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CHAPTER OPENING PHOTO: Flow past a sphere at Mach 1.53: An object moving through a fluid at super-
sonic speed 1Mach number greater than one2 creates a shock wave 1a discontinuity in flow conditions shown
by the dark curved line2, which is heard as a sonic boom as the object passes overhead. The turbulent wake
is also shown 1shadowgraph technique used in air2. (Photograph courtesy of A. C. Charters.)

Lear n in g  Ob je c t ive s

After completing this chapter, you should be able to:

■ distinguish between incompressible and compressible flows, and know when the
approximations associated with assuming fluid incompressibility are acceptable.

■ understand some important features of different categories of compressible
flows of ideal gases.

■ explain speed of sound and Mach number and their practical significance.

■ solve useful problems involving isentropic and nonisentropic flows including
flows across normal shock waves.

■ appreciate the compelling similarities between compressible flows of gases
and open channel flows of liquids.

■ move on to understanding more advanced concepts about compressible flows.

Most first courses in fluid mechanics concentrate on constant density 1incompressible2 flows. In
earlier chapters of this book, we mainly considered incompressible flow behavior. In a few in-
stances, variable density 1compressible2 flow effects were covered briefly. The notion of an incom-
pressible fluid is convenient because when constant density and constant 1including zero2 viscos-
ity are assumed, problem solutions are greatly simplified. Also, fluid incompressibility allows us
to build on the Bernoulli equation as was done, for example, in Chapter 5. Preceding examples
should have convinced us that nearly incompressible flows are common in everyday experiences.
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Flow

Compressible 
Flow



Any study of fluid mechanics would, however, be incomplete without a brief introduction to com-
pressible flow behavior. Fluid compressibility is a very important consideration in numerous engineer-
ing applications of fluid mechanics. For example, the measurement of high-speed flow velocities re-
quires compressible flow theory. The flows in gas turbine engine components are generally compressible.
Many aircraft fly fast enough to involve compressible flow.

The variation of fluid density for compressible flows requires attention to density and other
fluid property relationships. The fluid equation of state, often unimportant for incompressible flows,
is vital in the analysis of compressible flows. Also, temperature variations for compressible flows
are usually significant and thus the energy equation is important. Curious phenomena can occur with
compressible flows. For example, with compressible flows we can have fluid acceleration because
of friction, fluid deceleration in a converging duct, fluid temperature decrease with heating, and the
formation of abrupt discontinuities in flows across which fluid properties change appreciably.

For simplicity, in this introductory study of compressibility effects we mainly consider the
steady, one-dimensional, constant 1including zero2 viscosity, compressible flow of an ideal gas. We
limit our study to compressibility due to high speed flow. In this chapter, one-dimensional flow
refers to flow involving uniform distributions of fluid properties over any flow cross-sectional area.
Both frictionless and frictional compressible flows are considered. If the change
in volume associated with a change of pressure is considered a measure of compressibility, our ex-
perience suggests that gases and vapors are much more compressible than liquids. We focus our
attention on the compressible flow of a gas because such flows occur often. We limit our discus-
sion to ideal gases, since the equation of state for an ideal gas is uncomplicated, yet representative
of actual gases at pressures and temperatures of engineering interest, and because the flow trends
associated with an ideal gas are generally applicable to other compressible fluids.

An excellent film about compressible flow is available 1see Ref. 12. This resource is a use-
ful supplement to the material covered in this chapter.
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11.1 Ideal Gas Relationships

Before we can proceed to develop compressible flow equations, we need to become more famil-
iar with the fluid we will work with, the ideal gas. Specifically, we must learn how to evaluate
ideal gas property changes. The equation of state for an ideal gas is

(11.1)

We have already discussed fluid pressure, p, density, and temperature, T, in earlier chapters. The
gas constant, R, represents a constant for each distinct ideal gas or mixture of ideal gases, where

(11.2)

With this notation, is the universal gas constant and is the molecular weight of the ideal gas or
gas mixture. Listed in Tables 1.7 and 1.8 are values of the gas constants of some commonly used gases.
Knowing the pressure and temperature of a gas, we can estimate its density. Nonideal gas state equa-
tions are beyond the scope of this text, and those interested in this topic are directed to texts on engi-
neering thermodynamics, for example, Ref. 2. Note that the trends of ideal gas flows are generally
good indicators of what nonideal gas flow behavior is like.

For an ideal gas, internal energy, is part of the stored energy of the gas as explained in
Section 5.3 and is considered to be a function of temperature only 1Ref. 22. Thus, the ideal gas spe-
cific heat at constant volume, can be expressed as

(11.3)

where the subscript on the partial derivative refers to differentiation at constant specific volume,
From Eq. 11.3 we conclude that for a particular ideal gas, is a function of tempera-

ture only. Equation 11.3 can be rearranged to yield

dǔ � cv dT

cvv � 1�r.
v

cv � a
0ǔ
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Thus,

(11.4)

Equation 11.4 is useful because it allows us to evaluate the change in internal energy, as-
sociated with ideal gas flow from section 112 to section 122 in a flow. For simplicity, we can assume
that is constant for a particular ideal gas and obtain from Eq. 11.4

(11.5)

Actually, for a particular gas varies with temperature 1see Ref. 22. However, for moderate changes
in temperature, the constant assumption is reasonable.

The fluid property enthalpy, is defined as

(11.6)

It combines internal energy, and pressure energy, and is useful when dealing with the en-
ergy equation 1Eq. 5.692. For an ideal gas, we have already stated that

From the equation of state 1Eq. 11.12

Thus, it follows that

Since for an ideal gas, enthalpy is a function of temperature only, the ideal gas specific heat at con-
stant pressure, can be expressed as

(11.7)

where the subscript p on the partial derivative refers to differentiation at constant pressure, and 
is a function of temperature only. The rearrangement of Eq. 11.7 leads to

and

(11.8)

Equation 11.8 is useful because it allows us to evaluate the change in enthalpy, associ-
ated with ideal gas flow from section 112 to section 122 in a flow. For simplicity, we can assume
that is constant for a specific ideal gas and obtain from Eq. 11.8

(11.9)

As is true for the value of for a given gas varies with temperature. Nevertheless, for moder-
ate changes in temperature, the constant assumption is reasonable.

From Eqs. 11.5 and 11.9 we see that changes in internal energy and enthalpy are related
to changes in temperature by values of and We turn our attention now to developing use-
ful relationships for determining and Combining Eqs. 11.6 and 11.1 we get

(11.10)ȟ � ǔ � RT
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For moderate tem-
perature changes,
specific heat values
can be considered
constant.



Differentiating Eq. 11.10 leads to

or

(11.11)

From Eqs. 11.3, 11.7, and 11.11 we conclude that

(11.12)

Equation 11.12 indicates that the difference between and is constant for each ideal gas re-
gardless of temperature. Also If the specific heat ratio, k, is defined as

(11.13)

then combining Eqs. 11.12 and 11.13 leads to

(11.14)

and

(11.15)

Actually, and k are all somewhat temperature dependent for any ideal gas. We will assume
constant values for these variables in this book. Values of k and R for some commonly used gases at
nominal temperatures are listed in Tables 1.7 and 1.8. These tabulated values can be used with Eqs.
11.13 and 11.14 to determine the values of and Example 11.1 demonstrates how internal en-
ergy and enthalpy changes can be calculated for a flowing ideal gas having constant and cv.cp
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The gas constant is
related to the spe-
cific heat values.

GIVEN Air flows steadily between two sections in a long
straight portion of 4-in.-diameter pipe as is indicated in Fig. E11.1.
The uniformly distributed temperature and pressure at each section
are psia, and psia. T2 � 453 °R, p2 � 18.4T1 � 540 °R, p1 � 100

Internal Energy, Enthalpy, and Density for an Ideal GasEXAMPLE 11.1

SOLUTION

units are used more often than British Gravitational System units
in compressible flow discussions, we use

to get

R �
1716 1ft # lb2� 1slug # °R2

32.174 1lbm�slug2 � 53.3 1ft # lb2� 1lbm # °R2

1 slug � 32 .174 lbm

(a) Assuming air behaves as an ideal gas, we can use Eq. 11.5 to
evaluate the change in internal energy between sections 112 and 122.
Thus

(1)

From Eq. 11.15 we have

(2)

and from Table 1.7, and 
Throughout this book, we use the nominal values of k for
common gases listed in Tables 1.7 and 1.8 and consider these val-
ues as being representative. Since English Engineering System

k � 1.4.R � 1716 1ft # lb2� 1slug # °R2

cv �
R

k � 1

ǔ2 � ǔ1 � cv1T2 � T12

F I G U R E  E11.1

DSection (2)Section (1)Flow

Control volumePipe

D1 = D2 = 4 in.

FIND Calculate the 1a2 change in internal energy between sec-
tions 112 and 122, 1b2 change in enthalpy between sections 112 and
122, and 1c2 change in density between sections 112 and 122.



For compressible flows, changes in the thermodynamic property entropy, s, are important.
For any pure substance including ideal gases, the “first T ds equation” is 1see Ref. 22

(11.16)

where T is absolute temperature, s is entropy, is internal energy, p is absolute pressure, and is
density. Differentiating Eq. 11.6 leads to

(11.17)

By combining Eqs. 11.16 and 11.17, we obtain

(11.18)

Equation 11.18 is often referred to as the “second T ds equation.” For an ideal gas, Eqs. 11.1, 11.3,
and 11.16 can be combined to yield

(11.19)

and Eqs. 11.1, 11.7, and 11.18 can be combined to yield
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dT

T
� R 

dp
p

ds � cv 
dT

T
�

R

1�r
 d a1
r
b

T ds � dȟ �  a1
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From Eq. 2 we obtain

(3)

Combining Eqs. 1 and 3 yields

(Ans)

Or, if Btu are wanted as energy units, we note that

and so

(b) For enthalpy change we use Eq. 11.9. Thus

(4)

where since we obtain

(5)

From Eqs. 4 and 5 we obtain

(Ans) � �16,200 ft # lb�lbm

 � 1453 °R � 540 °R2
 ȟ2 � ȟ1 � cp1T2 � T12 � 186 1ft # lb2� 1lbm # °R2

 � 186 1ft # lb2�1lbm # °R2
cp � kcv � 11.42 3133 1ft # lb2� 1lbm # °R2 4
k � cp�cv

ȟ2 � ȟ1 � cp1T2 � T12

ǔ2 � ǔ1 � �
11,600 1ft # lb2�lbm

778 1ft # lb2�Btu
� �14.9 Btu�lbm

778 ft # lb � 1 Btu

 � �11,600 ft # lb�lbm

 � 1453 °R � 540 °R2
 ǔ2 � ǔ1 � cv1T2 � T12 � 133 1ft # lb2� 1lbm # °R2

 � 133 1ft # lb2� 1lbm # °R2
 cv �

53.3

11.4 � 12  1ft
# lb2�1lbm # °R2

(c) For density change we use the ideal gas equation of state
1Eq. 11.12 to get

(6)

Using the pressures and temperatures given in the problem state-
ment we calculate from Eq. 6

or

(Ans)

COMMENT This is a significant change in density when
compared with the upstream density

Compressibility effects are important for this flow.

 � 0.499 lbm�ft3

r1 �
p1

RT1
�

1100 psia2 1144 in.2�ft22
353.3 1ft # lb2� 1lbm # °R2 4 1540 °R2

 r2 � r1 � �0.389 lbm�ft3

 �
1100 psia 2 1144  in.2�ft22

540 °R
d

 � c 118.4 psia 2 1144 in.2�ft22
453 °R

 r2 � r1 �
1

53.3 1ft # lb2� 1lbm # °R2

r2 � r1 �
p2

RT2
�

p1

RT1
�

1

R
 ap2

T2
�

p1

T1
b

Changes in entropy
are important be-
cause they are re-
lated to loss of
available energy.



If and are assumed to be constant for a given gas, Eqs. 11.19 and 11.20 can be integrated to get

(11.21)

and

(11.22)

Equations 11.21 and 11.22 allow us to calculate the change of entropy of an ideal gas flowing from
one section to another with constant specific heat values 1 and 2.cvcp

s2 � s1 � cp ln 
T2

T1

� R ln 
p2

p1

s2 � s1 � cv ln 
T2

T1
� R ln 

r1

r2

cvcp
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Changes in entropy
are related to
changes in temper-
ature, pressure, and
density.

GIVEN Consider the air flow of Example 11.1.

Entropy for an Ideal GasEXAMPLE 11.2

SOLUTION

we get

or

(Ans)

From Eq. 11.22,

(4)

By substituting known values into Eq. 4 we obtain

or

(Ans)

COMMENT As anticipated, both Eqs. 11.21 and 11.22 yield
the same result for the entropy change,

Note that since the ideal gas equation of state was used in the
derivation of the entropy difference equations, both the pressures
and temperatures used must be absolute.

s2 � s1.

s2 � s1 � 57.5 1ft # lb2� 1lbm # °R2

� 353.3 1ft # lb2� 1lbm # °R2 4  ln a18.4 psia

100 psia
b

 s2 � s1 � 3186 1ft # lb2� 1lbm # °R2 4  ln a453 °R

540 °R
b

s2 � s1 � cp ln 
T2

T1
� R ln 

p2

p1

 s2 � s1 � 57.5 1ft # lb2� 1lbm # °R2

 � 353.3 1ft # lb2� 1lbm # °R2 4  ln 4.56

 s2 � s1 � 3133 1ft # lb2� 1lbm # °R2 4  ln a453 °R

540 °R
b

Assuming that the flowing air in Fig. E11.1 behaves as an ideal
gas, we can calculate the entropy change between sections by us-
ing either Eq. 11.21 or Eq. 11.22. We use both to demonstrate that
the same result is obtained either way.

From Eq. 11.21,

(1)

To evaluate from Eq. 1 we need the density ratio,
which can be obtained from the ideal gas equation of state 
1Eq. 11.12 as

(2)

and thus from Eqs. 1 and 2,

(3)

By substituting values already identified in the Example 11.1
problem statement and solution into Eq. 3 with

ap1

T1
b aT2

p2
b � a100 psia

540 °R
b a 453 °R

18.4 psia
b � 4.56

s2 � s1 � cv ln 
T2

T1
� R ln c ap1

T1
b aT2

p2
b d

r1

r2
� ap1

T1
b aT2

p2
b

r1�r2,s2 � s1

s2 � s1 � cv ln 
T2

T1
� R ln 

r1

r2

If internal energy, enthalpy, and entropy changes for ideal gas flow with variable specific heats
are desired, Eqs. 11.4, 11.8, and 11.19 or 11.20 must be used as explained in Ref. 2. Detailed tables
1see, for example, Ref. 32 are available for variable specific heat calculations.

The second law of thermodynamics requires that the adiabatic and frictionless flow of any fluid
results in Constant entropy flow is called isentropic flow. For the isentropic
flow of an ideal gas with constant and we get from Eqs. 11.21 and 11.22

(11.23)cv ln 
T2

T1

� R ln 
r1

r2
� cp ln 

T2

T1

� R ln 
p2

p1
� 0

cv,cp

ds � 0 or s2 � s1 � 0.

FIND Calculate the change in entropy, between sec-
tions 112 and 122.

s2 � s1,



By combining Eq. 11.23 with Eqs. 11.14 and 11.15 we obtain

(11.24)

which is a useful relationship between temperature, density, and pressure for the isentropic flow
of an ideal gas. From Eq. 11.24 we can conclude that

(11.25)

for an ideal gas with constant and flowing isentropically, a result already used without proof
earlier in Chapters 1, 3, and 5.

cvcp

p

rk � constant

aT2

T1

b
k�1k�12

� ar2

r1
b

k

� ap2

p1
b
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F l u i d s  i n  t h e  N e w s

Hilsch tube (Ranque vortex tube) Years ago (around 1930) a
French physics student (George Ranque) discovered that apprecia-
bly warmer and colder portions of rapidly swirling air flow could be
separated in a simple apparatus consisting of a tube open at both
ends into which was introduced, somewhere in between the two
openings, swirling air at high pressure. Warmer air near the outer
portion of the swirling air flowed out one open end of the tube

through a simple valve and colder air near the inner portion of the
swirling air flowed out the opposite end of the tube. Rudolph
Hilsch, a German physicist, improved on this discovery (ca. 1947).
Hot air temperatures of 260 °F (127 °C) and cold air temperatures
of �50 °F (�46 °C) have been claimed in an optimized version of
this apparatus. Thus far the inefficiency of the process has pre-
vented it from being widely adopted. (See Problems 11.80.)

The Mach number, Ma, was introduced in Chapters 1 and 7 as a dimensionless measure of com-
pressibility in a fluid flow. In this and subsequent sections, we develop some useful relationships
involving the Mach number. The Mach number is defined as the ratio of the value of the local flow
velocity, V, to the local speed of sound, c. In other words,

What we perceive as sound generally consists of weak pressure pulses that move through air with
a Mach number of one. When our ear drums respond to a succession of moving pressure pulses,
we hear sounds.

To better understand the notion of speed of sound, we analyze the one-dimensional fluid me-
chanics of an infinitesimally thin, weak pressure pulse moving at the speed of sound through a
fluid at rest 1see Fig. 11.1a2. Ahead of the pressure pulse, the fluid velocity is zero and the fluid
pressure and density are p and Behind the pressure pulse, the fluid velocity has changed by an
amount and the pressure and density of the fluid have also changed by amounts and 
We select an infinitesimally thin control volume that moves with the pressure pulse as is sketched

dr.dpdV,
r.

Ma �
V
c

11.2 Mach Number and Speed of Sound

Mach number is
the ratio of local
flow and sound
speeds.

