obtained from the momentum integral equation are
relatively insensitive to the shape of the assumed velocity profile.
Consider the profile given by for and

for as shown in Fig. P9.17.
Note that this satisfies the conditions at and 
at However, show that such a profile produces meaningless
results when used with the momentum integral equation. Explain.

y � d.
u � Uy � 0u � 0

y � du � U51 � 3 1y � d2�d 4261�2
y 7 d,u � U

Re 6 1

x � 15 mx � 1.5 m
U � 0.02 m�s.

U � 1.5 m�s,

9.18 If a high-school student who has completed a first course in
physics asked you to explain the idea of a boundary layer, what
would you tell the student?
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r (m) p (kN )

0 4.34
0.05 4.28
0.10 4.06
0.15 3.72
0.20 3.10
0.25 2.78
0.30 2.37
0.35 1.89
0.40 1.41
0.45 0.74
0.50 0.0

�m2

F I G U R E  P9.5

r

D = 1m

p = p(r)

p = –5 kN/m2

U

F I G U R E  P9.4

–6

3

–5

–4

–3

–2

–1

0

1

2

p ,
 N

/m
2

20 40 60 80 100 120 140 160 180
θ, deg

Animal Speed Re

1a2 large whale 300,000,000
1b2 flying duck 300,000
1c2 large dragonfly 30,000
1d2 invertebrate larva 0.3
1e2 bacterium 0.00003 0.01 mm �s

 1 m m�s
 7 m �s

 20 m �s
 10 m �s F I G U R E  P9.17

y

u

u = U

δ
u = U[1�(      )2]1/2y � d

d



9.19 Because of the velocity deficit, in the boundary layer,
the streamlines for flow past a flat plate are not exactly parallel to
the plate. This deviation can be determined by use of the
displacement thickness, For air blowing past the flat plate
shown in Fig. P9.19, plot the streamline A– B that passes through
the edge of the boundary layer at point B. That
is, plot for streamline A–B. Assume laminar boundary
layer flow.

y � y1x2
1y � dB at x � /2

d*.

U � u, floor of an urban building, what is the average velocity on the
sixtieth floor?

9.23 It is relatively easy to design an efficient nozzle to
accelerate a fluid. Conversely, it is very difficult to build an
efficient diffuser to decelerate a fluid without boundary layer
separation and its subsequent inefficient flow behavior. Use the
ideas of favorable and adverse pressure gradients to explain these
facts.

9.24 A 30-story office building 1each story is 12 ft tall2 is built in
a suburban industrial park. Plot the dynamic pressure, as a
function of elevation if the wind blows at hurricane strength 175 mph2
at the top of the building. Use the atmospheric boundary layer
information of Problem 9.22.

9.25 Show that for any function the velocity components
u and determined by Eqs. 9.12 and 9.13 satisfy the incompressible
continuity equation, Eq. 9.8.

*9.26 Integrate the Blasius equation (Eq. 9.14) numerically to
determine the boundary layer profile for laminar flow past a flat
plate. Compare your results with those of Table 9.1.

9.27 An airplane flies at a speed of 400 mph at an altitude of
10,000 ft. If the boundary layers on the wing surfaces behave as
those on a flat plate, estimate the extent of laminar boundary layer
flow along the wing. Assume a transitional Reynolds number of

If the airplane maintains its 400-mph speed but
descends to sea-level elevation, will the portion of the wing
covered by a laminar boundary layer increase or decrease
compared with its value at 10,000 ft? Explain.

†9.28 If the boundary layer on the hood of your car behaves as
one on a flat plate, estimate how far from the front edge of the
hood the boundary layer becomes turbulent. How thick is the
boundary layer at this location?