F I G U R E  11.1 (a) Weak pressure pulse moving through a fluid at
rest. (b) The flow relative to a control volume containing a weak pressure pulse.

c

p

A A

V = 0

ρ

p

V

ρ δρ

δ

(a)

Control volume

Weak pressure pulse

+

δρ+

c
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p

A A

ρ
p

V

ρ δρ
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(b)

Control volume

Weak pressure pulse

+

–

δρ+



in Fig. 11.1a. The speed of the weak pressure pulse is considered constant and in one direction
only; thus, our control volume is inertial.

For an observer moving with this control volume 1Fig. 11.1b2, it appears as if fluid is enter-
ing the control volume through surface area A with speed c at pressure p and density and leav-
ing the control volume through surface area A with speed pressure and density

When the continuity equation 1Eq. 5.162 is applied to the flow through this control vol-
ume, the result is

(11.26)

or

(11.27)

Since is much smaller than the other terms in Eq. 11.27, we drop it from further consid-
eration and keep

(11.28)

The linear momentum equation 1Eq. 5.292 can also be applied to the flow through the control vol-
ume of Fig. 11.1b. The result is

(11.29)

Note that any frictional forces are considered as being negligibly small. We again neglect higher
order terms [such as compared to c for example] and combine Eqs. 11.26 and 11.29
to get

or

(11.30)

From Eqs. 11.28 1continuity2 and 11.30 1linear momentum2 we obtain

or

(11.31)

This expression for the speed of sound results from application of the conservation of mass and
conservation of linear momentum principles to the flow through the control volume of Fig. 11.1b.
These principles were similarly used in Section 10.2.1 to obtain an expression for the speed of sur-
face waves traveling on the surface of fluid in a channel.

The conservation of energy principle can also be applied to the flow through the control vol-
ume of Fig. 11.1b. If the energy equation 1Eq. 5.1032 is used for the flow through this control vol-
ume, the result is

(11.32)

For gas flow we can consider g as being negligibly small in comparison to the other terms in the
equation. Also, if we assume that the flow is frictionless, then and Eq. 11.32 becomes

or, neglecting compared to c we obtain

(11.33)r dV �
dp
c

dV,1dV22

dp
r
�
1c � dV22

2
�

c2

2
� 0

d1loss2 � 0
dz

dp
r
� d aV 2

2
b � g dz � d1loss2

c � B
dp

dr

c2 �
dp

dr

rdV �
dp

c

�crcA � 1c � dV2rAc � �dpA

dV,1dV22

�crcA � 1c � dV2 1r � dr2 1c � dV2A � pA � 1p � dp2A

r dV � c dr

1dr2 1dV2
rc � rc � r dV � c dr � 1dr2 1dV2

rAc � 1r � dr2A1c � dV2

r � dr.
p � dp,c � dV,

r
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The changes in fluid
properties across 
a sound wave are
very small compared
to their local values.



By combining Eqs. 11.28 1continuity2 and 11.33 1energy2 we again find that

which is identical to Eq. 11.31. Thus, the conservation of linear momentum and the conservation
of energy principles lead to the same result. If we further assume that the frictionless flow through
the control volume of Fig. 11.1b is adiabatic 1no heat transfer2, then the flow is isentropic. In the
limit, as becomes vanishingly small 

(11.34)

where the subscript s is used to designate that the partial differentiation occurs at constant entropy.
Equation 11.34 suggests to us that we can calculate the speed of sound by determining the

partial derivative of pressure with respect to density at constant entropy. For the isentropic flow of
an ideal gas 1with constant and 2, we learned earlier 1Eq. 11.252 that

and thus

(11.35)

Thus, for an ideal gas

(11.36)

From Eq. 11.36 and the charts in the margin we conclude that for a given temperature, the speed
of sound, c, in hydrogen and in helium, is higher than in air.

More generally, the bulk modulus of elasticity, of any fluid including liquids is defined
as 1see Section 1.7.12

(11.37)

Thus, in general, from Eqs. 11.34 and 11.37,

(11.38)

Values of the speed of sound are tabulated in Tables B.1 and B.2 for water and in 
Tables B.3 and B.4 for air. From experience we know that air is more easily compressed than wa-
ter. Note from the values of c in Tables B.1 through B.4 and the graph in the margin that the
speed of sound in air is much less than it is in water. From Eq. 11.37, we can conclude that if a
fluid is truly incompressible, its bulk modulus would be infinitely large, as would be the speed
of sound in that fluid. Thus, an incompressible flow must be considered an idealized approxima-
tion of reality.

c � B
Ev
r

Ev �
dp

dr�r
� r a 0p

0r
b

s

Ev,

c � 2RTk

a 0p
0r
b

s

� 1constant 2 krk�1 �
p

rk kr
k�1 �

p
r

 k � RTk

p � 1constant 2 1rk2
cvcp

c � Ba
0p

0r
b

s

1dpS 0pS 02dp

c �
B
dp

dr
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larger in fluids that
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F l u i d s  i n  t h e  N e w s

Sonification The normal human ear is capable of detecting
even very subtle sound patterns produced by sound waves.
Most of us can distinguish the bark of a dog from the meow of
a cat or the roar of a lion, or identify a person’s voice on the
telephone before they identify who is calling. The number of
“things” we can identify from subtle sound patterns is enor-
mous. Combine this ability with the power of computers to
transform the information from sensor transducers into varia-
tions in pitch, rhythm, and volume and you have sonification,

the representation of data in the form of sound. With this
emerging technology, pathologists may soon learn to “hear”
abnormalities in tissue samples, engineers may “hear” flaws in
gas turbine engine blades being inspected, and scientists may
“hear” a desired attribute in a newly invented material. Perhaps
the concept of hearing the trends in data sets may become as
commonplace as seeing them. Analysts may listen to the stock
market and make decisions. Of course, none of this can happen
in a vacuum.
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GIVEN Consider the data in Table B.4. FIND Verify the speed of sound for air at .0 °C

SOLUTION

Speed of Sound

Thus, since 
we obtain

(Ans)

COMMENT The value of the speed of sound calculated with
Eq. 11.36 agrees very well with the value of c listed in Table B.4.
The ideal gas approximation does not compromise this result sig-
nificantly.

c � 331.4 m�s

1 1m�s22,
1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 331.4 1J�kg21�2
 c � 2 3 1286.92 J� 1kg # K2 4 1273.15 K2 11.4012

E XAMPLE 11.3

In Table B.4, we find the speed of sound of air at given as
331.4 mZs. Assuming that air behaves as an ideal gas, we can cal-
culate the speed of sound from Eq. 11.36 as

(1)

The value of the gas constant is obtained from Table 1.8 as

and the specific heat ratio is listed in Table B.4 as

By substituting values of R, k, and T into Eq. 1 we obtain

k � 1.401

R � 286.9 J� 1kg # K2

c � 2RTk

0 °C

In Section 3.8.1, we learned that the effects of compressibility become more significant as the Mach
number increases. For example, the error associated with using in calculating the stagna-
tion pressure of an ideal gas increases at larger Mach numbers. From Fig. 3.24 we can conclude
that incompressible flows can only occur at low Mach numbers.

Experience has also demonstrated that compressibility can have a large influence on other
important flow variables. For example, in Fig. 11.2 the variation of drag coefficient with Reynolds

rV 2�2

11.3 Categories of Compressible Flow

F I G U R E  11.2 The variation of the drag coeffi-
cient of a sphere with Reynolds number and Mach number.
(Adapted from Fig. 1.8 in Ref. 1 of Chapter 9.)
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number and Mach number is shown for air flow over a sphere. Compressibility effects can be of
considerable importance.

To further illustrate some curious features of compressible flow, a simplified example is con-
sidered. Imagine the emission of weak pressure pulses from a point source. These pressure waves
are spherical and expand radially outward from the point source at the speed of sound, c. If a pres-
sure wave is emitted at different times, we can determine where several waves will be at a
common instant of time, t, by using the relationship

where r is the radius of the sphere-shaped wave emitted at time For a stationary point
source, the symmetrical wave pattern shown in Fig. 11.3a is involved.

When the point source moves to the left with a constant velocity, V, the wave pattern is no
longer symmetrical. In Figs. 11.3b, 11.3c, and 11.3d are illustrated the wave patterns at s for
different values of Also shown with a “ ” are the positions of the moving point source at val-
ues of time, t, equal to 0 s, 1 s, 2 s, and 3 s. Knowing where the point source has been at differ-
ent instances is important because it indicates to us where the different waves originated.

From the pressure wave patterns of Fig. 11.3, we can draw some useful conclusions. Before
doing this we should recognize that if instead of moving the point source to the left, we held the
point source stationary and moved the fluid to the right with velocity V, the resulting pressure wave
patterns would be identical to those indicated in Fig. 11.3.

�V.
t � 3

� twave.

r � 1t � twave2c

twave,
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3c 2c

c

(a) (b)
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(c)

c
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3c

Zone of actionZone of silence

Tangent plane
(Mach wave)

V = c

2V = 2c

3V = 3c

(d)

c
2c

3V
2V

V

3c

α

Zone of silence

Mach cone

Zone of action

Wave emitted at t = 0 s Wave emitted at t = 1 s Wave emitted at t = 2 s

Source at t = 1, 2, or 3 sSource at t = 0 s

F I G U R E  11.3 (a) Pressure waves at (b) pressure waves at t � 3 s,t � 3 s, V � 0;

(c) pressure waves at (d ) pressure waves at V 7 c.t � 3 s,V � c;t � 3 s,V 6 c;

The wave pattern
from a moving
source is not 
symmetrical.



When the point source moves in fluid at rest 1or when fluid moves past a stationary point
source2, the pressure wave patterns vary in asymmetry, with the extent of asymmetry depending
on the ratio of the point source 1or fluid2 velocity and the speed of sound. When the wave
pattern is similar to the one shown in Fig. 11.3b. This flow is considered subsonic and compress-
ible. A stationary observer will hear a different sound frequency coming from the point source de-
pending on where the observer is relative to the source because the wave pattern is asymmetrical.
We call this phenomenon the Doppler effect. Pressure information can still travel unrestricted
throughout the flow field, but not symmetrically or instantaneously.

When pressure waves are not present ahead of the moving point source. The flow
is sonic. If you were positioned to the left of the moving point source, you would not hear the
point source until it was coincident with your location. For flow moving past a stationary point
source at the speed of sound the pressure waves are all tangent to a plane that is per-
pendicular to the flow and that passes through the point source. The concentration of pressure
waves in this tangent plane suggests the formation of a significant pressure variation across the
plane. This plane is often called a Mach wave. Note that communication of pressure information
is restricted to the region of flow downstream of the Mach wave. The region of flow upstream of
the Mach wave is called the zone of silence and the region of flow downstream of the tangent plane
is called the zone of action.

When the flow is supersonic and the pressure wave pattern resembles the one de-
picted in Fig. 11.3d. A cone 1Mach cone2 that is tangent to the pressure waves can be con-
structed to represent the Mach wave that separates the zone of silence from the zone of action
in this case. The communication of pressure information is restricted to the zone of action.
From the sketch of Fig. 11.3d, we can see that the angle of this cone, is given by

(11.39)

This relationship between Mach number, Ma, and Mach cone angle, , shown by the figure in
the margin, is valid for only. The concentration of pressure waves at the surface of
the Mach cone suggests a significant pressure, and thus density, variation across the cone sur-
face. (See the photograph at the beginning of this chapter.) An abrupt density change can be
visualized in a flow field by using special optics. Examples of flow visualization methods in-
clude the schlieren, shadowgraph, and interferometer techniques 1see Ref. 42. A schlieren photo
of a flow for which is shown in Fig. 11.4. The air flow through the row of compressor
blade airfoils is as shown with the arrow. The flow enters supersonically and1Ma1 � 1.142

V 7 c

V�c 7 1
a

sin a �
c

V
�

1

Ma

a,

V 7 c,

1V�c � 12,

V�c � 1,

V�c 6 1,
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V11.3 Speed boat

F l u i d s  i n  t h e  N e w s

Pistol shrimp confound blast detectors Authorities are on the
trail of fishermen in Southeast Asia and along Africa’s east
coast who illegally blast coral reefs to rubble to increase their
catch. Researchers at Hong Kong University of Science and
Technology have developed a method of using underwater mi-
crophones (hydrophones) to pick up the noise from such blasts.
One complicating factor in the development of such a system is
the noise produced by the claw-clicking pistol shrimp that live
on the reefs. The third right appendage of the 2-in.-long pistol

shrimp is adapted into a huge claw with a moveable finger that
can be snapped shut with so much force that the resulting sound
waves kill or stun nearby prey. When near the hydrophones, the
shrimp can generate short-range shock waves that are bigger
than the signal from a distant blast. By recognizing the differ-
ences between the signatures of the sound from an explosion
and that of the pistol shrimp “blast,” the scientists can differen-
tiate between the two and pinpoint the location of the illegal
blasts.

V11.2 Jet noise

When the point source and the fluid are stationary, the pressure wave pattern is symmetrical
1Fig. 11.3a2 and an observer anywhere in the pressure field would hear the same sound frequency
from the point source. When the velocity of the point source 1or the fluid2 is very small in com-
parison with the speed of sound, the pressure wave pattern will still be nearly symmetrical. The
speed of sound in an incompressible fluid is infinitely large. Thus, the stationary point source and
stationary fluid situation are representative of incompressible flows. For truly incompressible flows,
the communication of pressure information throughout the flow field is unrestricted and instanta-
neous 1c � A2.



leaves subsonically . The center two airfoils have pressure tap hoses connected to
them. Regions of significant changes in fluid density appear in the supersonic portion of the
flow. Also, the region of separated flow on each airfoil is visible.

This discussion about pressure wave patterns suggests the following categories of fluid flow:

1. Incompressible flow: Unrestricted, nearly symmetrical and instantaneous pressure
communication.

2. Compressible subsonic flow: Unrestricted but noticeably asymmetrical
pressure communication.

3. Compressible supersonic flow: Formation of Mach wave; pressure communica-
tion restricted to zone of action.

In addition to the above-mentioned categories of flows, two other regimes are commonly referred
to: namely, transonic flows and hypersonic flows Modern aircraft
are mainly powered by gas turbine engines that involve transonic flows. When a space shuttle reen-
ters the earth’s atmosphere, the flow is hypersonic. Future aircraft may be expected to operate from
subsonic to hypersonic flow conditions.

1Ma 7 52.10.9 � Ma � 1.22

Ma � 1.0.

0.3 6 Ma 6 1.0.

Ma � 0.3.

1Ma2 � 0.862
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F I G U R E  11.4 The Schlieren visualization of flow (supersonic to
subsonic) through a row of compressor airfoils. (Photograph provided by Dr. Hans
Starken, Germany.)

Shock wave

Airfoil

V11.4 Compressible
flow visualization

Abrupt changes in
fluid properties can
occur in supersonic
flows.

F l u i d s  i n  t h e  N e w s

Supersonic and compressible flows in gas turbines Modern
gas turbine engines commonly involve compressor and turbine
blades that are moving so fast that the fluid flows over the blades
are locally supersonic. Density varies considerably in these
flows so they are also considered to be compressible. Shock
waves can form when these supersonic flows are sufficiently de-
celerated. Shocks formed at blade leading edges or on blade sur-
faces can interact with other blades and shocks and seriously

affect blade aerodynamic and structural performance. It is possi-
ble to have supersonic flows past blades near the outer diameter
of a rotor with subsonic flows near the inner diameter of the same
rotor. These rotors are considered to be transonic in their opera-
tion. Very large aero gas turbines can involve thrust levels ex-
ceeding 100,000 lb. Two of these engines are sufficient to carry
over 350 passengers halfway around the world at high subsonic
speed. (See Problem 11.81.)

GIVEN An aircraft cruising at 1000-m elevation, z, above you
moves past in a flyby. It is moving with a Mach number equal to
1.5 and the ambient temperature is .20 °C

FIND How many seconds after the plane passes overhead do
you expect to wait before you hear the aircraft?

Mach ConeE XAMPLE 11.4

SOLUTION

as is illustrated in Fig. E11.4a. A photograph of this phenomenon
is shown in Fig. E11.4b. When the surface of the cone reaches the

Since the aircraft is moving supersonically we can
imagine a Mach cone originating from the forward tip of the craft

1Ma 7 12,
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observer, the “sound” of the aircraft is perceived. The angle in
Fig. E11.4 is related to the elevation of the plane, z, and the ground
distance, x, by

(1)

Also, assuming negligible change of Mach number with elevation,
we can use Eq. 11.39 to relate Mach number to the angle Thus,

(2)

Combining Eqs. 1 and 2 we obtain

(3)

The speed of the aircraft can be related to the Mach number with

(4)

where c is the speed of sound. From Table B.4,
Using we get from Eqs. 3 and 4

1.5 �
1

sin e tan�1 c 1000 m

11.52 1343.3 m�s2t d f
 

Ma � 1.5,
c � 343.3 m�s.

V � 1Ma2c

Ma �
1

sin 3 tan�1 11000�Vt2 4

Ma �
1

sin a

a.

a � tan�1 
z
x
� tan�1 

1000

Vt

a or

(Ans)

COMMENT By repeating the calculations for various values
of Mach number, Ma, the results shown in Fig. E11.4c are ob-
tained. Note that for subsonic flight (Ma 
 1) there is no delay
since the sound travels faster than the aircraft. You can hear a sub-
sonic aircraft approaching.

t � 2.17 s

F I G U R E  E11.4a

F I G U R E  E11.4b NASA
Schlieren photograph of shock waves from a 
T-38 aircraft at Mach 1.1, 13,000 feet.

z

Mach cone

Aircraft moving with velocity
V and Mach number Ma

α

x = Vt

F I G U R E  E11.4c

(1.5, 2.17 s)
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0
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In this section, we consider in further detail the steady, one-dimensional, isentropic flow of an ideal
gas with constant specific heat values 1 and 2. Because the flow is steady throughout, shaft work
cannot be involved. Also, as explained earlier, the one-dimensionality of flows we discuss in this
chapter implies velocity and fluid property changes in the streamwise direction only. We consider
flows through finite control volumes with uniformly distributed velocities and fluid properties at
each section of flow. Much of what we develop can also apply to the flow of a fluid particle along
its pathline.

Isentropic flow involves constant entropy and was discussed earlier in Section 11.1, where
we learned that adiabatic and frictionless 1reversible2 flow is one form of isentropic flow. Some
ideal gas relationships for isentropic flows were developed in Section 11.1. An isentropic flow is
not achievable with actual fluids because of friction. Nonetheless, the study of isentropic flow
trends is useful because it helps us to gain an understanding of actual compressible flow phenomena

cvcp

11.4 Isentropic Flow of an Ideal Gas

An important class
of isentropic flow
involves no heat
transfer and zero
friction.



including choked flow, shock waves, acceleration from subsonic to supersonic flow, and deceler-
ation from supersonic to subsonic flow.

11.4.1 Effect of Variations in Flow Cross-Sectional Area

When fluid flows steadily through a conduit that has a flow cross-sectional area that varies with
axial distance, the conservation of mass 1continuity2 equation

(11.40)

can be used to relate the flow rates at different sections. For incompressible flow, the fluid density
remains constant and the flow velocity from section to section varies inversely with cross-sectional
area. However, when the flow is compressible, density, cross-sectional area, and flow velocity can
all vary from section to section. We proceed to determine how fluid density and flow velocity
change with axial location in a variable area duct when the fluid is an ideal gas and the flow through
the duct is steady and isentropic.

In Chapter 3, Newton’s second law was applied to the inviscid 1frictionless2 and steady flow
of a fluid particle. For the streamwise direction, the result 1Eq. 3.52 for either compressible or in-
compressible flows is

(11.41)

The frictionless flow from section to section through a finite control volume is also governed by Eq.
11.41, if the flow is one-dimensional, because every particle of fluid involved will have the same ex-
perience. For ideal gas flow, the potential energy difference term, can be dropped because of
its small size in comparison to the other terms, namely, dp and Thus, an appropriate equation
of motion in the streamwise direction for the steady, one-dimensional, and isentropic 1adiabatic and
frictionless2 flow of an ideal gas is obtained from Eq. 11.41 as

(11.42)

If we form the logarithm of both sides of the continuity equation 1Eq. 11.402, the result is

(11.43)

Differentiating Eq. 11.43 we get

or

(11.44)

Now we combine Eqs. 11.42 and 11.44 to obtain

(11.45)

Since the flow being considered is isentropic, the speed of sound is related to variations of
pressure with density by Eq. 11.34, repeated here for convenience as

Equation 11.34, combined with the definition of Mach number

(11.46)

and Eq. 11.45 yields

(11.47)
dp

rV 2 11 � Ma22 � dA

A

Ma �
V
c

c � Ba
0p

0r
b

s

dp

rV 2 a1 � V 2

dp�dr
b � dA

A

�
dV

V
�

dr
r
�

dA

A

dr
r
�

dA

A
�

dV

V
� 0

ln r � ln A � ln V � constant

dp

rV 2
��

dV

V

d1V 22.
g dz,

dp � 1
2 r d1V 22 � g dz � 0

m
#
� rAV � constant
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Density, cross-
sectional area, and
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vary for a com-
pressible flow.



Equations 11.42 and 11.47 merge to form

(11.48)

We can use Eq. 11.48 to conclude that when the flow is subsonic velocity and
section area changes are in opposite directions. In other words, the area increase associated with
subsonic flow through a diverging duct like the one shown in Fig. 11.5a is accompanied by a ve-
locity decrease. Subsonic flow through a converging duct 1see Fig. 11.5b2 involves an increase of
velocity. These trends are consistent with incompressible flow behavior, which we described ear-
lier in this book, for instance, in Chapters 3 and 8.

Equation 11.48 also serves to show us that when the flow is supersonic velocity
and area changes are in the same direction. A diverging duct 1Fig. 11.5a2 will accelerate a super-
sonic flow. A converging duct 1Fig. 11.5b2 will decelerate a supersonic flow. These trends are the
opposite of what happens for incompressible and subsonic compressible flows.

To better understand why subsonic and supersonic duct flows are so different, we combine
Eqs. 11.44 and 11.48 to form

(11.49)

Using Eq. 11.49, we can conclude that for subsonic flows density and area changes are
in the same direction, whereas for supersonic flows density and area changes are in op-
posite directions. Since must remain constant 1Eq. 11.402, when the duct diverges and the flow
is subsonic, density and area both increase and thus flow velocity must decrease. However, for su-
personic flow through a diverging duct, when the area increases, the density decreases enough so
that the flow velocity has to increase to keep constant.

By rearranging Eq. 11.48, we can obtain

(11.50)

Equation 11.50 gives us some insight into what happens when For Eq. 11.50
requires that This result suggests that the area associated with is either a min-
imum or a maximum amount.

A converging–diverging duct 1Fig. 11.6a and margin photograph2 involves a minimum area.
If the flow entering such a duct were subsonic, Eq. 11.48 discloses that the fluid velocity would
increase in the converging portion of the duct, and achievement of a sonic condition at
the minimum area location appears possible. If the flow entering the converging–diverging duct
is supersonic, Eq. 11.48 states that the fluid velocity would decrease in the converging portion of
the duct and the sonic condition at the minimum area is possible.

1Ma � 12

Ma � 1dA�dV � 0.
Ma � 1,Ma � 1.

dA

dV
� �

A

V
 11 � Ma22

rAV

rAV
1Ma 7 12,

1Ma 6 12,

dr
r
�

dA

A
 

Ma2

11 � Ma22

1Ma 7 12,

1Ma 6 12,

dV

V
� �

dA

A
 

1

11 � Ma22
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Flow

Flow

Subsonic flow
(Ma < 1)

dA > 0
dV < 0

Supersonic flow
(Ma > 1)

dA > 0
dV > 0

dA < 0
dV > 0

dA < 0
dV < 0

(a)

(b)
F I G U R E  11.5 (a) A

diverging duct. (b) A converging duct.

A converging duct
will decelerate a su-
personic flow and
accelerate a sub-
sonic flow.



A diverging–converging duct 1Fig. 11.6b2, on the other hand, would involve a maximum area.
If the flow entering this duct were subsonic, the fluid velocity would decrease in the diverging por-
tion of the duct and the sonic condition could not be attained at the maximum area location. For
supersonic flow in the diverging portion of the duct, the fluid velocity would increase and thus

at the maximum area is again impossible.
For the steady isentropic flow of an ideal gas, we conclude that the sonic condition 

can be attained in a converging–diverging duct at the minimum area location. This minimum area
location is often called the throat of the converging–diverging duct. Furthermore, to achieve super-
sonic flow from a subsonic state in a duct, a converging–diverging area variation is necessary. For
this reason, we often refer to such a duct as a converging–diverging nozzle. Note that a converging–
diverging duct can also decelerate a supersonic flow to subsonic conditions. Thus, a converging–
diverging duct can be a nozzle or a diffuser depending on whether the flow in the converging portion
of the duct is subsonic or supersonic. A supersonic wind tunnel test section is generally preceded by
a converging–diverging nozzle and followed by a converging–diverging diffuser 1see Ref. 12. Fur-
ther details about steady, isentropic, ideal gas flow through a converging–diverging duct are discussed
in the next section.

11.4.2 Converging–Diverging Duct Flow

In the preceding section, we discussed the variation of density and velocity of the steady isentropic
flow of an ideal gas through a variable area duct. We proceed now to develop equations that help
us determine how other important flow properties vary in these flows.

It is convenient to use the stagnation state of the fluid as a reference state for compressible flow
calculations. The stagnation state is associated with zero flow velocity and an entropy value that cor-
responds to the entropy of the flowing fluid. The subscript 0 is used to designate the stagnation state.
Thus, stagnation temperature and pressure are and For example, if the fluid flowing through
the converging–diverging duct of Fig. 11.6a were drawn isentropically from the atmosphere, the at-
mospheric pressure and temperature would represent the stagnation state of the flowing fluid. The
stagnation state can also be achieved by isentropically decelerating a flow to zero velocity. This can
be accomplished with a diverging duct for subsonic flows or a converging–diverging duct for super-
sonic flows. Also, as discussed earlier in Chapter 3, an approximately isentropic deceleration can be
accomplished with a Pitot-static tube 1see Fig. 3.62. It is thus possible to measure, with only a small
amount of uncertainty, values of stagnation pressure, and stagnation temperature, of a flow-
ing fluid.

In Section 11.1, we demonstrated that for the isentropic flow of an ideal gas 1see Eq. 11.252

The streamwise equation of motion for steady and frictionless flow 1Eq. 11.412 can be expressed
for an ideal gas as

(11.51)

since the potential energy term, , can be considered as being negligibly small in comparison
with the other terms involved.

g dz

dp
r
� d aV 2

2
b � 0

p

rk � constant �
p0

rk
0

T0,p0,

p0.T0

1Ma � 12
Ma � 1
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A converging–
diverging duct is re-
quired to accelerate
a flow from sub-
sonic to supersonic
flow conditions.

(a) (b)

FlowFlow

F I G U R E  11.6 (a) A converging–diverging duct. (b) A diverging –
converging duct.



By incorporating Eq. 11.25 into Eq. 11.51 we obtain

(11.52)

Consider the steady, one-dimensional, isentropic flow of an ideal gas with constant and
through the converging–diverging nozzle of Fig. 11.6a. Equation 11.52 is valid for this flow

and can be integrated between the common stagnation state of the flowing fluid to the state of the
gas at any location in the converging–diverging duct to give

(11.53)

By using the ideal gas equation of state 1Eq. 11.12 with Eq. 11.53 we obtain

(11.54)

It is of interest to note that combining Eqs. 11.14 and 11.54 leads to

which, when merged with Eq. 11.9, results in

(11.55)

where is the stagnation enthalpy. If the steady flow energy equation 1Eq. 5.692 is applied to the
flow situation we are presently considering, the resulting equation will be identical to Eq. 11.55.
Further, we conclude that the stagnation enthalpy is constant. The conservation of momentum and
energy principles lead to the same equation 1Eq. 11.552 for steady isentropic flows.

The definition of Mach number 1Eq. 11.462 and the speed of sound relationship for ideal
gases (Eq. 11.36) can be combined with Eq. 11.54 to yield

(11.56)

which is graphed in the margin for air. With Eq. 11.56 we can calculate the temperature of an
ideal gas anywhere in the converging–diverging duct of Fig. 11.6a if the flow is steady, one-
dimensional, and isentropic, provided we know the value of the local Mach number and the stag-
nation temperature.

We can also develop an equation for pressure variation. Since then

(11.57)

From Eqs. 11.57 and 11.25 we obtain

(11.58)

Combining Eqs. 11.58 and 11.56 leads to

(11.59)

For density variation we consolidate Eqs. 11.56, 11.57, and 11.59 to get

(11.60)

These relationships are graphed in the margin for air.
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A very useful means of keeping track of the states of an isentropic flow of an ideal gas in-
volves a temperature–entropy (T–s) diagram, as is shown in Fig. 11.7. Experience has shown
1see, for example, Refs. 2 and 32 that lines of constant pressure are generally as are sketched in
Fig. 11.7. An isentropic flow is confined to a vertical line on a T – s diagram. The vertical line in
Fig. 11.7 is representative of flow between the stagnation state and any state within the converging–
diverging nozzle. Equation 11.56 shows that fluid temperature decreases with an increase in Mach
number. Thus, the lower temperature levels on a T –s diagram correspond to higher Mach num-
bers. Equation 11.59 suggests that fluid pressure also decreases with an increase in Mach num-
ber. Thus, lower fluid temperatures and pressures are associated with higher Mach numbers in
our isentropic converging–diverging duct example.

One way to produce flow through a converging–diverging duct like the one in Fig. 11.6a is
to connect the downstream end of the duct to a vacuum pump. When the pressure at the down-
stream end of the duct 1the back pressure2 is decreased slightly, air will flow from the atmosphere
through the duct and vacuum pump. Neglecting friction and heat transfer and considering the air
to act as an ideal gas, Eqs. 11.56, 11.59, and 11.60 and a T –s diagram can be used to describe
steady flow through the converging–diverging duct.

If the pressure in the duct is only slightly less than atmospheric pressure, we predict with
Eq. 11.59 that the Mach number levels in the duct will be low. Thus, with Eq. 11.60 we conclude
that the variation of fluid density in the duct is also small. The continuity equation 1Eq. 11.402 leads
us to state that there is a small amount of fluid flow acceleration in the converging portion of the
duct followed by flow deceleration in the diverging portion of the duct. We considered this type
of flow when we discussed the Venturi meter in Section 3.6.3. The T –s diagram for this flow is
sketched in Fig. 11.8.

We next consider what happens when the back pressure is lowered further. Since the flow
starts from rest upstream of the converging portion of the duct of Fig. 11.6a, Eqs. 11.48 and
11.50 reveal to us that flow up to the nozzle throat can be accelerated to a maximum allowable
Mach number of 1 at the throat. Thus, when the duct back pressure is lowered sufficiently, the
Mach number at the throat of the duct will be 1. Any further decrease of the back pressure will
not affect the flow in the converging portion of the duct because, as is discussed in Section
11.3, information about pressure cannot move upstream when When at the throat
of the converging–diverging duct, we have a condition called choked flow. Some useful equa-
tions for choked flow are developed below.

We have already used the stagnation state for which as a reference condition. It will
prove helpful to us to use the state associated with and the same entropy level as the flow-
ing fluid as another reference condition we shall call the critical state, denoted 

The ratio of pressure at the converging–diverging duct throat for choked flow, to stagna-
tion pressure, is referred to as the critical pressure ratio. By substituting into Eq. 11.59
we obtain

(11.61)
p*
p0
� a 2

k � 1
b

k�1k�12

Ma � 1p0,
p*,

1 2*.
Ma � 1

Ma � 0

Ma � 1Ma � 1.
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F I G U R E  11.7 The (T – s) 
diagram relating stagnation and static states.

T

s

T

p

p0

T0

F I G U R E  11.8 The T – s diagram
for Venturi meter flow.

T

s

(1) (2)

T2

T1

T0

p0
p1
p2

Choked flow occurs
when the Mach
number is 1.0 at
the minimum cross-
sectional area.



For the nominal value of k for air, Eq. 11.61 yields

(11.62)

Because the stagnation pressure for our converging–diverging duct example is the atmospheric pres-
sure, the throat pressure for choked air flow is, from Eq. 11.62

We can get a relationship for the critical temperature ratio, by substituting 
into Eq. 11.56. Thus,

(11.63)

or for 

(11.64)

For the duct of Fig. 11.6a, Eq. 11.64 yields

The stagnation and critical pressures and temperatures are shown on the T –s diagram of
Fig. 11.9.

When we combine the ideal gas equation of state 1Eq. 11.12 with Eqs. 11.61 and 11.63, for
we get

(11.65)

For air Eq. 11.65 leads to

(11.66)

and we see that when the converging–diverging duct flow is choked, the density of the air at the
duct throat is 63.4% of the density of atmospheric air.

ar*
r0
b

k�1.4

� 0.634

1k � 1.42,

r*

r0
� a p*

T*
b aT0

p0
b � a 2

k � 1
b

k�1k�12
ak � 1

2
b � a 2

k � 1
b

1�1k�12

Ma � 1

T*
k�1.4
� 0.833Tatm

aT*

T0

b
k�1.4

� 0.833

k � 1.4

T*

T0

�
2

k � 1

Ma � 1T*�T0,

p*
k�1.4 � 0.528patm

patm,

ap*

p0
b

k�1.4
� 0.528

k � 1.4,
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The stagnation and
critical states are at
the same entropy
level.

GIVEN A converging duct passes air steadily from standard
atmospheric conditions to a receiver pipe as illustrated in Fig.
E11.5a. The throat 1minimum2 flow cross-sectional area of the con-
verging duct is . The receiver pressure is 1a2 80 kPa
1abs2, 1b2 40 kPa 1abs2. 

1 � 10�4 m2

FIND Determine the mass flowrate through the duct and
sketch temperature –entropy diagrams for situations 1a2 and 1b2.

Isentropic Flow in a Converging DuctE XAMPLE 11.5

F I G U R E  11.9 The relationship
between the stagnation and critical states.

T

T* =

T0

p0

T0

s

( )2______
k + 1

p* = p0( )2______
k + 1

( )k______
k – 1



11.4 Isentropic Flow of an Ideal Gas 599

SOLUTION

From Eq. 5

or

Substituting into Eq. 4 we obtain

Thus, since 
we obtain

Vth � 193 m�s

1m�s22,
1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 193 1J�kg21�2
Vth � 0.587 2 3286.9 J� 1kg # K2 4 1269 K2 11.42

Ma th� 0.587 and Tth� 269 K

Tth � 269 K

Tth

288 K
�

1

1 � 3 11.4 � 12�2 4 10.58722

To determine the mass flowrate through the converging duct we
use Eq. 11.40. Thus,

or in terms of the given throat area,

(1)

We assume that the flow through the converging duct is isen-
tropic and that the air behaves as an ideal gas with constant and

Then, from Eq. 11.60

(2)

The stagnation density, for the standard atmosphere is
and the specific heat ratio is 1.4. To determine the

throat Mach number, we can use Eq. 11.59,

(3)

The critical pressure, is obtained from Eq. 11.62 as

If the receiver pressure, is greater than or equal to then
If then and the flow is choked. With

and k known, can be obtained from Eq. 3, and can
be determined from Eq. 2.