9.29 A laminar boundary layer velocity profile is approximated
by for and for (a)
Show that this profile satisfies the appropriate boundary conditions.
(b) Use the momentum integral equation to determine the boundary
layer thickness,

9.30 A laminar boundary layer velocity profile is approximated
by the two straight-line segments indicated in Fig. P9.30. Use the
momentum integral equation to determine the boundary layer
thickness, and wall shear stress, Compare
these results with those in Table 9.2.

tw � tw1x2.d � d1x2,

d � d1x2.

y 7 d.u � Uy � d,u�U � 32 � 1y�d2 4 1y�d2

Rexcr � 5 � 105.

v
f � f 1h2

ru2�2,

526 Chapter 9 ■ Flow over Immersed Bodies

yU =
1 m/s

x

� = 4 m

Edge of boundary layer

Streamline A–B

δB

B

A
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F I G U R E  P9.20

1 ft d(x) 2 ft/s

U =
2 ft/s

x

F I G U R E  P9.22

u ~ y0.40

u ~ y0.28

u ~ y0.16

450

300

150

0

y ,
 m

9.20 Air enters a square duct through a 1-ft opening as is shown
in Fig. P9.20. Because the boundary layer displacement thickness
increases in the direction of flow, it is necessary to increase the
cross-sectional size of the duct if a constant velocity is
to be maintained outside the boundary layer. Plot a graph of the
duct size, d, as a function of x for if U is to remain
constant. Assume laminar flow.

0 � x � 10 ft

U � 2 ft�s

9.21 A smooth, flat plate of length and width 
is placed in water with an upstream velocity of 
Determine the boundary layer thickness and the wall shear stress
at the center and the trailing edge of the plate. Assume a laminar
boundary layer.

9.22 An atmospheric boundary layer is formed when the wind
blows over the earth’s surface. Typically, such velocity profiles
can be written as a power law: where the constants a and
n depend on the roughness of the terrain. As is indicated in Fig.
P9.22, typical values are for urban areas, for
woodland or suburban areas, and for flat open country
1Ref. 232. (a) If the velocity is 20 ftZs at the bottom of the sail on
your boat what is the velocity at the top of the mast

(b) If the average velocity is 10 mph on the tenth1y � 30 ft 2?
1y � 4 ft 2,

n � 0.16
n � 0.28n � 0.40

u � ayn,

U � 0.5 m�s.
b � 4 m/ � 6 m

F I G U R E  P9.30

y

δ

δ /2

u

U0 2U___
3

*9.31 For a fluid of specific gravity flowing past a flat
plate with an upstream velocity of the wall shear stress
on a flat plate was determined to be as indicated in the table below.
Use the momentum integral equation to determine the boundary

U � 5 m�s,
SG � 0.86



layer momentum thickness, Assume at the
leading edge, x � 0.

™ � 0™ � ™ 1x2.

Section 9.3 Drag

9.32 Obtain a photograph/image of an everyday item in which
drag plays a key role. Print this photo and write a brief paragraph
that describes the situation involved.

9.33 Should a canoe paddle be made rough to get a “better grip
on the water” for paddling purposes? Explain.

9.34 Define the purpose of “streamlining” a body.

9.35 Water flows over two flat plates with the same laminar free-
stream velocity. Both plates have the same width, but Plate #2
is twice as long as Plate #1. What is the relationship between
the drag force for these two plates?

9.36 Fluid flows past a flat plate with a drag force 1. If the free-
stream velocity is doubled, will the new drag force, 2, be larger
or smaller than 1 and by what amount?

9.37 A model is placed in an air flow with a given velocity and
then placed in water flow with the same velocity. If the drag
coefficients are the same between these two cases, how do the
drag forces compare between the two fluids?

9.38 The drag coefficient for a newly designed hybrid car is
predicted to be 0.21. The cross-sectional area of the car is 30 ft2.
Determine the aerodynamic drag on the car when it is driven
through still air at 55 mph.

9.39 A 5-m-diameter parachute of a new design is to be used
to transport a load from flight altitude to the ground with an
average vertical speed of 3 m/s. The total weight of the load and
parachute is 200 N. Determine the approximate drag coefficient
for the parachute.

9.40 A 50-mph wind blows against an outdoor movie screen
that is 70 ft wide and 20 ft tall. Estimate the wind force on the
screen.