The flow velocity at the throat can be obtained from Eqs.
11.36 and 11.46 as

(4)

The value of temperature at the throat, can be calculated from
Eq. 11.56,

(5)

Since the flow through the converging duct is assumed to be isen-
tropic, the stagnation temperature is considered constant at the
standard atmosphere value of 
Note that absolute pressures and temperatures are used.

(a) For we have
kPa1abs2. Then from Eq. 3

or

From Eq. 2

or

rth � 1.04 kg�m3

rth

1.23 kg�m3 � e
1

1 � 3 11.4 � 12�2 4 10.58722 f
1�11.4�12

 Math � 0.587

80 kPa1abs2
101 kPa1abs 2 � e

1

1 � 3 11.4 � 12�2 4Ma2
th

f
1.4� 11.4�12

pth � 80
pre � 80 kPa1abs 2 7 53.3 kPa1abs 2 � p*,

288 K.T0 � 15 K � 273 K �

Tth

T0
�

1

1 � 3 1k � 12�2 4Ma 2
th

Tth,

Vth � Ma th cth � Math2RTthk

rthMathpth, p0,
pth � p*pre 6 p*,pth � pre.

p*,pre,

 � 10.5282 3101 kPa1abs 2 4 � 53.3 kPa1abs 2
p* � 0.528p0 � 0.528patm

p*,

pth

p0
� e 1

1 � 3 1k � 12�2 4Ma 2
th

f
k�1k�12

Math,
1.23 kg�m3

r0,

rth

r0
� e 1

1 � 3 1k � 12�2 4Ma 2
th

f
1�1k�12

cv.
cp

m
#
� rthAthVth

Ath,

m
#
� rAV � constant

F I G U R E  E11.5

Tre < T*

pre < p*

300

290

280

270

260

250

240

230

220

T
, 
K

J_______
(kg • K)

s,

(c)

T* = 240 K

p* = 53.3 kPa (abs)

p0 = 101 kPa (abs)

T0 = 288 K

300

290

280

270

260

250

240

230

220

Situation (b)

Situation (a)

Tth, b = 240 K

Tth, a = 269 K

T0 = 288 K

pth, b = 53.3 kPa (abs) = p*

pth, a = 80 kPa (abs)

p0 = 101 kPa (abs)

T ,
 K

J_______
(kg • K)

s,

(b)

Flow

Standard
atmosphere

Converging duct Receiver pipe

(a)



Isentropic flow Eqs. 11.56, 11.59, and 11.60 have been used to construct Fig. D.1 in Appen-
dix D for air Examples 11.6 and 11.7 illustrate how these graphs of and 
as a function of Mach number, Ma, can be used to solve compressible flow problems.

r�r0p�p0,T�T0,1k � 1.42.
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Finally from Eq. 1 we have

(Ans)

(b) For we have
and The converging duct is

choked. From Eq. 2 1see also Eq. 11.662

or

From Eq. 5 1see also Eq. 11.642,

or

Tth � 240 K

Tth

288 K
�

1

1 � 3 11.4 � 12�2 4 1122

rth � 0.780 kg�m3

rth

1.23 kg�m3 � e
1

1 � 3 11.4 � 12�2 4 1122 f
1� 11.4�12

Ma th � 1.pth � p* � 53.3 kPa1abs 2
pre � 40 kPa1abs2 
 53.3 kPa1abs 2 � p*,

 � 0.0201 kg�s
m
#
� 11.04 kg�m32 11 � 10�4 m22 1193 m�s2

From Eq. 4,

since Finally
from Eq. 1

(Ans)

From the values of throat temperature and throat pressure cal-
culated above for flow situations 1a2 and 1b2, we can construct the
temperature– entropy diagram shown in Fig. E11.5b.

COMMENT Note that the flow from standard atmosphere to
the receiver for receiver pressure, greater than or equal to the
critical pressure, is isentropic. When the receiver pressure is
less than the critical pressure as in situation 1b2 above, what is the
flow like downstream from the exit of the converging duct? Expe-
rience suggests that this flow, when is three-
dimensional and nonisentropic and involves a drop in pressure
from to a drop in temperature, and an increase of entropy
as are indicated in Fig. E11.5c.

pre,pth

pre 6 p*,

p*,
pre,

 � 0.0242 kg�s
m
#
� 10.780 kg�m32 11 � 10�4 m22 1310 m�s2

1 J�kg �1 N # m�kg �1 1kg # m�s22 # m�kg � 1m�s22.
 � 310 1J�kg21�2 � 310 m�s

Vth � 112 2 3286.9 J� 1kg # K2 4 1240 K2 11.42

GIVEN Consider the flow described in Example 11.5.

Use of Compressible Flow Graphs in Solving ProblemsEXAMPLE 11.6

SOLUTION

Thus, from Eqs. 2 and 3

and

Furthermore, using Eqs. 11.36 and 11.46 we get

since Fi-
nally, from Eq. 1

(Ans) � 0.0202 kg�s
m
#
� 11.04 kg�m32 11 � 10�4 m22 1194 m�s2

1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg � 1m�s22.
 � 194 1J�kg21�2 � 194 m�s

 � 10.592 2 3286.9 J� 1kg # K2 4 1269 K2 11.42
 Vth � Math 2RTthk

rth � 10.852 11.23 kg�m32 � 1.04 kg�m3

Tth � 10.942 1288 K2 � 271 K

We still need the density and velocity of the air at the converging
duct throat to solve for mass flowrate from

(1)

(a) Since the receiver pressure, is greater
than the critical pressure, the throat pres-
sure, is equal to the receiver pressure. Thus

From Fig. D.1, for we get from the graph

(2)

(3) 
rth

r0
� 0.85

 
Tth

T0
� 0.94

 Math � 0.59

p�p0 � 0.79,

pth

p0
�

80 kPa1abs 2
101 kPa1abs 2 � 0.792

pth,
p* � 53.3 kPa1abs 2,

pre � 80 kPa1abs 2,
m
#
� rthAthVth

FIND Solve Example 11.5 using Fig. D.1 of Appendix D.
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(b) For the throat
pressure is equal to 53.3 kPa1abs2 and the duct is choked with

From Fig. D.1, for we get

(4)

and

(5)

From Eqs. 4 and 5 we obtain

and

 rth � 10.642 11.23 kg�m32 � 0.79 kg�m3

 Tth � 10.832 1288 K2 � 240 K

rth

r0
� 0.64

Tth

T0
� 0.83

Ma � 1Math � 1.

pre � 40 kPa1abs 2 6 53.3 kPa1abs 2 � p*, Also, from Eqs. 11.36 and 11.46 we conclude that

Then, from Eq. 1

(Ans)

COMMENT The values from Fig. D.1 resulted in answers
for mass flowrate that are close to those using the ideal gas equa-
tions 1see Example 11.52.

The temperature–entropy diagrams remain the same as those
provided in the solution of Example 11.5.

 � 0.024 kg�s
m
#
� 10.79 kg�m32 11 � 10�4 m22 1310 m�s2

 � 310 1J�kg21�2 � 310 m�s
 � 112 2 3286.9 J� 1kg # K2 4 1240 K2 11.42

 Vth � Math 2RTthk

GIVEN The static pressure to stagnation pressure ratio at a point
in a flow stream is measured with a Pitot-static tube 1see Fig. 3.62 as
being equal to 0.82. The stagnation temperature of the fluid is 68 °F.

Static to Stagnation Pressure RatioEXAMPLE 11.7

SOLUTION

and using Eqs. 1, 2, and 4 we get

Thus, since it follows that

(Ans)

(b) For helium, and By substituting
these values into Eq. 11.59 we get

or

From Eq. 11.56 we obtain

Thus,

 � 488 °R

T � e 1

1 � 3 11.66 � 12�2 4 10.49922 f 3 168 � 4602 °R 4

T

T0
�

1

1 � 3 1k � 12�2 4Ma2

Ma � 0.499

0.82 � e 1

1 � 3 11.66 � 12�2 4  Ma2 f
1.66�11.66�12

k � 1.66.p�p0 � 0.82

 � 590 ft�s
V � 104 1ft # lb�lbm21�2 3 132.2 lbm # ft�s22�lb 4 1�2

1 lb � 32.2 lbm # ft�s2,

� 104 1ft # lb�lbm21�2
V � 10.542 2 353.3 1ft # lb2� 1lbm # °R2 4 1496 °R2 11.42

We consider both air and helium, flowing as described above, to
act as ideal gases with constant specific heats. Then, we can use
any of the ideal gas relationships developed in this chapter. To de-
termine the flow velocity, we can combine Eqs. 11.36 and 11.46
to obtain

(1)

By knowing the value of static to stagnation pressure ratio,
and the specific heat ratio we can obtain the corresponding Mach
number from Eq. 11.59, or for air, from Fig. D.1. Figure D.1 
cannot be used for helium, since k for helium is 1.66 and Fig. D.1
is for only. With Mach number, specific heat ratio, and
stagnation temperature known, the value of static temperature can
be subsequently ascertained from Eq. 11.56 1or Fig. D.1 for air2.
(a) For air, thus from Fig. D.1,

(2)

and

(3)

Then, from Eq. 3

(4)T � 10.942 3 168 � 4602 °R 4 � 496 °R

T

T0
� 0.94

Ma � 0.54

p�p0 � 0.82;

k � 1.4

p�p0,

V � Ma 2RTk

FIND Determine the flow velocity if the fluid is 1a2 air, 1b2 he-
lium.



Also included in Fig. D.1 is a graph of the ratio of local area, A, to critical area, for dif-
ferent values of local Mach number. The importance of this area ratio is clarified below.

For choked flow through the converging–diverging duct of Fig. 11.6a, the conservation of
mass equation 1Eq. 11.402 yields

or

(11.67)

From Eqs. 11.36 and 11.46, we obtain

(11.68)

and

(11.69)

By combining Eqs. 11.67, 11.68, and 11.69 we get

(11.70)

The incorporation of Eqs. 11.56, 11.60, 11.63, 11.65, and 11.70 results in

(11.71)

Equation 11.71 was used to generate the values of for air in Fig. D.1. These val-
ues of are graphed as a function of Mach number in Fig. 11.10. As is demonstrated in the
following examples, whether or not the critical area, is physically present in the flow, the area
ratio, is still a useful concept for the isentropic flow of an ideal gas through a converging–
diverging duct.

A�A*,
A*,

A�A*
1k � 1.42A�A*

A

A*
�

1

Ma
 e 1 � 3 1k � 12�2 4Ma2

1 � 3 1k � 12�2 4 f
1k�12� 321k�124

A

A*
�

1

Ma
 ar*
r0
b ar0

r
b B
1T*�T02
1T�T02

V � Ma 1RTk

V* � 1RT*k

A

A*
� ar*
r
b aV*

V
b

rAV � r*A*V*

A*,
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From Eq. 1 we obtain

or, using 

(Ans)

COMMENT Note that the isentropic flow equations and Fig.
D.1 for were used presently to describe fluid particlek � 1.4

 � 1580 ft�s
V � 279 1ft # lb�lbm21�2 3 132.2 lbm # ft�s22�lb 4 1�2
1 lb � 32.2 lbm # ft�s2,

 � 279 1ft # lb�lbm21�2
V � 10.4992 2 3386 1ft # lb2� 1lbm # °R2 4 1488 °R2 11.662

isentropic flow along a pathline in a stagnation process. Even
though these equations and graph were developed for one-
dimensional duct flows, they can be used for frictionless, adia-
batic pathline flows also.

Furthermore, while the Mach numbers calculated above are of
similar size for the air and helium flows, the flow speed is much
larger for helium than for air because the speed of sound in he-
lium is much larger than it is in air.

F I G U R E  11.10 The variation of area
ratio with Mach number for isentropic flow of an
ideal gas ( linear coordinate scales).k � 1.4,

2.0

1.0

A___
A*

0 1.0
Ma

The ratio of flow
area to the critical
area is a useful
concept for isen-
tropic duct flow.
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GIVEN Air enters subsonically from standard atmosphere and
flows isentropically through a choked converging–diverging duct
having a circular cross-sectional area, A, that varies with axial dis-
tance from the throat, x, according to the formula

where A is in square meters and x is in meters. The duct extends
from to x � �0.5 m.x � �0.5 m

A � 0.1 � x2

Isentropic Choked Flow in a Converging–Diverging
Duct with Subsonic Entry

EXAMPLE 11.8

SOLUTION

and a graph of radius as a function of axial distance can be easily
constructed (see Fig. E11.8a).

Since the converging – diverging duct in this example is
choked, the throat area is also the critical area, From Eq. 2 we
see that

(4)

For any axial location, from Eqs. 2 and 4 we get

(5)
A

A*
�

0.1 � x2

0.1

A* � 0.1 m2

A*.

The side view of the converging–diverging duct is a graph of ra-
dius r from the duct axis as a function of axial distance. For a cir-
cular flow cross section we have

(1)

where

(2)

Thus, combining Eqs. 1 and 2, we have

(3)r � a0.1 � x2

p
b

1�2

A � 0.1 � x2

A � pr2

FIND For this flow situation, sketch the side view of the duct and
graph the variation of Mach number, static temperature to stagnation
temperature ratio, and static pressure to stagnation pressure ra-
tio, through the duct from to Also
show the possible fluid states at and us-
ing temperature –entropy coordinates.

�0.5 mx � �0.5 m, 0 m,
x � �0.5 m.x � �0.5 mp�p0,

T�T0,

0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a)

x, m
0.2 0.4 0.5

r,
 m

3.0

2.0

1.0

–0.5 –0.4 –0.2 0
x, m

Ma

0.2 0.4 0.5

Subsonic Subsonic

Supersonic

(b)

(c) (d)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

x, m

T___
T0

T/T0

p/p0

p___
p0

Subsonic

Subsonic

Subsonic

Subsonic

Supersonic

Supersonic

310

290

270

250

230

210

190

170

150

130

110

90

0

d

b

a, c

pd = 4 kPa (abs)

pb = 54 kPa (abs)

pa = pc = 99 kPa (abs)p0 = 101 kPa (abs)

Td = 112 K

Tb = 39 K

Ta = Tc = 285 K

T0 = 288 K

T
, 
K

J_______
(kg • K)

s,

F I G U R E  E11.8
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Values of from Eq. 5 can be used in Eq. 11.71 to calculate
corresponding values of Mach number, Ma. For air with 
we could enter Fig. D.1 with values of and read off values of
the Mach number. With values of Mach number ascertained, we
could use Eqs. 11.56 and 11.59 to calculate related values of 
and For air with Fig. D.1 could be entered with

or Ma to get values of and To solve this example,
we elect to use values from Fig. D.1.

The following table was constructed by using Eqs. 3 and 5 and
Fig. D.1.

With the air entering the choked converging–diverging duct
subsonically, only one isentropic solution exists for the converg-
ing portion of the duct. This solution involves an accelerating
flow that becomes sonic at the throat of the passage.
Two isentropic flow solutions are possible for the diverging por-
tion of the duct —one subsonic, the other supersonic. If the pres-
sure ratio, is set at 0.98 at 1the outlet2, the sub-
sonic flow will occur. Alternatively, if is set at 0.04 at

the supersonic flow field will exist. These condi-
tions are illustrated in Fig. E11.8. An unchoked subsonic flow
through the converging–diverging duct of this example is dis-
cussed in Example 11.10. Choked flows involving flows other
than the two isentropic flows in the diverging portion of the duct
of this example are discussed after Example 11.10.

COMMENT Note that if the diverging portion of this duct
is extended, larger values of and Ma are achieved. From
Fig. D1, note that further increases of result in smaller
changes of Ma after values of about 10. The ratio of p�p0A�A*

A�A*
A�A*

x � �0.5 m,
p�p0

x � �0.5 mp�p0,

1Ma � 12

p�p0.T�T0A�A*
k � 1.4,p�p0.

T�T0

A�A*
k � 1.4,

A�A*
From From
Eq. 3, Eq. 5,

From Fig. D.1

x (m) r (m) Ma State

Subsonic Solution

0.334 3.5 0.17 0.99 0.98 a
0.288 2.6 0.23 0.99 0.97
0.246 1.9 0.32 0.98 0.93
0.211 1.4 0.47 0.96 0.86
0.187 1.1 0.69 0.91 0.73

0 0.178 1 1.00 0.83 0.53 b
0.187 1.1 0.69 0.91 0.73
0.211 1.4 0.47 0.96 0.86
0.246 1.9 0.32 0.98 0.93
0.288 2.6 0.23 0.99 0.97

0.344 3.5 0.17 0.99 0.98 c

Supersonic Solution

0.187 1.1 1.37 0.73 0.33
0.211 1.4 1.76 0.62 0.18
0.246 1.9 2.14 0.52 0.10
0.288 2.6 2.48 0.45 0.06
0.334 3.5 2.80 0.39 0.04 d�0.5

�0.4
�0.3
�0.2
�0.1

�0.5

�0.4
�0.3
�0.2
�0.1

�0.1
�0.2
�0.3
�0.4
�0.5

p�p0T�T0A�A*

becomes vanishingly small, suggesting a practical limit to the
expansion.

GIVEN Air enters supersonically with and equal to stan-
dard atmosphere values and flows isentropically through the
choked converging–diverging duct described in Example 11.8.

FIND Graph the variation of Mach number, Ma, static temper-
ature to stagnation temperature ratio, and static pressure toT�T0,

p0T0

Isentropic Choked Flow in a Converging–Diverging
Duct with Supersonic Entry

E XAMPLE 11.9

SOLUTION

With the air entering the converging–diverging duct of Example
11.8 supersonically instead of subsonically, a unique isentropic
flow solution is obtained for the converging portion of the duct.
Now, however, the flow decelerates to the sonic condition at the
throat. The two solutions obtained previously in Example 11.8 for
the diverging portion are still valid. Since the area variation in the
duct is symmetrical with respect to the duct throat, we can use the
supersonic flow values obtained from Example 11.8 for the super-
sonic flow in the converging portion of the duct. The supersonic
flow solution for the converging passage is summarized in the fol-
lowing table. The solution values for the entire duct are graphed
in Fig. E11.9.

stagnation pressure ratio, through the duct from
to Also show the possible fluid states

at and by using temperature–
entropy coordinates.

�0.5 mx � �0.5 m, 0 m,
x � �0.5 m.x � �0.5 m

p�p0,

From Fig. D.1

x (m) Ma State

3.5 2.8 0.39 0.04 e
2.6 2.5 0.45 0.06
1.9 2.1 0.52 0.10
1.4 1.8 0.62 0.18
1.1 1.4 0.73 0.33

0 1 1.0 0.83 0.53 b
�0.1
�0.2
�0.3
�0.4
�0.5

p�p0T�T0A�A*
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0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a) (b)

x, m x, m
0.2 0.4 0.5

3.0

2.0

1.0

0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

(c)

x, m
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

Ma

Supersonic

Supersonic

Subsonic

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T___
T0

p___
p0

Subsonic

Subsonic

SupersonicSupersonic

Supersonic Supersonic

T/T0

p/p0

(d)

310

290

270

250

230

210

190

170

150

130

110

90

0

d

b

c

pe = pd = 4 kPa (abs)

pb = 54 kPa (abs)

pc = 99 kPa (abs)p0 = 101 kPa (abs)

Te = Td = 112 K

Tb = 240 K

Tc = 286 K
T0 = 288 K

T
, 
K

r, m

J_______
(kg • K)

s,

F I G U R E  E11.9

GIVEN Air flows subsonically and isentropically through the
converging–diverging duct of Example 11.8.

FIND Graph the variation of Mach number, Ma, static temper-
ature to stagnation temperature ratio, and the static pressureT�T0,

Isentropic Unchoked Flow in a Converging–
Diverging Duct

EXAMPLE 11.10

SOLUTION

for this example is

(1)

With known values of duct area at different axial locations,
we can calculate corresponding area ratios, knowing

Having values of the area ratio, we can use
Fig. D.1 and obtain related values of Ma, and The fol-
lowing table summarizes flow quantities obtained in this manner.
The results are graphed in Fig. E11.10.

p�p0.T�T0,
A* � 0.07 m2.

A�A*,

A* �
A

1A�A*2 �
0.10 m2

1.4
� 0.07 m2

A*Since for this example, at the isentropic
flow through the converging –diverging duct will be entirely
subsonic and not choked. For air flowing isentrop-
ically through the duct, we can use Fig. D.1 for flow field
quantities. Entering Fig. D.1 with we read off

and Even though the
duct flow is not choked in this example and does not there-
fore exist physically, it still represents a valid reference. For a
given isentropic flow, and are constants. Since A
at is equal to 1from Eq. 2 of Example 11.82,0.10 m2x � 0 m

A*p0, T0,

A*
A�A* � 1.4.T�T0 � 0.96,p�p0 � 0.85,

Ma � 0.48

1k � 1.42

x � 0 m,Ma � 0.48

to stagnation pressure ratio, through the duct from
to for at Show

the corresponding temperature–entropy diagram.
x � 0 m.Ma � 0.48x � �0.5 mx � �0.5 m

p�p0,
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A more precise solution for the flow of this example could
have been obtained with isentropic flow equations by following
the steps outlined below.

1. Use Eq. 11.59 to get at knowing k and

2. From Eq. 11.71, obtain value of at knowing
k and Ma.

3. Determine knowing A and at 

4. Determine at different axial locations, x.

5. Use Eq. 11.71 and from step 4 above to get values
of Mach numbers at different axial locations.

6. Use Eqs. 11.56 and 11.59 and Ma from step 5 above to
obtain and at different axial locations, x.

COMMENT There are an infinite number of subsonic, isen-
tropic flow solutions for the converging–diverging duct consid-
ered in this example 1one for any given Ma 
 1 at x� 02.

p�p0T�T0

A�A*

A�A*

x � 0.A�A*A*

x � 0A�A*

Ma � 0.48.
x � 0p�p0

F I G U R E  E11.10

0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a) (b)

x, m x, m
0.2 0.4 0.5

1.0

0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

(c)

x, m
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

Ma SubsonicSubsonic

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T___
T0

p___
p0

Subsonic T/T0 Subsonic p/p0

(d)

296

292

288

284

280

276

272

268

264

260

0

b

a, c

pa = pc = 100 kPa (abs)

p0 = 101 kPa (abs)

T ,
 K

r, m

J_______
(kg • K)

s,

pb = 86 kPa (abs)

Tb = 276 K

T0 = 288 K
Ta = Tc = 285 K

Calculated,
From Fig. D.1

x (m) Ma State

5.0 0.12 0.99 0.99 a
3.7 0.16 0.99 0.98
2.7 0.23 0.99 0.96
2.0 0.31 0.98 0.94
1.6 0.40 0.97 0.89

0 1.4 0.48 0.96 0.85 b
1.6 0.40 0.97 0.89
2.0 0.31 0.98 0.94
2.7 0.23 0.99 0.96
3.7 0.16 0.99 0.98
5.0 0.12 0.99 0.99 c�0.5

�0.4
�0.3
�0.2
�0.1

�0.1
�0.2
�0.3
�0.4
�0.5

p�p0T�T0A�A*

F l u i d s  i n  t h e  N e w s

Liquid knife A supersonic stream of liquid nitrogen is capable of
cutting through engineering materials like steel and concrete. Origi-
nally developed at the Idaho National Engineering Laboratory for
cutting open barrels of waste products, this technology is now more
widely available. The fast moving nitrogen enters the cracks and

crevices of the material being cut then expands rapidly and breaks up
the solid material it has penetrated. After doing its work, the nitrogen
gas simply becomes part of the atmosphere which is mostly nitrogen
already. This technology is also useful for stripping coatings even
from delicate surfaces.



The isentropic flow behavior for the converging–diverging duct discussed in Examples 11.8,
11.9, and 11.10 is summarized in the area ratio–Mach number graphs sketched in Fig. 11.11. The
points a, b, and c represent states at axial distance 0 m, and In Fig. 11.11a,
the isentropic flow through the converging–diverging duct is subsonic without choking at the
throat. This situation was discussed in Example 11.10. Figure 11.11b represents subsonic to sub-
sonic choked flow 1Example 11.82 and Fig. 11.11c is for subsonic to supersonic choked flow 1also
Example 11.82. The states in Fig. 11.11d are related to the supersonic to supersonic choked flow
of Example 11.9; the states in Fig. 11.11e are for the supersonic to subsonic choked flow of 
Example 11.9. Not covered by an example but also possible are the isentropic flow states a, b,
and c shown in Fig. 11.11f for supersonic to supersonic flow without choking. These six cate-
gories generally represent the possible kinds of isentropic, ideal gas flow through a converging–di-
verging duct.

For a given stagnation state 1i.e., and fixed2, ideal gas and converging–
diverging duct geometry, an infinite number of isentropic subsonic to subsonic 1not choked2 and
supersonic to supersonic 1not choked2 flow solutions exist. In contrast, the isentropic subsonic
to supersonic 1choked2, subsonic to subsonic 1choked2, supersonic to subsonic 1choked2, and su-
personic to supersonic 1choked2 flow solutions are each unique. The above-mentioned isentropic

1k � constant 2,p0T0

�0.5 m.x � �0.5 m,
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A___
A*

1.0

0 1.0
Ma

(a) (b)

a, c

b
A___
A*

1.0

0 1.0
Ma

a, c

b

A___
A*

1.0

0 1.0
Ma

(c) (d)

ca

b

A___
A*

1.0

0 1.0
Ma

a, c

b

A___
A*

1.0

0 1.0
Ma

(e) ( f )

a
c

b

A___
A*

1.0

0 1.0
Ma

a, c

b

F I G U R E  11.11 (a) Subsonic to subsonic isentropic flow (not choked). (b) Subsonic to
subsonic isentropic flow (choked). (c) Subsonic to supersonic isentropic flow (choked). (d) Supersonic 
to supersonic isentropic flow (choked). (e) Supersonic to subsonic isentropic flow (choked). ( f ) Supersonic
to supersonic isentropic flow (not choked).

A variety of flow
situations can oc-
cur for flow in a
converging–
diverging duct.

V11.5 Rocket 
engine start-up



flow solutions are represented in Fig. 11.12. When the pressure at 1exit2 is greater
than or equal to indicated in Fig. 11.12d, an isentropic flow is possible. When the pressure
at is equal to or less than isentropic flows in the duct are possible. However, when
the exit pressure is less than and greater than as indicated in Fig. 11.13, isentropic flows
are no longer possible in the duct. Determination of the value of is discussed in Example
11.19.

Some possible nonisentropic choked flows through our converging– diverging duct are
represented in Fig. 11.13. Each abrupt pressure rise shown within and at the exit of the 
flow passage occurs across a very thin discontinuity in the flow called a normal shock wave.
Except for flow across the normal shock wave, the flow is isentropic. The nonisentropic flow
equations that describe the changes in fluid properties that take place across a normal shock
wave are developed in Section 11.5.3. The less abrupt pressure rise or drop that occurs after
the flow leaves the duct is nonisentropic and attributable to three-dimensional oblique shock
waves or expansion waves 1see margin photograph2. If the pressure rises downstream of the
duct exit, the flow is considered overexpanded. If the pressure drops downstream of the duct
exit, the flow is called underexpanded. Further details about over- and underexpanded flows
and oblique shock waves are beyond the scope of this text. Interested readers are referred to

pIII

pIIIpI

pII,x � �0.5
pI

x � �0.5
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–0.5 0

(a)

x, m
+0.5

r

–0.5 0

(c)

x, m
+0.5

T

–0.5

1.0

0

(b)

x, m
+0.5

Ma

–0.5 0

(d)

x, m
+0.5

p

pII

pI

F I G U R E  11.12 (a) The variation of duct radius with axial distance. (b) The variation of
Mach number with axial distance. (c) The variation of temperature with axial distance. (d ) The variation
of pressure with axial distance.

p

x

pI

pIII

pII

F I G U R E  11.13 Shock formation in 
converging – diverging duct flows.

Shock waves

V11.6 Supersonic
nozzle flow

Photographs courtesy
of NASA.
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Constant area duct

Fluid flow
F I G U R E  11.14 Constant area duct

flow.

11.4.3 Constant Area Duct Flow

For steady, one-dimensional, isentropic flow of an ideal gas through a constant area duct 1see
Fig. 11.142, Eq. 11.50 suggests that or that flow velocity remains constant. With the en-
ergy equation 1Eq. 5.692 we can conclude that since flow velocity is constant, the fluid enthalpy
and thus temperature are also constant for this flow. This information and Eqs. 11.36 and 11.46
indicate that the Mach number is constant for this flow also. This being the case, Eqs. 11.59
and 11.60 tell us that fluid pressure and density also remain unchanged. Thus, we see that a
steady, one-dimensional, isentropic flow of an ideal gas does not involve varying velocity or
fluid properties unless the flow cross-sectional area changes.

In Section 11.5 we discuss nonisentropic, steady, one-dimensional flows of an ideal gas
through a constant area duct and also a normal shock wave. We learn that friction andZor heat trans-
fer can also accelerate or decelerate a fluid.

dV � 0

F l u i d s  i n  t h e  N e w s

Rocket nozzles To develop the massive thrust needed for space
shuttle liftoff, the gas leaving the rocket nozzles must be moving
supersonically. For this to happen, the nozzle flow path must first
converge, then diverge. Entering the nozzle at very high pressure
and temperature, the gas accelerates in the converging portion of
the nozzle until the flow chokes at the nozzle throat. Downstream
of the throat, the gas further accelerates in the diverging portion of
the nozzle (area ratio of 77.5 to 1), finally exiting into the atmos-

phere supersonically. At launch, the static pressure of the gas
flowing from the nozzle exit is less than atmospheric and so the
flow is overexpanded. At higher elevations where the atmospheric
pressure is much less than at launch level, the static pressure of
the gas flowing from the nozzle exit is greater than atmospheric
and so now the flow is underexpanded, the result being expansion
or divergence of the exhaust gas as it exits into the atmosphere.
(See Problem 11.49.)

11.5 Nonisentropic Flow of an Ideal Gas

Actual fluid flows are generally nonisentropic. An important example of nonisentropic flow involves
adiabatic 1no heat transfer2 flow with friction. Flows with heat transfer 1diabatic flows2 are generally
nonisentropic also. In this section we consider the adiabatic flow of an ideal gas through a constant
area duct with friction. This kind of flow is often referred to as Fanno flow. We also analyze the
diabatic flow of an ideal gas through a constant area duct without friction 1Rayleigh flow2. The con-
cepts associated with Fanno and Rayleigh flows lead to further discussion of normal shock waves.

11.5.1 Adiabatic Constant Area Duct Flow 
with Friction (Fanno Flow)

Consider the steady, one-dimensional, and adiabatic flow of an ideal gas through the constant area
duct shown in Fig. 11.15. This is Fanno flow. For the control volume indicated, the energy equa-
tion 1Eq. 5.692 leads to

0 1negligibly 0 1flow is adiabatic2
small for 01flow is steady
gas flow2 throughout2

m
# c ȟ2 � ȟ1 �

V 2
2 � V 2

1

2
� g1z2 � z12 d � Q

#
net
in.
� W
#

shaft
net in

Fanno flow involves
wall friction with
no heat transfer
and constant cross-
sectional area.

texts on compressible flows and gas dynamics 1for example, Refs. 4, 5, and 62 for additional
material on this subject.



or

(11.72)

where is the stagnation enthalpy. For an ideal gas we gather from Eq. 11.9 that

(11.73)

so that by combining Eqs. 11.72 and 11.73 we get

or

(11.74)

By substituting the ideal gas equation of state 1Eq. 11.12 into Eq. 11.74 we obtain

(11.75)

From the continuity equation 1Eq. 11.402 we can conclude that the density–velocity product,
is constant for a given Fanno flow since the area, A, is constant. Also, for a particular Fanno

flow, the stagnation temperature, is fixed. Thus, Eq. 11.75 allows us to calculate values of fluid
temperature corresponding to values of fluid pressure in the Fanno flow. We postpone our discus-
sion of how pressure is determined until later.

As with earlier discussions in this chapter, it is helpful to describe Fanno flow with a temper-
ature–entropy diagram. From the second T ds relationship, an expression for entropy variation was
already derived 1Eq. 11.222. If the temperature, pressure, and entropy, at the entrance of
the Fanno flow duct are considered as reference values, then Eq. 11.22 yields

(11.76)

Equations 11.75 and 11.76 taken together result in a curve with T–s coordinates as is illustrated in
Fig. 11.16. This curve involves a given gas 1 and R2 with fixed values of stagnation temperature,
density–velocity product, and inlet temperature, pressure, and entropy. Curves like the one sketched
in Fig. 11.16 are called Fanno lines.

cp

s � s1 � cp ln 
T

T1

� R ln 
p
p1

s1,p1,T1,

T0,
rV,

T �
1rV22T 2

2cp1p 2�R22 � T0 � constant

T �
1rV22
2cpr

2 � T0 � constant

T �
V2

2cp

� T0 � constant

ȟ � ȟ0 � cp 1T � T02
h0

ȟ �
V2

2
� ȟ0 � constant
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F I G U R E  11.15 Adiabatic constant
area flow.

Adiabatic flow

Insulated wall

Control volume

Section (1) Section (2)

F I G U R E  11.16 The T –s
diagram for Fanno flow.

Entropy increases
in Fanno flows
because of wall
friction.

Ta

s

pa

T

a

Constant entropy line

Fanno line
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GIVEN Air enters [section 112] an insulated, con-
stant cross-sectional area duct with the following properties:

 p1 � 14.3 psia

 T1 � 514.55 °R

 T0 � 518.67 °R

1k � 1.42

Compressible Flow with Friction (Fanno Flow)EXAMPLE 11.11

SOLUTION

Eq. 4 becomes

or

For psia we have from Eq. 1

or

Thus, since we obtain

Hence,

(Ans)

where T is in 
From Eq. 2, we obtain

or

(Ans)

Proceeding as outlined above, we construct the table of values
shown below and graphed as the Fanno line in Fig. E11.11. The

s � s1 � 33.6 1ft # lb2� 1lbm # °R2

 � 353.3 1ft # lb2� 1lbm # °R2 4  ln a 7 psia

14.3 psia
b

 s � s1 � 3187 1ft # lb2� 1lbm # °R2 4  ln a 502.3 °R

514.55 °R
b

°R.

T � 502.3 °R

6.5 � 10�5T 2 � T � 518.67 � 0

1 lb � 32.2 lbm # ft�s2

2.08 � 10�3 3 1lbm # ft�s2 2� 1lb # °R 2 4 T 2 � T � 518.67 °R � 0

 � 518.67 °R

T �
316.7 lbm� 1ft2 # s2 4 2T 2

2 3187 1ft # lb2� 1lbm # °R2 4  17 psia 221144 in.2�ft222
353.3 1ft # lb2� 1lbm # °R2 4 2

p � 7

rV � 16.7 lbm� 1ft2 # s2

rV �
114.3 psia 2 1144 in.2�ft220.211112 ft�s2
353.3 1ft # lb2� 1lbm # °R2 4 1514.55 °R2

To plot the Fanno line we can use Eq. 11.75

(1)

and Eq. 11.76

(2)

to construct a table of values of temperature and entropy change
corresponding to different levels of pressure in the Fanno flow.