9.41 The aerodynamic drag on a car depends on the “shape” of
the car. For example, the car shown in Fig. P9.41 has a drag
coefficient of 0.36 with the windows and roof closed. With the
windows and roof open, the drag coefficient increases to 0.45.

d
d
d

With the windows and roof open, at what speed is the amount
of power needed to overcome aerodynamic drag the same as it
is at 65 mph with the windows and roof closed? Assume the
frontal area remains the same. Recall that power is force times
velocity.

9.42 A rider on a bike with the combined mass of 100 kg attains
a terminal speed of 15 m/s on a 12% slope. Assuming that the
only forces affecting the speed are the weight and the drag,
calculate the drag coefficient. The frontal area is 0.9 m2.
Speculate whether the rider is in the upright or racing position.

9.43 A baseball is thrown by a pitcher at 95 mph through
standard air. The diameter of the baseball is 2.82 in. Estimate
the drag force on the baseball.

9.44 A logging boat is towing a log that is 2 m in diameter and
8 m long at 4 m/s through water. Estimate the power required if
the axis of the log is parallel to the tow direction.

9.45 A sphere of diameter D and density falls at a steady rate
through a liquid of density and viscosity If the Reynolds
number, is less than 1, show that the viscosity can
be determined from 

9.46 The square, flat plate shown in Fig. P9.46a is cut into four
equal-sized pieces and arranged as shown in Fig. P9.46b.
Determine the ratio of the drag on the original plate [case (a)]
to the drag on the plates in the configuration shown in (b).
Assume laminar boundary flow. Explain your answer physically.

m � gD21rs � r2�18 U.
Re � rDU�m,

m.r
rs
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x (m) (NZ )

0 —
0.2 13.4
0.4 9.25
0.6 7.68
0.8 6.51
1.0 5.89
1.2 6.57
1.4 6.75
1.6 6.23
1.8 5.92
2.0 5.26

m2Tw

F I G U R E  P9.41

Windows and roof
closed: CD = 0.35

Windows open; roof
open: CD = 0.45

F I G U R E  P9.46

U

U

�

4�

�

�/4

(b)

(a)

9.47 If the drag on one side of a flat plate parallel to the upstream
flow is when the upstream velocity is U, what will the drag be
when the upstream velocity is 2U; or Assume laminar flow.

9.48 Water flows past a triangular flat plate oriented parallel to
the free stream as shown in Fig. P9.48. Integrate the wall shear
stress over the plate to determine the friction drag on one side of
the plate. Assume laminar boundary layer flow.

U�2?
d

U = 0.2 m/s
1.0 m

45°

45°

F I G U R E  P9.48



9.49 For small Reynolds number flows the drag coefficient of an
object is given by a constant divided by the Reynolds number 1see
Table 9.42. Thus, as the Reynolds number tends to zero, the drag
coefficient becomes infinitely large. Does this mean that for small
velocities 1hence, small Reynolds numbers2 the drag is very large?
Explain.

9.50 A rectangular car-top carrier of 1.6-ft height, 5.0-ft length
(front to back), and 4.2-ft width is attached to the top of a car. Esti-
mate the additional power required to drive the car with the carrier
at 60 mph through still air compared with the power required to dri-
ving only the car at 60 mph.

9.51 As shown in Video V9.2 and Fig. P9.51a, a kayak is a relatively
streamlined object. As a first approximation in calculating the drag
on a kayak, assume that the kayak acts as if it were a smooth, flat
plate 17 ft long and 2 ft wide. Determine the drag as a function of
speed and compare your results with the measured values given in
Fig. P9.51b. Comment on reasons why the two sets of values may
differ.

9.52 A 38.1-mm-diameter, 0.0245-N table tennis ball is released
from the bottom of a swimming pool. With what velocity does it rise
to the surface? Assume it has reached its terminal velocity.

9.53 To reduce aerodynamic drag on a bicycle, it is proposed that
the cross-sectional shape of the handlebar tubes be made “tear-
drop” shape rather than circular. Make a rough estimate of the
reduction in aerodynamic drag for a bike with this type of
handlebars compared with the standard handlebars. List all
assumptions.

9.54 A hot air balloon roughly spherical in shape has a volume
of 70,000 ft3 and a weight of 500 lb (including passengers, basket,
ballon fabric, etc.). If the outside air temperature is 80 ºF and the
temperature within the balloon is 165 ºF, estimate the rate at which
it will rise under steady state conditions if the atmospheric pressure
is 14.7 psi.

9.55 It is often assumed that “sharp objects can cut through the
air better than blunt ones.” Based on this assumption, the drag on
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(b)

(a)

the object shown in Fig. P9.55 should be less when the wind blows
from right to left than when it blows from left to right. Experiments
show that the opposite is true. Explain.

*9.56 The device shown in Fig. P9.56 is to be designed to measure
the wall shear stress as air flows over the smooth surface with an
upstream velocity U. It is proposed that can be obtained by
measuring the bending moment, M, at the base [point (1)] of the
support that holds the small surface element which is free from
contact with the surrounding surface. Plot a graph of M as a
function of U for with � � 2, 3, 4, and 5 m.5 � U � 50 m�s,

tw

U? U?

F I G U R E  P9.55

U
�

(1)

Square

10 mm

5 mm

F I G U R E  P9.56

9.57 A 12-mm-diameter cable is strung between a series of poles
that are 50 m apart. Determine the horizontal force this cable puts
on each pole if the wind velocity is 30 m/s.

9.58 How fast do small water droplets of 
diameter fall through the air under standard sea-level conditions?
Assume the drops do not evaporate. Repeat the problem for standard
conditions at 5000-m altitude.

9.59 A strong wind can blow a golf ball off the tee by pivoting it
about point 1 as shown in Fig. P9.59. Determine the wind speed
necessary to do this.

16 � 10�8 m20.06 mm

9.60 A 22 in. by 34 in. speed limit sign is supported on a 3-in.
wide, 5-ft-long pole. Estimate the bending moment in the pole at
ground level when a 30-mph wind blows against the sign. (See
Video V9.9.) List any assumptions used in your calculations.

9.61 Determine the moment needed at the base of 20-m-tall, 0.12-
m-diameter flag pole to keep it in place in a wind.

9.62 Repeat Problem 9.61 if a 2-m by 2.5-m flag is attached to the
top of the pole. See Fig. 9.30 for drag coefficient data for flags.

20 m�s

0.20 in.

Weight = 0.0992 lb

Radius = 0.845 in.

(1)

U

F I G U R E  P9.59



9.64 How much more power is required to pedal a bicycle at 
15 mph into a 20-mph head-wind than at 15 mph through still air?
Assume a frontal area of and a drag coefficient of

†9.65 Estimate the wind velocity necessary to knock over a 
10-lb garbage can that is 3 ft tall and 2 ft in diameter. List your
assumptions.

9.66 On a day without any wind, your car consumes x gallons of
gasoline when you drive at a constant speed, U, from point A to
point B and back to point A. Assume that you repeat the journey,
driving at the same speed, on another day when there is a steady
wind blowing from B to A. Would you expect your fuel
consumption to be less than, equal to, or greater than x gallons for
this windy round-trip? Support your answer with appropriate
analysis.

9.67 The structure shown in Fig. P9.67 consists of three
cylindrical support posts to which an elliptical flat-plate sign is
attached. Estimate the drag on the structure when a 50-mph wind
blows against it.

CD � 0.88.
3.9 ft2

9.69 As shown in Video V9.7 and Fig. P9.69, a vertical wind tunnel
can be used for skydiving practice. Estimate the vertical wind speed
needed if a 150-lb person is to be able to “float” motionless when
the person (a) curls up as in a crouching position or (b) lies flat. See
Fig. 9.30 for appropriate drag coefficient data.

*9.70 The helium-filled balloon shown in Fig. P9.70 is to be used
as a wind speed indicator. The specific weight of the helium is

the weight of the balloon material is 0.20 lb, and
the weight of the anchoring cable is negligible. Plot a graph of as
a function of U for Would this be an effective
device over the range of U indicated? Explain.