We need values of the ideal gas constant and the specific heat
at constant pressure to use in Eqs. 1 and 2. From Table 1.7 we read
for air

From Eq. 11.14 we obtain

(3)

or

From Eqs. 11.1 and 11.69 we obtain

and is constant for this flow

(4)

But

and from Eq. 11.56

Thus, with

 � 1112 ft�s
 � 196 3 1ft # lb2�lbm 41�2 3 132.2 lbm # ft�s22�lb 41�2

2RT1k � 211.42 353.3 1ft # lb2� 1lbm # °R2 4 1514.55 °R2

Ma1 � Aa
1

0.992
� 1b �.02 � 0.2

T1

T0

�
514.55 °F

518.67 °R
� 0.992

rV � r1V1 �
p1

RT1
 Ma11RT1k

rV

rV �
p

RT
 Ma1RTk

 � 187 1ft # lb2� 1lbm # °R2
cp �

353.3 1ft # lb2� 1lbm # °R2 4 11.42
1.4 � 1

cp �
Rk

k � 1

� 53.3 1ft # lb2� 1lbm # °R2R � 1716 1ft # lb2� 1slug # °R2

s � s1 � cp ln 
T

T1
� R ln 

p

p1

T �
1rV22T 2

2cpp2�R2 � T0 � constant

FIND For Fanno flow, determine corresponding values of fluid
temperature and entropy change for various values of down-
stream pressures and plot the related Fanno line.

F I G U R E  E11.11

550

500

450

400

350

300
35 40 45 50 55

T
, 

°R

s – s1, (ft•lb)________
(lbm•°R)



We can learn more about Fanno lines by further analyzing the equations that describe the
physics involved. For example, the second T ds equation 1Eq. 11.182 is

(11.18)

For an ideal gas

(11.7)

and

(11.1)

or

(11.77)

Thus, consolidating Eqs. 11.1, 11.7, 11.18, and 11.77 we obtain

(11.78)

Also, from the continuity equation 1Eq. 11.402, we get for Fanno flow , or

(11.79)

Substituting Eq. 11.79 into Eq. 11.78 yields

or

(11.80)

By differentiating the energy equation 111.742 obtained earlier, we obtain

(11.81)
dV

dT
� �

cp

V

ds

dT
�

cp

T
� R a�1

V
 
dV

dT
�

1

T
b

T ds � cp dT � RT a�dV

V
�

dT

T
b

dr

r
� �

dV

V

rV � constant

T ds � cp dT � RT adr
r
�

dT

T
b

dp
p
�

dr

r
�

dT

T

r �
p

RT

dȟ � cp dT

T ds � dȟ �
dp
r
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maximum entropy difference occurs at a pressure of 2.62 psia and
a temperature of 432.1 

COMMENT Note that for Fanno flow the entropy must in-
crease in the direction of flow. Hence, this flow can proceed either
from subsonic conditions upstream to a sonic condition 1 2
downstream or from supersonic conditions upstream to a sonic
condition downstream. The arrows in Fig. 11.11 indicate in which
direction a Fanno flow can proceed.

Ma � 1

°R. p T s � s1

(psia) ( ) [( )Z( )]

7 502.3 33.6
6 496.8 39.8
5 488.3 46.3
4 474.0 52.6
3 447.7 57.3
2.62 432.1 57.9
2 394.7 55.4
1.8 378.1 53.0
1.5 347.6 47.0
1.4 335.6 44.2

lbm  �Rft  lb�R

Fanno flow proper-
ties can be obtained
from the second 
T ds equation com-
bined with the con-
tinuity and energy
equations.



which, when substituted into Eq. 11.80, results in

(11.82)

The Fanno line in Fig. 11.16 goes through a state 1labeled state a2 for which At this
state, we can conclude from Eqs. 11.14 and 11.82 that

(11.83)

However, by comparing Eqs. 11.83 and 11.36 we see that the Mach number at state a is 1. Since
the stagnation temperature is the same for all points on the Fanno line [see energy equation 1Eq.
11.742], the temperature at point a is the critical temperature, for the entire Fanno line. Thus,
Fanno flow corresponding to the portion of the Fanno line above the critical temperature must be
subsonic, and Fanno flow on the line below must be supersonic.

The second law of thermodynamics states that, based on all past experience, entropy can only
remain constant or increase for adiabatic flows. For Fanno flow to be consistent with the second
law of thermodynamics, flow can only proceed along the Fanno line toward state a, the critical
state. The critical state may or may not be reached by the flow. If it is, the Fanno flow is choked.
Some examples of Fanno flow behavior are summarized in Fig. 11.17. A case involving subsonic
Fanno flow that is accelerated by friction to a higher Mach number without choking is illustrated
in Fig. 11.17a. A supersonic flow that is decelerated by friction to a lower Mach number without
choking is illustrated in Fig. 11.17b. In Fig. 11.17c, an abrupt change from supersonic to subsonic
flow in the Fanno duct is represented. This sudden deceleration occurs across a standing normal
shock wave that is described in more detail in Section 11.5.3.

The qualitative aspects of Fanno flow that we have already discussed are summarized in
Table 11.1 and Fig. 11.18. To quantify Fanno flow behavior we need to combine a relation-
ship that represents the linear momentum law with the set of equations already derived in this
chapter.

T*

T*,

Va � 1RTak

ds�dT � 0.

ds

dT
�

cp

T
� R a cp

V 2 �
1

T
b
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F I G U R E  11.17 (a) Subsonic Fanno flow. (b) Supersonic Fanno flow. (c) Normal shock
occurrence in Fanno flow.
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Friction accelerates
a subsonic Fanno
flow.

TA BLE 1 1 . 1
Summary of Fanno Flow Behavior

Flow

Parameter Subsonic Flow Supersonic Flow

Stagnation temperature Constant Constant
Ma Increases Decreases

1maximum is 12 1minimum is 12
Friction Accelerates flow Decelerates flow
Pressure Decreases Increases
Temperature Decreases Increases

F I G U R E  11.18 Fanno flow.
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T0

T*
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p1
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p0, a

T1'



If the linear momentum equation 1Eq. 5.222 is applied to the Fanno flow through the control
volume sketched in Fig. 11.19a, the result is

where is the frictional force exerted by the inner pipe wall on the fluid. Since and
we obtain

(11.84)

The differential form of Eq. 11.84, which is valid for Fanno flow through the semi-infinitesimal
control volume shown in Fig. 11.19b, is

(11.85)

The wall shear stress, is related to the wall friction factor, f, by Eq. 8.20 as

(11.86)

By substituting Eq. 11.86 and into Eq. 11.85, we obtain

(11.87)

or

(11.88)

Combining the ideal gas equation of state 1Eq. 11.12, the ideal gas speed-of-sound equation 1Eq.
11.362, and the Mach number definition 1Eq. 11.462 with Eq. 11.88 leads to

(11.89)

Since then

or

(11.90)
d1V 22

V 2 �
d1Ma22

Ma2 �
dT

T

V 2 � Ma2RTk

V � Ma c � Ma 1RTk,

dp

p
�

fk

2
 Ma2 

dx

D
� k 

Ma2

2
 
d1V 22
V 2 

� 0

dp
p
�

f

p
 
rV 2

2
 
dx

D
�
r

p
 
d1V 22

2
� 0

�dp � fr 
V2

2
 
dx

D
� rV dV

A � pD2�4

f �
8tw

rV 2

tw,

�dp �
twpD dx

A
� rV dV

p1 � p2 �
Rx

A
� rV1V2 � V12

m
#
� rAV � constant,

A1 � A2 � ARx

p1A1 � p2A2 � Rx � m
# 1V2 � V12
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Friction forces in
Fanno flow are
given in terms of
the friction factor.

F I G U R E  11.19 (a) Finite
control volume. (b) Semi-infinitesimal control
volume.

Flow

Section (1) Section (2)

Control volume

(a)

p1A1

Rx

p2A2

Flow

Semi-infinitesimal control volume

(b)

pA

x

D

w

(p +   p)A

δ

τ Dπ xδ

δ



The application of the energy equation 1Eq. 5.692 to Fanno flow gave Eq. 11.74. If Eq. 11.74 is
differentiated and divided by temperature, the result is

(11.91)

Substituting Eqs. 11.14, 11.36, and 11.46 into Eq. 11.91 yields

(11.92)

which can be combined with Eq. 11.90 to form

(11.93)

We can merge Eqs. 11.77, 11.79, and 11.90 to get

(11.94)

Consolidating Eqs. 11.94 and 11.89 leads to

(11.95)

Finally, incorporating Eq. 11.93 into Eq. 11.95 yields

(11.96)

Equation 11.96 can be integrated from one section to another in a Fanno flow duct. We elect to
use the critical 1*2 state as a reference and to integrate Eq. 11.96 from an upstream state to the crit-
ical state. Thus

(11.97)

where is length measured from an arbitrary but fixed upstream reference location to a section in
the Fanno flow. For an approximate solution, we can assume that the friction factor is constant at
an average value over the integration length, We also consider a constant value of k. Thus,
we obtain from Eq. 11.97

(11.98)

For a given gas, values of can be tabulated as a function of Mach number for
Fanno flow. For example, values of for air Fanno flow are graphed as a
function of Mach number in Fig. D.2 in Appendix D and in the figure in the margin. Note that the
critical state does not have to exist in the actual Fanno flow being considered, since for any two
sections in a given Fanno flow

(11.99)

The sketch in Fig. 11.20 illustrates the physical meaning of Eq. 11.99.
For a given Fanno flow 1constant specific heat ratio, duct diameter, and friction factor2 the

length of duct required to change the Mach number from to can be determined from Eqs.
11.98 and 11.99 or a graph such as Fig. D.2. To get the values of other fluid properties in the Fanno
flow field we need to develop more equations.

Ma2Ma1

f 1/* � /22
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�
f 1/* � /12

D
�

f

D
 1/1 � /22
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For Fanno flow, the
Mach number is a
function of the dis-
tance to the critical
state.
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By consolidating Eqs. 11.90 and 11.92 we obtain

(11.100)

Integrating Eq. 11.100 from any state upstream in a Fanno flow to the critical 1*2 state leads to

(11.101)

Equations 11.68 and 11.69 allow us to write

(11.102)

Substituting Eq. 11.101 into Eq. 11.102 yields

(11.103)

Equations 11.101 and 11.103 are graphed in the margin for air.
From the continuity equation 1Eq. 11.402 we get for Fanno flow

(11.104)

Combining 11.104 and 11.103 results in

(11.105)
r
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F I G U R E  11.20 (a) Unchoked Fanno flow. (b) Choked Fanno flow.

Frictionless and adiabatic
converging–diverging ductReference

section
Section

(1)

Actual duct with
friction factor = f

Section
(2)

Imagined
choked flow

section

Flow

Imagined duct
friction factor = f

D = constant

�1

�2

�*

(a)

Frictionless and adiabatic
converging–diverging ductReference

section
Section

(1)

Actual duct with
friction factor = f

Section
(2)

Actual
choked flow

section

Flow D = constant

�1

�2

�*

(b)
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1.0

0.0
101.0

Ma

0.1

T__
T*

5.0

1.0

0.0
101.0

Ma

0.1

V___
V*

For Fanno flow, the
length of duct
needed to produce a
given change in
Mach number can
be determined.



The ideal gas equation of state 1Eq. 11.12 leads to

(11.106)

and merging Eqs. 11.106, 11.105, and 11.101 gives

(11.107)

This relationship is graphed in the margin for air.
Finally, the stagnation pressure ratio can be written as

(11.108)

which by use of Eqs. 11.59 and 11.107 yields

(11.109)

Values of for Fanno flow of air are
graphed as a function of Mach number 1using Eqs. 11.99, 11.101, 11.103, 11.107, and 11.1092 in Fig.
D.2 of Appendix D. The usefulness of Fig. D.2 is illustrated in Examples 11.12, 11.13, and 11.14. 

See Ref. 7 for additional compressible internal flow material.
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5.0

0.0
101.0

Ma

0.1

p___
p*

For Fanno flow,
thermodynamic and
flow properties can
be calculated as a
function of Mach
number.

GIVEN Standard atmospheric air 101
is drawn steadily through a frictionless, adiabatic con-

verging nozzle into an adiabatic, constant area duct as shown in
Fig. E11.12a. The duct is 2 m long and has an inside diameter of
0.1 m. The average friction factor for the duct is estimated as be-
ing equal to 0.02. 

FIND What is the maximum mass flowrate through the duct?
For this maximum flowrate, determine the values of static tem-
perature, static pressure, stagnation temperature, stagnation pres-
sure, and velocity at the inlet [section 112] and exit [section 122] of
the constant area duct. Sketch a temperature–entropy diagram for
this flow.

kPa1abs 2 4
3T0 � 288 K, p0 �

Choked Fanno FlowE XAMPLE 11.12

(b)

2

Fanno line

p0.1 =
101 kPa (abs)

p0.2 =
84 kPa (abs)

p2 =
45 kPa (abs)

p1 =
77 kPa (abs)

T1 = 268 K

T0 = 288 K

T2 = 240 K

300

290

280

270

260

250

240

230
0 10 20 30 40 50

T
, 
K

s – s1, J_____
(kg•K)

1

F I G U R E  E11.12

p0 = 101 kPa (abs)
Frictionless and
adiabatic nozzle

Adiabatic duct with friction
factor f = 0.02

Standard atmospheric air
T0 = 288K

Control volume

Section (1) Section (2)

� = 2 m

(a)

D = 0.1 m

SOLUTION

We consider the flow through the converging nozzle to be isen-
tropic and the flow through the constant area duct to be Fanno
flow. A decrease in the pressure at the exit of the constant area
duct 1back pressure2 causes the mass flowrate through the nozzle
and the duct to increase. The flow throughout is subsonic. The
maximum flowrate will occur when the back pressure is lowered
to the extent that the constant area duct chokes and the Mach
number at the duct exit is equal to 1. Any further decrease of back
pressure will not affect the flowrate through the nozzle–duct
combination.
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For the maximum flowrate condition, the constant area duct
must be choked, and

(1)

With for air and the above calculated value of 
we could use Eq. 11.98 to determine a value of Mach

number at the entrance of the duct [section 112]. With and
Ma1 known, we could then rely on Eqs. 11.101, 11.103, 11.107,
and 11.109 to obtain values of 
Alternatively, for air we can use Fig. D.2 with 

and read off values of and

The pipe entrance Mach number, also represents the Mach
number at the throat 1and exit2 of the isentropic, converging nozzle.
Thus, the isentropic flow equations of Section 11.4 or Fig. D.1 can
be used with Ma1. We use Fig. D.1 in this example.

With known, we can enter Fig. D.1 and get values of
and Through the isentropic nozzle, the values

of and are each constant, and thus and can be
readily obtained.

Since also remains constant through the constant area duct
1see Eq. 11.752, we can use Eq. 11.63 to get Thus,

(2)

Since we get from Eq. 2,

(3) (Ans)

With known, we can calculate from Eq. 11.36 as

Thus, since 
we obtain

(4) (Ans)

Now can be obtained from V* and Having and
we can get the mass flowrate from

(5)

Values of the other variables asked for can be obtained from the
ratios mentioned.

Entering Fig. D.2 with we read

(7)

(8)

(9)

(10)

(11) 
p0,1

p*0
� 1.16

 
p1

p*
� 1.7

 
V1

V*
� 0.66

 
T1

T*
� 1.1

 Ma1 � 0.63

f 1/* � /2�D � 0.4

m
#
� r1A1V1

V1

A1, r1,V1�V*.V1

V* � 310 m�s � V2

1m�s22,1 J�kg� 1 N # m�kg� 1 1kg # m�s22 # m�kg�

 � 310 1J�kg21�2
 � 2 3 1286.9 J2� 1kg # K2 4 1240 K2 11.42

 V* � 1RT*k

V*T*

T* � 10.83332 1288 K2 � 240 K � T2

T0 � 288 K,

T*

T0
�

2

k � 1
�

2

1.4 � 1
� 0.8333

T*.
T0

r1T1, p1,r0T0, p0,
r1�r0.T1�T0, p1�p0,

Ma1

Ma1,
 p0,1�p*0.

p1�p*,V1�V*,Ma1, T1�T*,D � 0.4
f 1/* � /12�1k � 1.42,

p1�p*, and p0,1�p*0.V1�V*,T1�T*,

k � 1.4
D � 0.4,

f 1/* � /12�k � 1.4

f 1/* � /12
D

�
f 1/2 � /12

D
�
10.022 12 m2
10.1 m2 � 0.4

Entering Fig. D.1 with we read

(12)

(13)

(14)

Thus, from Eqs. 4 and 9 we obtain

(Ans)

From Eq. 14 we get

and from Eq. 5 we conclude that

(Ans)

From Eq. 12, it follows that

(Ans)

Equation 13 yields

(Ans)

The stagnation temperature, remains constant through this
adiabatic flow at a value of

(Ans)

The stagnation pressure, at the entrance of the constant area
duct is the same as the constant value of stagnation pressure
through the isentropic nozzle. Thus

(Ans)

To obtain the duct exit pressure we can use Eqs. 10 and
13. Thus,

(Ans)

For the duct exit stagnation pressure we can use Eq.
11 as

(Ans)

The stagnation pressure, decreases in a Fanno flow because of
friction.