1 � U � 50 mph.
u

g � 0.011 lb�ft3,
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9.68 As shown in Video V9.13 and Fig. P9.68, the aerodynamic
drag on a truck can be reduced by the use of appropriate air
deflectors. A reduction in drag coefficient from to

corresponds to a reduction of how many horsepower
needed at a highway speed of 65 mph?
CD � 0.70

CD � 0.96

(a) CD = 0.70

b = width = 10 ft

Schuetz
2009

Schuetz
2009

(b) CD = 0.96

12 ft

F I G U R E  P9.68

U

F I G U R E  P9.69

F I G U R E  P9.70

U
2-ft diameter

θ

9.71 A 0.30-m-diameter cork ball ( ) is tied to an object
on the bottom of a river as is shown in Fig. P9.71. Estimate the

SG � 0.21

†9.63 During a flash flood, water rushes over a road as shown in
Fig. P9.63 with a speed of 12 mph. Estimate the maximum water
depth, h, that would allow a car to pass without being swept away.
List all assumptions and show all calculations.



speed of the river current. Neglect the weight of the cable and the
drag on it.

the soil ball, point A. Estimate the tension in the rope if the wind
is 80 km hr. See Fig. 9.30 for drag coefficient data.

9.74 Estimate the wind force on your hand when you hold it out
of your car window while driving 55 mph. Repeat your calculations
if you were to hold your hand out of the window of an airplane
flying 550 mph.

†9.75 Estimate the energy that a runner expends to overcome
aerodynamic drag while running a complete marathon race. This
expenditure of energy is equivalent to climbing a hill of what
height? List all assumptions and show all calculations.

9.76 A 2-mm-diameter meteor of specific gravity 2.9 has a speed
of 6 km/s at an altitude of 50,000 m where the air density is

. If the drag coefficient at this large Mach
number condition is 1.5, determine the deceleration of the meteor.

9.77 Air flows past two equal sized spheres (one rough, one
smooth) that are attached to the arm of a balance as is indicated
in Fig. P9.77. With the beam is balanced. What is the
minimum air velocity for which the balance arm will rotate
clockwise?

U � 0

1.03 � 10�3 kg�m3

�

9.79 The United Nations Building in New York is approximately
87.5-m wide and 154-m tall. (a) Determine the drag on this building
if the drag coefficient is 1.3 and the wind speed is a uniform 
(b) Repeat your calculations if the velocity profile against the
building is a typical profile for an urban area 1see Problem 9.222
and the wind speed halfway up the building is 

9.80 A regulation football is 6.78 in. in diameter and weighs 0.91 lb.
If its drag coefficient is determine its deceleration if it
has a speed of at the top of its trajectory.20 ft�s

CD � 0.2,

20 m�s.

20 m�s.

9.72 A shortwave radio antenna is constructed from circular
tubing, as is illustrated in Fig. P9.72. Estimate the wind force on
the antenna in a 100 km hr wind.�

9.73 The large, newly planted tree shown in Fig. P9.73 is kept
from tipping over in a wind by use of a rope as shown. It is assumed
that the sandy soil cannot support any moment about the center of
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U

30°

10-mm diameter
1 m long

40-mm diameter
5 m long

0.25 m

0.6 m

0.5 m20-mm diameter
1.5 m long
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2 m
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Scale drawing

45�

U = 80 km/hr

A
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D = 0.1 m Rough sphere
/D = 1.25 × 10–2

Smooth
sphere

0.5 m0.3 m

∋

U
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Air
Area = 0.6 ft2

Area = 0.3 ft2

Pressure
gage
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9.78 A 2-in.-diameter sphere weighing 0.14 lb is suspended by
the jet of air shown in Fig. P9.78 and Video V3.2. The drag
coefficient for the sphere is 0.5. Determine the reading on the
pressure gage if friction and gravity effects can be neglected for
the flow between the pressure gage and the nozzle exit.



9.81 An airplane tows a banner that is tall and
long at a speed of If the drag coefficient

based on the area is estimate the power required to
tow the banner. Compare the drag force on the banner with that on
a rigid flat plate of the same size. Which has the larger drag force
and why?