COMMENT Use of graphs such as Figs. D.1 and D.2 illus-
trates the solution of a problem involving Fanno flow. The T–s di-
agram for this flow is shown in Fig. E.11.12b, where the entropy
difference, is obtained from Eq. 11.22.s2 � s1,

p0,

 � 87.1 kPa1abs 2
p0,2 � a

p*0
p0,1
b 1p0,12 � a 1

1.16
b 3101 kPa1abs 2 4

1p0,2 � p*02
 � 45 kPa1abs 2

p2 � a
p*

p1
b a p1

p0,1
b 1 p0,12 � a 1

1.7
b 10.762 3101 kPa1abs 2 4

1p2 � p*2
p0,1 � 101 kPa1abs 2

p0,

T0,1 � T0,2 � 288 K

T0,

p1 � 10.762 3101 kPa1abs 2 4 � 77 kPa1abs 2

T1 � 10.932 1288 K2 � 268 K

 � 1.65 kg�s

m
#
� 11.02 kg�m32 cp10.1 m22

4
d  1206 m�s2

r1 � 0.83r0,1 � 10.832 11.23 kg�m32 � 1.02 kg�m3

V1 � 10.662 1310 m�s2 � 205 m�s

 
r1

r0,1
� 0.83

 
p1

p0,1
� 0.76

 
T1

T0
� 0.93

Ma1 � 0.63
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GIVEN The duct in Example 11.12 is shortened by 50%, but
the duct discharge pressure is maintained at the choked flow value
for Example 11.12, namely,

pd � 45 kPa1abs 2

Effect of Duct Length on Choked Fanno FlowEXAMPLE 11.13

SOLUTION

which is read in Fig. D.1 for Thus,

(3)

We get from

(4)

from Fig. D.2 for The value of V* is the same as it
was in Example 11.12, namely,

(5)

Thus, from Eqs. 4 and 5 we obtain

(6)

and from Eqs. 1, 3, and 6 we get

(Ans)

The mass flowrate associated with a shortened tube is larger than
the mass flowrate for the longer tube, This trend is
general for subsonic Fanno flow. 

COMMENT For the same upstream stagnation state and
downstream pressure, the mass flowrate for the Fanno flow will
decrease with increase in length of duct for subsonic flow. Equiv-
alently, if the length of the duct remains the same but the wall fric-
tion is increased, the mass flowrate will decrease.

m
#
� 1.65 kg�s.

� 1.73 kg�s

m
#
� 10.97 kg�m32 cp10.1m22

4
d  1226 m�s2

V1 � 10.732 13102 � 226 m�s

V* � 310 m�s

Ma1 � 0.7.

V1

V*
� 0.73

V1

r1 � 10.792 11.23 kg�m32 � 0.97 kg�m3

Ma1 � 0.7.We guess that the shortened duct will still choke and check our
assumption by comparing with p*. If the flow is
choked; if not, another assumption has to be made. For choked flow
we can calculate the mass flowrate just as we did for Example 11.12.
For unchoked flow, we will have to devise another strategy.

For choked flow

and from Fig. D.2, we read the values 
With we use Fig. D.1 and get

Now the duct exit pressure can be obtained from

and we see that Our assumption of choked flow is jus-
tified. The pressure at the exit plane is greater than the surround-
ing pressure outside the duct exit. The final drop of pressure
from 48.5 kPa1abs2 to 45 kPa1abs2 involves complicated three-
dimensional flow downstream of the exit.

To determine the mass flowrate we use

(1)

The density at section 112 is obtained from

(2)
r1

r0,1
� 0.79

m
#
� r1A1V1

pd 6 p*.

 � a 1

1.5
b 10.722 3101 kPa1abs 2 4 � 48.5 kPa1abs 2

 p2 � p* � ap*

p1
b a p1

p0,1
b 1p0,12

1p2 � p*2

p1

p0
� 0.72

Ma1 � 0.70,p* � 1.5.
Ma1 � 0.70 and p1�

f 1/* � /12
D

�
10.022 11 m2

0.1 m
� 0.2

pd 6 p*,pd

FIND Will shortening the duct cause the mass flowrate through
the duct to increase or decrease? Assume that the average friction
factor for the duct remains constant at a value of f � 0.02.

GIVEN The same flowrate obtained in Example 11.12 
is desired through the shortened duct of Example 11.13

Assume f remains constant at a value of 0.02. 1/2 � /1 � 1 m2.
1.65 kg�s2

1m̂ �

Unchoked Fanno FlowE XAMPLE 11.14

SOLUTION

from Example 11.12, and from Fig. D.2

f 1/* � /12
D

� 0.4

Ma1 � 0.63Since the mass flowrate of Example 11.12 is desired, the Mach
number and other properties at the entrance of the constant area
duct remain at the values determined in Example 11.12. Thus,

FIND Determine the Mach number at the exit of the duct,
and the back pressure, required. p2,

M2,
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For this example,

or

so that

(1)

By using the value from Eq. 1 and Fig. D.2, we get

(Ans)

and

(2)
p2

p*
� 1.5

Ma2 � 0.70

f 1/* � /22
D

� 0.2

10.022 11 m2
0.1 m

� 0.4 �
f 1/* � /22

D

f 1/2 � /12
D

�
f 1/* � /12

D
�

f 1/* � /22
D

We obtain from

where is given in Eq. 2 and and are
the same as they were in Example 11.12. Thus,

(Ans)

COMMENT A larger back pressure [68.0 kPa1abs2] than the
one associated with choked flow through a Fanno duct [45 kPa1abs2]
will maintain the same flowrate through a shorter Fanno duct with
the same friction coefficient. The flow through the shorter duct is not
choked. It would not be possible to maintain the same flowrate
through a Fanno duct longer than the choked one with the same fric-
tion coefficient, regardless of what back pressure is used.

� 68.0 kPa1abs 2
p2 � 11.52 a 1

1.7
b 10.762 3101 kPa1abs 2 4

p0,1p*�p1, p1�p0,1,p2�p*

p2 � a
p2

p*
b ap*

p1
b a p1

p0,1
b 1p0,12

p2

11.5.2 Frictionless Constant Area Duct Flow with Heat Transfer
(Rayleigh Flow)

Consider the steady, one-dimensional, and frictionless flow of an ideal gas through the constant
area duct with heat transfer illustrated in Fig. 11.21. This is Rayleigh flow. Application of the
linear momentum equation 1Eq. 5.222 to the Rayleigh flow through the finite control volume
sketched in Fig. 11.21 results in

01frictionless flow2

or

(11.110)

Use of the ideal gas equation of state 1Eq. 11.12 in Eq. 11.110 leads to

(11.111)

Since the flow cross-sectional area remains constant for Rayleigh flow, from the continuity equa-
tion 1Eq. 11.402 we conclude that

For a given Rayleigh flow, the constant in Eq. 11.111, the density–velocity product, and the
ideal gas constant are all fixed. Thus, Eq. 11.111 can be used to determine values of fluid temper-
ature corresponding to the local pressure in a Rayleigh flow.

To construct a temperature–entropy diagram for a given Rayleigh flow, we can use Eq. 11.76,
which was developed earlier from the second T ds relationship. Equations 11.111 and 11.76 can
be solved simultaneously to obtain the curve sketched in Fig. 11.22. Curves like the one in Fig.
11.22 are called Rayleigh lines.

rV,

rV � constant

p �
1rV22 RT

p
� constant

p �
1rV22
r
� constant

p1A1 � m
#
V1 � p2A2 � m

#
V2 � Rx

Rayleigh flow in-
volves heat transfer
with no wall fric-
tion and constant
cross-sectional area.

F I G U R E  11.21 Rayleigh flow.

Frictionless and adiabatic
converging–diverging duct

Semi-infinitesimal
control volume

Section (1) Section (2)Finite
control volumeFlow

Frictionless duct with
heat transfer

D = constant
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F I G U R E  11.22 Rayleigh line.

Ma < 1

Ma > 1

a (Maa = 1)

Mab = 

b

T

s

( )1_
k√

GIVEN Air enters [section 112] a frictionless, con-
stant flow cross-sectional area duct with the following properties
(the same as in Example 11.11):

 p1 � 14.3 psia

 T1 � 514.55 °R

 T0 � 518.67 °R

1k � 1.42

Frictionless, Constant Area Compressible Flow 
with Heat Transfer (Rayleigh Flow)

EXAMPLE 11.15

FIND For Rayleigh flow, determine corresponding values of
fluid temperature and entropy change for various levels of down-
stream pressure and plot the related Rayleigh line.

SOLUTION

To plot the Rayleigh line asked for, use Eq. 11.111

(1)

and Eq. 11.76

(2)

to construct a table of values of temperature and entropy change
corresponding to different levels of pressure downstream in a
Rayleigh flow.

Use the value of ideal gas constant for air from Table 1.7

or in EE system units

and the value of specific heat at constant pressure for air from Ex-
ample 11.11, namely,

Also, from Example 11.11, For the
given inlet [section 112] conditions, we get

Thus, from Eq. 1 we get

 � 14.3 psia � 3720 lbm� 1ft # s22 � constant

p �
1rV22 RT

p
� 14.3 psia � 316.7 lbm� 1ft2 # s2 4 2113.3 ft3�lbm2

 � 13.3 ft3�lbm

RT1

p1
�
353.3 1ft # lb2�1lbm # °R2 4 1514.55 °R2

14.3 psia 1144 in.2�ft22

rV � 16.7 lbm� 1ft2 # s2.
cp � 187 1ft # lb2� 1lbm # °R2

R � 53.3 1ft # lb2� 1lbm # °R2

R � 1716 1ft # lb2� 1slug # °R2

s � s1 � cp ln 
T

T1
� R ln 

p

p1

p �
1rV22 RT

p
� constant

or, since 

(3)

With the downstream pressure of psia, we can obtain
the downstream temperature by using Eq. 3 with the fact that

Hence, from Eq. 3,

or

From Eq. 2 with the downstream pressure and tem-
perature we get

By proceeding as outlined above, we can construct the table of
values shown below and graph the Rayleigh line of Fig. E11.15.

s � s1 � 121 1ft # lb2� 1lbm # °R2

 � 353.3 1ft # lb2� 1lbm # °R2 4  ln a13.5 psia

14.3 psia
b

s � s1 � 3187 1ft # lb2� 1lbm # °R2 4  ln a 969 °R

514.55 °R
b

T � 969 °R
p � 13.5 psia

T � 969 °R

13.5 psia � 31.65 � 10�3 1lb�in.22�°R 4  T � 15.10 psia

� 1.65 � 10�3 1lb�in.22�°R

 � 0.238 1lb�ft22�°R11 ft2�144 in.22
 � 7.65 3 lbm� 1ft # s22 4 �°R 31 lb� 132.2 lbm # ft�s22 4

1rV22R
p
�
316.7 lbm� 1ft2 # s2 4 2 353.3 1ft # lb2� 1lbm # °R2 4

1144 in.2�ft22 13.5 psia

p � 13.5

� 15.10 psia � constant

p �
1rV22 RT

p
� 14.3 psia � 3 13720�32.22lb�ft2 4 11 ft2�144 in.22

lb�ft2,32.22
11�1 lbm� 1ft # s22 � 3 11�32.22 1lb # s2�ft 2 4 �1ft # s22�
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COMMENT Depending on whether the flow is being heated or
cooled, it can proceed in either direction along the curve.

F I G U R E  E11.15

p T
(psia) ( ) [( ) ( )]

13.5 969 9.32
12.5 1459 202
11.5 1859 251
10.5 2168 285
9.0 2464 317
8.0 2549 330
7.6 2558 333
7.5 2558 334
7.0 2544 336
6.3 2488 338
6.0 2450 338
5.5 2369 336
5.0 2266 333
4.5 2140 328
4.0 1992 321
2.0 1175 259
1.0 633 181

lbm  �R�ft  lb�R
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(lbm•°R)

At point a on the Rayleigh line of Fig. 11.22, To determine the physical impor-
tance of point a, we analyze further some of the governing equations. By differentiating the linear
momentum equation for Rayleigh flow 1Eq. 11.1102 we obtain

or

(11.112)

Combining Eq. 11.112 with the second T ds equation 1Eq. 11.182 leads to

(11.113)

For an ideal gas 1Eq. 11.72 Thus, substituting Eq. 11.7 into Eq. 11.113 gives

or

(11.114)

Consolidation of Eqs. 11.114, 11.112 1linear momentum2, 11.1, 11.77 1differentiated equation of
state2, and 11.79 1continuity2 leads to

(11.115)

Hence, at state a where Eq. 11.115 reveals that

(11.116)

Comparison of Eqs. 11.116 and 11.36 tells us that the Mach number at state a is equal to 1,

(11.117)

At point b on the Rayleigh line of Fig. 11.22, From Eq. 11.115 we get

dT

ds
�

1

ds�dT
�

1

1cp�T2 � 1V�T2 3 1T�V2 � 1V�R2 4�1

dT�ds � 0.

Maa � 1

Va � 1RTak

ds�dT � 0,

ds

dT
�

cp

T
�

V

T
 

1

3 1T�V2 � 1V�R2 4

ds

dT
�

cp

T
�

V

T
 
dV

dT

T ds � cp dT � V dV

dȟ � cp dT.

T ds � dȟ � V dV

dp
r
� �V dV

dp � �rV dV

ds�dT � 0.

The maximum
entropy state on the
Rayleigh line corre-
sponds to sonic
conditions.



which for 1point b2 gives

(11.118)

The flow at point b is subsonic Recall that for any gas.
To learn more about Rayleigh flow, we need to consider the energy equation in addition to

the equations already used. Application of the energy equation 1Eq. 5.692 to the Rayleigh flow
through the finite control volume of Fig. 11.21 yields

01negligibly small 01flow is steady
for gas flow2 throughout2

or in differential form for Rayleigh flow through the semi-infinitesimal control volume of Fig. 11.21

(11.119)

where is the heat transfer per unit mass of fluid in the semi-infinitesimal control volume.
By using in Eq. 11.119, we obtain

(11.120)

Thus, by combining Eqs. 11.36 1ideal gas speed of sound2, 11.46 1Mach number2, 11.1 and 11.77
1ideal gas equation of state2, 11.79 1continuity2, and 11.112 1linear momentum2 with Eq. 11.120 1en-
ergy2 we get

(11.121)

With the help of Eq. 11.121, we see clearly that when the Rayleigh flow is subsonic 
fluid heating increases fluid velocity while fluid cooling decreases fluid ve-
locity. When Rayleigh flow is supersonic fluid heating decreases fluid velocity and fluid
cooling increases fluid velocity.

The second law of thermodynamics states that, based on experience, entropy increases with
heating and decreases with cooling. With this additional insight provided by the conservation of
energy principle and the second law of thermodynamics, we can say more about the Rayleigh
line in Fig. 11.22. A summary of the qualitative aspects of Rayleigh flow is outlined in Table
11.2 and Fig. 11.23. Along the upper portion of the line, which includes point b, the flow is sub-
sonic. Heating the fluid results in flow acceleration to a maximum Mach number of 1 at point
a. Note that between points b and a along the Rayleigh line, heating the fluid results in a tem-
perature decrease and cooling the fluid leads to a temperature increase. This trend is not surpris-
ing if we consider the stagnation temperature and fluid velocity changes that occur between
points a and b when the fluid is heated or cooled. Along the lower portion of the Rayleigh curve
the flow is supersonic. Rayleigh flows may or may not be choked. The amount of heating or
cooling involved determines what will happen in a specific instance. As with Fanno flows, an
abrupt deceleration from supersonic flow to subsonic flow across a normal shock wave can also
occur in Rayleigh flows.

1Ma 7 12,
1dq 6 021dq 7 02

1Ma 6 12,
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�
dq

cpT
 

1

11 � Ma22
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�
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c V
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dV
�

V 21k � 12
kRT

d
�1

dȟ � cp dT � Rk dT� 1k � 12
dq
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m
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V 2
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TAB LE 1 1 . 2
Summary of Rayleigh Flow Characteristics

Heating Cooling

Acceleration Deceleration
Deceleration AccelerationMa 7 1

Ma 6 1

Fluid temperature
reduction can ac-
company heating a
subsonic Rayleigh
flow.



To quantify Rayleigh flow behavior we need to develop appropriate forms of the governing
equations. We elect to use the state of the Rayleigh flow fluid at point a of Fig. 11.22 as the refer-
ence state. As shown earlier, the Mach number at point a is 1. Even though the Rayleigh flow be-
ing considered may not choke and state a is not achieved by the flow, this reference state is useful.

If we apply the linear momentum equation 1Eq. 11.1102 to Rayleigh flow between any up-
stream section and the section, actual or imagined, where state a is attained, we get

or

(11.122)

By substituting the ideal gas equation of state 1Eq. 11.12 into Eq. 11.122 and making use of the ideal
gas speed-of-sound equation 1Eq. 11.362 and the definition of Mach number 1Eq. 11.462, we obtain

(11.123)

This relationship is graphed in the margin for air.
From the ideal gas equation of state 1Eq. 11.12 we conclude that

(11.124)

Conservation of mass 1Eq. 11.402 with constant A gives

(11.125)

which when combined with Eqs. 11.36 1ideal gas speed of sound2 and 11.46 1Mach number defi-
nition2 gives

(11.126)

Combining Eqs. 11.124 and 11.126 leads to

(11.127)

which when combined with Eq. 11.123 gives

(11.128)
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F I G U R E  11.23 (a) Subsonic Rayleigh flow. (b) Supersonic Rayleigh flow. (c) Normal
shock in a Rayleigh flow.
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This relationship is graphed in the margin on the previous page for air.
From Eqs. 11.125, 11.126, and 11.128 we see that

(11.129)

This relationship is graphed in the margin for air.
The energy equation 1Eq. 5.692 tells us that because of the heat transfer involved in Rayleigh

flows, the stagnation temperature varies. We note that

(11.130)

We can use Eq. 11.56 1developed earlier for steady, isentropic, ideal gas flow2 to evaluate and
because these two temperature ratios, by definition of the stagnation state, involve isentropic

processes. Equation 11.128 can be used for Thus, consolidating Eqs. 11.130, 11.56, and
11.128 we obtain

(11.131)

This relationship is graphed in the margin for air.
Finally, we observe that

(11.132)

We can use Eq. 11.59 developed earlier for steady, isentropic, ideal gas flow to evaluate and
because these two pressure ratios, by definition, involve isentropic processes. Equation

11.123 can be used for Together, Eqs. 11.59, 11.123, and 11.132 give

(11.133)

This relationship is graphed in the margin for air.
Values of or and are graphed in Fig. D.3 of Appendix D

as a function of Mach number for Rayleigh flow of air The values in Fig. D.3 were calcu-
lated from Eqs. 11.123, 11.128, 11.129, 11.131, and 11.133. The usefulness of Fig. D.3 is illustrated
in Example 11.16. 