†9.82 Skydivers often join together to form patterns during the
free-fall portion of their jump. The current Guiness Book of World
Records record is 297 skydivers joined hand-to-hand. Given that
they can’t all jump from the same airplane at the same time,
describe how they manage to get together (see Video V9.7). Use
appropriate fluid mechanics equations and principles in your
answer.

9.83 The paint stirrer shown in Fig. P9.83 consists of two circular
disks attached to the end of a thin rod that rotates at 80 rpm. The
specific gravity of the paint is and its viscosity is

Estimate the power required to drive the
mixer if the induced motion of the liquid is neglected.
m � 2 � 10�2 lb # s�ft2.

SG � 1.1

CD � 0.06,b/
150 km�hr./ � 25 m

b � 0.8 m

†9.84 If the wind becomes strong enough, it is “impossible” to
paddle a canoe into the wind. Estimate the wind speed at which this
will happen. List all assumptions and show all calculations.

9.85 A fishnet consists of 0.10-in.-diameter strings tied into squares
4 in. per side. Estimate the force needed to tow a 15-ft by 30-ft
section of this net through seawater at 

9.86 As indicated in Fig. P9.86, the orientation of leaves on a tree
is a function of the wind speed, with the tree becoming “more
streamlined” as the wind increases. The resulting drag coefficient
for the tree (based on the frontal area of the tree, HW) as a function
of Reynolds number (based on the leaf length, L) is approximated
as shown. Consider a tree with leaves of length . What
wind speed will produce a drag on the tree that is 6 times greater
than the drag on the tree in a wind?15 ft�s

L � 0.3 ft

5 ft �s.

9.88 Show that for level flight at a given speed, the power required
to overcome aerodynamic drag decreases as the altitude increases.
Assume that the drag coefficient remains constant. This is one
reason why airlines fly at high altitudes.

9.89 (See Fluids in the News article “Dimpled baseball bats,” Section
9.3.3.) How fast must a 3.5-in.-diameter, dimpled baseball bat move
through the air in order to take advantage of drag reduction produced
by the dimples on the bat. Although there are differences, assume the
bat (a cylinder) acts the same as a golf ball in terms of how the dimples
affect the transition from a laminar to a turbulent boundary layer.

9.90 (See Fluids in the News article “At 10,240 mpg it doesn’t cost
much to ‘fill ’er up,’” Section 9.3.3.) (a) Determine the power it
takes to overcome aerodynamic drag on a small ( cross section),
streamlined ( ) vehicle traveling 15 mph. (b) Compare the
power calculated in part (a) with that for a large ( cross-
sectional area), nonstreamlined SUV traveling 65
mph on the interstate.

Section 9.4 Lift

9.91 Obtain a photograph image of a device, other than an aircraft
wing, that creates lift. Print this photo and write a brief paragraph
that describes the situation involved.

9.92 A rectangular wing with an aspect ratio of 6 is to generate
1000 lb of lift when it flies at a speed of 200 ft s. Determine the
length of the wing if its lift coefficient is 1.0.

9.93 Explain why aircraft and birds take off and land into the 
wind.

9.94 A Piper Cub airplane has a gross weight of 1750 lb, a cruising
speed of 115 mph, and a wing area of . Determine the lift
coefficient of this airplane for these conditions.

9.95 A light aircraft with a wing area of and a weight of
2000 lb has a lift coefficient of 0.40 and a drag coefficient of 0.05.
Determine the power required to maintain level flight.

9.96 As shown in Video V9.19 and Fig. P9.96, a spoiler is used
on race cars to produce a negative lift, thereby giving a better
tractive force. The lift coefficient for the airfoil shown is ,
and the coefficient of friction between the wheels and the pavement
is 0.6. At a speed of 200 mph, by how much would use of the
spoiler increase the maximum tractive force that could be generated
between the wheels and ground? Assume the air speed past the
spoiler equals the car speed and that the airfoil acts directly over
the drive wheels.

CL � 1.1

200 ft2

179 ft2

�

�

1CD � 0.482
36 ft2

CD � 0.12
6 ft2

9.87 The blimp shown in Fig. P9.87 is used at various athletic
events. It is 128 ft long and has a maximum diameter of 33 ft. If
its drag coefficient (based on the frontal area) is 0.060, estimate
the power required to propel it (a) at its 35-mph cruising speed, or
(b) at its maximum 55-mph speed.
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9.97 The wings of old airplanes are often strengthened by the use
of wires that provided cross-bracing as shown in Fig. P9.97. If the
drag coefficient for the wings was 0.020 1based on the planform
area2, determine the ratio of the drag from the wire bracing to that
from the wings.

9.98 A wing generates a lift when moving through sea-level air
with a velocity U. How fast must the wing move through the air
at an altitude of 10,000 m with the same lift coefficient if it is to
generate the same lift?

9.99 Air blows over the flat-bottomed, two-dimensional object
shown in Fig. P9.99. The shape of the object, , and the
fluid speed along the surface, , are given in the table.
Determine the lift coefficient for this object.

u � u1x2
y � y1x2

l

the same configuration 1i.e., angle of attack, flap settings, etc.2, what
is its takeoff speed if it is loaded with 372 passengers? Assume each
passenger with luggage weighs 200 lb.

9.102 Show that for unpowered flight 1for which the lift, drag, and
weight forces are in equilibrium2 the glide slope angle, is given
by 

9.103 If the lift coefficient for a Boeing 777 aircraft is 15 times
greater than its drag coefficient, can it glide from an altitude of
30,000 ft to an airport 80 mi away if it loses power from its engines?
Explain. 1See Problem 9.102.2
9.104 On its final approach to the airport, an airplane flies on a
flight path that is relative to the horizontal. What lift-to-drag
ratio is needed if the airplane is to land with its engines idled back
to zero power? 1See Problem 9.102.2
9.105 Over the years there has been a dramatic increase in the
flight speed (U) and altitude (h), weight and wing loading
( divided by wing area) of aircraft. Use the data
given in the table below to determine the lift coefficient for each
of the aircraft listed.

w�A � weight
1w2,

3.0°

tan u � CD�CL.
u,

9.100 To help ensure safe flights, air-traffic controllers enforce a
minimum time interval between takeoffs. During busy times this
can result in a long queue of aircraft waiting for takeoff clearance.
Based on the flow shown in Fig. 9.37 and Videos V4.6, V9.1, and
V9.19, explain why the interval between takeoffs can be shortened
if the wind has a cross-runway component (as opposed to blowing
directly down the runway).

9.101 A Boeing 747 aircraft weighing 580,000 lb when loaded with
fuel and 100 passengers takes off with an airspeed of 140 mph. With
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Speed:  70 mph
Wing area:  148 ft2

Wire:  length = 160 ft
         diameter = 0.05 in.

x(% c) y(% c) u⁄U

0 0 0
2.5 3.72 0.971
5.0 5.30 1.232
7.5 6.48 1.273

10 7.43 1.271
20 9.92 1.276
30 11.14 1.295
40 11.49 1.307
50 10.45 1.308
60 9.11 1.195
70 6.46 1.065
80 3.62 0.945
90 1.26 0.856

100 0 0.807

U

y

x
c

u = u(x)

u = U
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Aircraft Year , lb U, mph h, ft

Wright Flyer 1903 750 35 1.5 0
Douglas DC-3 1935 25,000 180 25.0 10,000
Douglas DC-6 1947 105,000 315 72.0 15,000
Boeing 747 1970 800,000 570 150.0 30,000

w�A, lb�ft2w
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9.106 The landing speed of an airplane such as the Space Shuttle
is dependent on the air density. (See Video V9.1.) By what percent
must the landing speed be increased on a day when the temperature
is compared to a day when it is Assume that the
atmospheric pressure remains constant.

9.107 Commercial airliners normally cruise at relatively high
altitudes 130,000 to 35,000 ft2. Discuss how flying at this high
altitude 1rather than 10,000 ft, for example2 can save fuel costs.

9.108 A pitcher can pitch a “curve ball” by putting sufficient spin
on the ball when it is thrown. A ball that has absolutely no spin will
follow a “straight” path. A ball that is pitched with a very small
amount of spin 1on the order of one revolution during its flight between
the pitcher’s mound and home plate2 is termed a knuckle ball. A ball
pitched this way tends to “jump around” and “zig-zag” back and forth.
Explain this phenomenon. Note: A baseball has seams.

9.109 For many years, hitters have claimed that some baseball
pitchers have the ability to actually throw a rising fastball.
Assuming that a top major leaguer pitcher can throw a 95-mph
pitch and impart an 1800-rpm spin to the ball, is it possible for the
ball to actually rise? Assume the baseball diameter is 2.9 in. and its
weight is 5.25 oz.

9.110 (See Fluids in the News article “Learning from nature,”
Section 9.4.1.) As indicated in Fig. P9.110, birds can significantly

50 °F?110 °F



alter their body shape and increase their planform area, A, by
spreading their wing and tail feathers, thereby reducing their flight
speed. If during landing the planform area is increased by 50% and
the lift coefficient increased by 30% while all other parameters are
held constant, by what percent is the flight speed reduced?

9.111 (See Fluids in the News article “Why winglets?, ” Section
9.4.2.) It is estimated that by installing appropriately designed
winglets on a certain airplane the drag coefficient will be reduced
by 5%. For the same engine thrust, by what percent will the aircraft
speed be increased by use of the winglets?

■ Lab Problems

9.112 This problem involves measuring the boundary layer profile
on a flat plate. To proceed with this problem, go to Appendix H
which is located on the book’s web site, www.wiley.com/college/
munson.

9.113 This problem involves measuring the pressure distribution
on a circular cylinder. To proceed with this problem, go to Appendix
H which is located on the book’s web site, www.wiley.com/college/
munson.

■ Life Long Learning Problems

9.114 One of the “Fluids in the News” articles in this chapter
discusses pressure-sensitive paint—a new technique of measuring
surface pressure. There have been other advances in fluid
measurement techniques, particularly in velocity measurements.
One such technique is particle image velocimetry, or PIV. Obtain
information about PIV and its advantages. Summarize your
findings in a brief report.

9.115 For typical aircraft flying at cruise conditions, it is
advantageous to have as much laminar flow over the wing as
possible since there is an increase in friction drag once the flow
becomes turbulent. Various techniques have been developed to help
promote laminar flow over the wing, both in airfoil geometry
configurations as well as active flow control mechanisms. Obtain
information on one of these techniques. Summarize your findings
in a brief report.

9.116 We have seen in this chapter that streamlining an automobile
can help to reduce the drag coefficient. One of the methods of
reducing the drag has been to reduce the projected area. However,

it is difficult for some road vehicles, such as a tractor-trailer, to
reduce this projected area due to the storage volume needed to haul
the required load. Over the years, work has been done to help
minimize some of the drag on this type of vehicle. Obtain
information on a method that has been developed to reduce drag
on a tractor-trailer. Summarize your findings in a brief report.

■ FlowLab Problems

*9.117 This FlowLab problem involves simulation of flow past an
airfoil and investigation of the surface pressure distribution as a
function of angle of attack. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/munson.

*9.118 This FlowLab problem involves investigation of the effects
of angle-of-attack on lift and drag for flow past an airfoil. To
proceed with this problem, go to the book’s web site, www.
wiley.com/college/munson.

*9.119 This FlowLab problem involves simulating the effects of al-
titude on the lift and drag of an airfoil. To proceed with this problem,
go to the book’s web site, www.wiley.com/college/munson.

*9.120 This FlowLab problem involves comparison between in-
viscid and viscous flows past an airfoil. To proceed with this prob-
lem, go to the book’s web site, www.wiley.com/college/munson.

*9.121 This FlowLab problem involves simulating the pressure
distribution for flow past a cylinder and investigating the differ-
ences between inviscid and viscous flows. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/
munson.

*9.122 This FlowLab problem involves comparing CFD
predictions and theoretical values of the drag coefficient of flow
past a cylinder. To proceed with this problem, go to the book’s web
site, www.wiley.com/college/munson.

*9.123 This FlowLab problem involves simulating the unsteady
flow past a cylinder. To proceed with this problem, go to the book’s
web site, www.wiley.com/college/munson.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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