See Ref. 7 for a more advanced treatment of internal flows with heat transfer.

1k � 1.42.
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Unlike Fanno flow,
the stagnation tem-
perature in Ray-
leigh flow varies.
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GIVEN The information in Table 11.2 shows us that subsonic
Rayleigh flow accelerates when heated and decelerates when
cooled. Supersonic Rayleigh flow behaves just opposite to sub-
sonic Rayleigh flow; it decelerates when heated and accelerates
when cooled. 

Effect of Mach Number and Heating/Cooling 
for Rayleigh Flow

FIND Using Fig. D.3 for air state whether velocity,
Mach number, static temperature, stagnation temperature, static
pressure, and stagnation pressure increase or decrease as subsonic
and supersonic Rayleigh flow is 1a2 heated, 1b2 cooled.

1k � 1.42,

E XAMPLE 11.16
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Heating Cooling

Subsonic Supersonic Subsonic Supersonic

V Increase Decrease Decrease Increase
Ma Increase Decrease Decrease Increase
T Increase for Increase Decrease for Decrease

Decrease for Increase for

Increase Increase Decrease Decrease
p Decrease Increase Increase Decrease

Decrease Decrease Increase Increasep0

T0

� 1� 1
11�k � Ma11�k � Ma

11�k11�k
0 � Ma �0 � Ma �

11.5.3 Normal Shock Waves

As mentioned earlier, normal shock waves can occur in supersonic flows through converging–
diverging and constant area ducts. Past experience suggests that normal shock waves involve de-
celeration from a supersonic flow to a subsonic flow, a pressure rise, and an increase of entropy.
To develop the equations that verify this observed behavior of flows across a normal shock, we ap-
ply first principles to the flow through a control volume that completely surrounds a normal shock
wave 1see Fig. 11.242. We consider the normal shock and thus the control volume to be infinitesi-
mally thin and stationary.

For steady flow through the control volume of Fig. 11.24, the conservation of mass princi-
ple yields

(11.134)

because the flow cross-sectional area remains essentially constant within the infinitesimal thickness
of the normal shock. Note that Eq. 11.134 is identical to the continuity equation used for Fanno and
Rayleigh flows considered earlier.

The friction force acting on the contents of the infinitesimally thin control volume surround-
ing the normal shock is considered to be negligibly small. Also for ideal gas flow, the effect of
gravity is neglected. Thus, the linear momentum equation 1Eq. 5.222 describing steady gas flow
through the control volume of Fig. 11.24 is

or for an ideal gas for which 

(11.135)

Equation 11.135 is the same as the linear momentum equation for Rayleigh flow, which was de-
rived earlier 1Eq. 11.1112.

p �
1rV22RT

p
� constant

p � rRT,

p � rV 2 � constant

rV � constant

V11.7 Blast waves

Normal shock
waves are assumed
to be infinitesimally
thin discontinuities.

SOLUTION

heating and friction cause the stagnation pressure to decrease.
Since stagnation pressure loss is considered undesirable in terms
of fluid mechanical efficiency, heating a fluid flow must be ac-
complished with this loss in mind.

COMMENT Note that for a small range of Mach numbers
cooling actually results in a rise in temperature, T.

Acceleration occurs when in Fig. D.3 increases. For decel-
eration, decreases. From Fig. D.3 and Table 11.2 the follow-
ing chart can be constructed.

From the Rayleigh flow trends summarized in the table above,
we note that heating affects Rayleigh flows much like friction af-
fects Fanno flows. Heating and friction both accelerate subsonic
flows and decelerate supersonic flows. More importantly, both

V�Va

V�Va



For the control volume containing the normal shock, no shaft work is involved and the heat
transfer is assumed negligible. Thus, the energy equation 1Eq. 5.692 can be applied to steady gas
flow through the control volume of Fig. 11.24 to obtain

or, for an ideal gas, since and 

(11.136)

Equation 11.136 is identical to the energy equation for Fanno flow analyzed earlier 1Eq. 11.752.
The T ds relationship previously used for ideal gas flow 1Eq. 11.222 is valid for the 

flow through the normal shock 1Fig. 11.242 because it 1Eq. 11.222 is an ideal gas property rela-
tionship.

From the analyses in the previous paragraphs, it is apparent that the steady flow of an
ideal gas across a normal shock is governed by some of the same equations used for describ-
ing both Fanno and Rayleigh flows 1energy equation for Fanno flows and momentum equation
for Rayleigh flow2. Thus, for a given density–velocity product gas 1R, k2, and conditions
at the inlet of the normal shock the conditions downstream of the shock 1state y2
will be on both a Fanno line and a Rayleigh line that pass through the inlet state 1state x2, as is
illustrated in Fig. 11.25. To conform with common practice we designate the states upstream
and downstream of the normal shock with x and y instead of numerals 1 and 2. The Fanno and
Rayleigh lines describe more of the flow field than just in the vicinity of the normal shock when
Fanno and Rayleigh flows are actually involved 1solid lines in Figs. 11.26a and 11.26b2. Other-
wise, these lines 1dashed lines in Figs. 11.26a, 11.26b, and 11.26c2 are useful mainly as a way
to better visualize how the governing equations combine to yield a solution to the normal shock
flow problem.

The second law of thermodynamics requires that entropy must increase across a normal shock
wave. This law and sketches of the Fanno line and Rayleigh line intersections, like those of Figs.
11.25 and 11.26, persuade us to conclude that flow across a normal shock can only proceed from
supersonic to subsonic flow. Similarly, in open-channel flows 1see Chapter 102 the flow across a hy-
draulic jump proceeds from supercritical to subcritical conditions.

Since the states upstream and downstream of a normal shock wave are represented by the
supersonic and subsonic intersections of actual andZor imagined Fanno and Rayleigh lines, we
should be able to use equations developed earlier for Fanno and Rayleigh flows to quantify nor-
mal shock flow. For example, for the Rayleigh line of Fig. 11.26b

(11.137)
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b apa

px
b

1Tx, px, and sx2,
1rV2,

T �
1rV22T 2

2cp1p2�R22 � T0 � constant

p � rRTȟ � ȟ0 � cp1T � T02

ȟ �
V 2
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� ȟ0 � constant
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F I G U R E  11.24 Normal shock
control volume.

The energy equa-
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But from Eq. 11.123 for Rayleigh flow we get

(11.138)

and

(11.139)

Thus, by combining Eqs. 11.137, 11.138, and 11.139 we get

(11.140)

Equation 11.140 can also be derived starting with

and using the Fanno flow equation 1Eq. 11.1072

As might be expected, Eq. 11.140 can be obtained directly from the linear momentum equation

since 
For the Fanno flow of Fig. 11.26a,

(11.141)
Ty

Tx

� a Ty

T*
b aT*

Tx

b

rV 2�p � V 2�RT � kV 2�RTk � k Ma2.

px � rxVx
2 � py � ryVy

2

p

p*
�

1

Ma
 e 1k � 12�2

1 � 3 1k � 12�2 4Ma2 f
1�2

py

px
� a py

p*
b ap*

px
b

py

px
�

1 � kMax
2

1 � kMay
2

px

pa
�

1 � k

1 � kMax
2

py

pa
�

1 � k

1 � kMay
2

628 Chapter 11 ■ Compressible Flow

F I G U R E  11.26  (a) The normal
shock in a Fanno flow. (b) The normal shock in a
Rayleigh flow. (c) The normal shock in a friction-
less and adiabatic flow.
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From Eq. 11.101 for Fanno flow we get

(11.142)

and

(11.143)

A consolidation of Eqs. 11.141, 11.142, and 11.143 gives

(11.144)

We seek next to develop an equation that will allow us to determine the Mach number down-
stream of the normal shock, when the Mach number upstream of the normal shock, is
known. From the ideal gas equation of state 1Eq. 11.12, we can form

(11.145)

Using the continuity equation

with Eq. 11.145 we obtain

(11.146)

When combined with the Mach number definition 1Eq. 11.462 and the ideal gas speed-of-sound
equation 1Eq. 11.362, Eq. 11.146 becomes

(11.147)

Thus, Eqs. 11.147 and 11.144 lead to

(11.148)

which can be merged with Eq. 11.140 to yield

(11.149)

This relationship is graphed in the margin for air.
Thus, we can use Eq. 11.149 to calculate values of Mach number downstream of a normal

shock from a known Mach number upstream of the shock. As suggested by Fig. 11.26, to have a
normal shock we must have From Eq. 11.149 we find that 

If we combine Eqs. 11.149 and 11.140, we get

(11.150)

This relationship is graphed in the margin for air.
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This equation allows us to calculate the pressure ratio across a normal shock from a known up-
stream Mach number. Similarly, taking Eqs. 11.149 and 11.144 together we obtain

(11.151)

This relationship is graphed in the margin for air.
From the continuity equation 1Eq. 11.402, we have for flow across a normal shock

(11.152)

and from the ideal gas equation of state 1Eq. 11.12

(11.153)

Thus, by combining Eqs. 11.152, 11.153, 11.150, and 11.151, we get

(11.154)

This relationship is graphed in the margin for air.
The stagnation pressure ratio across the shock can be determined by combining

(11.155)

with Eqs. 11.59, 11.149, and 11.150 to get

(11.156)

This relationship is graphed in the margin for air.
Figure D.4 in Appendix D graphs values of downstream Mach numbers, pressure ratio,
temperature ratio, density ratio, , or velocity ratio, and stagnation pres-

sure ratio, as a function of upstream Mach number, for the steady flow across a nor-
mal shock wave of an ideal gas having a specific heat ratio These values were calculated
from Eqs. 11.149, 11.150, 11.151, 11.154, and 11.156.

Important trends associated with the steady flow of an ideal gas across a normal shock wave
can be determined by studying Fig. D.4. These trends are summarized in Table 11.3.

Examples 11.17 and 11.18 illustrate how Fig. D.4 can be used to solve fluid flow problems
involving normal shock waves.
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Variable Change Across Normal Shock Wave

Mach number Decrease
Static pressure Increase
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GIVEN Designers involved with fluid mechanics work hard at
minimizing loss of available energy in their designs. Adiabatic,
frictionless flows involve no loss in available energy. Entropy
remains constant for these idealized flows. Adiabatic flows with
friction involve available energy loss and entropy increase. Gen-
erally, larger entropy increases imply larger losses.

Stagnation Pressure Drop across a Normal ShockEXAMPLE 11.17

SOLUTION

tion pressure drop across the shock is appreciable. If a shock oc-
curs at only about 50% of the upstream stagnation
pressure is recovered.

In devices where supersonic flows occur, for example, high-
performance aircraft engine inlet ducts and high-speed wind tun-
nels, designers attempt to prevent shock formation, or if shocks
must occur, they design the flow path so that shocks are posi-
tioned where they are weak 1small Mach number2.

Of interest also is the static pressure rise that occurs across a
normal shock. These static pressure ratios, obtained from
Fig. D.4 are shown in the table for a few Mach numbers. For a de-
veloping boundary layer, any pressure rise in the flow direction is
considered as an adverse pressure gradient that can possibly cause
flow separation 1see Section 9.2.62. Thus, shock –boundary layer
interactions are of great concern to designers of high-speed flow
devices.

py�px,

Max � 2.5,
We assume that air behaves as a typical gas and use Fig.
D.4 to respond to the above-stated requirements. Since

we can construct the following table with values of 
from Fig. D.4.

COMMENT When the Mach number of the flow entering the
shock is low, say the flow across the shock is nearly
isentropic and the loss in stagnation pressure is small. However,
as shown in Fig. E11.17, at larger Mach numbers, the entropy
change across the normal shock rises dramatically and the stagna-

Max � 1.2,

p0,y�p0,x

1 �
p0,y

p0,x
�

p0,x � p0,y

p0,x

1k � 1.42

FIND For normal shocks, show that the stagnation pressure
drop 1and thus loss2 is larger for higher Mach numbers.

1.0 1.0 0
1.2 0.99 0.01
1.5 0.93 0.07
2.0 0.72 0.28
2.5 0.50 0.50
3.0 0.33 0.67
3.5 0.21 0.79
4.0 0.14 0.86
5.0 0.06 0.94

p0,xp0,y�p0,xMax

p0,x � p0,y

1.0 1.0
1.2 1.5
1.5 2.5
2.0 4.5
3.0 10
4.0 18
5.0 29

py�pxMax

0
0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

p0,x – p0,y_________ 
p0,x

Max

F I G U R E  E11.17

GIVEN A total pressure probe is inserted into a supersonic air
flow. A shock wave forms just upstream of the impact hole and
head as illustrated in Fig. E11.18. The probe measures a total
pressure of 60 psia. The stagnation temperature at the probe head
is The static pressure upstream of the shock is measured
with a wall tap to be 12 psia.

FIND Determine the Mach number and velocity of the flow.

1000 °R.

Supersonic Flow Pitot TubeE XAMPLE 11.18

Wall static pressure tap

Supersonic
flow

Stagnation
pathline

Total
pressure probe

Shock
wave

x y

F I G U R E  E11.18
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SOLUTION

The stagnation temperature downstream of the shock was mea-
sured and found to be

Since the stagnation temperature remains constant across a nor-
mal shock 1see Eq. 11.1362,

For the isentropic flow upstream of the shock, Eq. 11.56 or
Fig. D.1 can be used. For 

or

With Eq. 3 we obtain

(Ans)

COMMENT Application of the incompressible flow Pitot
tube results 1see Section 3.52 would give highly inaccurate
results because of the large pressure and density changes
involved.

 � 2220 ft�s
 � 392 1ft # lb�lbm21�2 3 132.2 lbm # ft�s22�lb 4 1�2

Vx� 1.87 2 353.3 1ft # lb2� 1lbm # °R2 4 1590 °R2 11.42

Tx � 10.592 11000 °R2 � 590 °R

Tx

T0, x

� 0.59

Max � 1.9,

T0, x � T0,y � 1000 °R

T0,y � 1000 °R

We assume that the flow along the stagnation pathline is isen-
tropic except across the shock. Also, the shock is treated as a nor-
mal shock. Thus, in terms of the data we have

(1)

where is the stagnation pressure measured by the probe, and
is the static pressure measured by the wall tap. The stagnation

pressure upstream of the shock, is not measured.
Combining Eqs. 1, 11.156, and 11.59 we obtain

(2)

which is called the Rayleigh Pitot-tube formula. Values of 
from Eq. 2 are considered important enough to be included in Fig.
D.4 for Thus, for and

we use Fig. D.4 1or Eq. 22 to ascertain that

(Ans)

To determine the flow velocity we need to know the static tem-
perature upstream of the shock, since Eqs. 11.36 and 11.46 can be
used to yield

(3)Vx � Max cx � Max 1RTxk

Max � 1.9

p0,y

px
�

60 psia

12 psia
� 5

k � 1.4k � 1.4.

p0,y�px

p0,y

px
�

5 3 1k � 12�2 4Max
26k�1k�12

5 32k� 1k � 12 4Max
2 � 3 1k � 12� 1k � 12 4 61�1k�12

p0, x,
px

p0,y

p0,y

px
� a p0,y

p0, x
b ap0, x

px
b

GIVEN Consider the converging–diverging duct of Example
11.8.

FIND Determine the ratio of back pressure to inlet stagnation
pressure, 1see Fig. 11.132, that will result in a standingpIII�p0, x

normal shock at the exit of the duct. What value of
the ratio of back pressure to inlet stagnation pressure would be
required to position the shock at Show related
temperature –entropy diagrams for these flows.

x � �0.3 m?

1x � �0.5 m2

Normal Shock in a Converging–Diverging DuctEXAMPLE 11.19

SOLUTION

Thus,

(Ans)

When the ratio of duct back pressure to inlet stagnation pressure,
is set equal to 0.36, the air will accelerate through the

converging–diverging duct to a Mach number of 2.8 at the duct
exit. The air will subsequently decelerate to a subsonic flow
across a normal shock at the duct exit. The stagnation pressure 
ratio across the normal shock, is 0.38 1Fig. D.4 forp0,y�p0,x,

pIII�p0, x,

 � 0.36 �
pIII

p0, x

py

p0, x
� a

py

px
b a px

p0, x
b � 19.02 10.042

For supersonic, isentropic flow through the nozzle to just up-
stream of the standing normal shock at the duct exit, we have
from the table of Example 11.8 at 

and

From Fig. D.4 for we obtain

py

px
� 9.0

Max � 2.8

px

p0,x
� 0.04

Max � 2.8

x � �0.5 m
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2. A considerable amount of available energy is lost
across the shock.

For a normal shock at we note from the table of
Example 11.8 that and

(1)

From Fig. D.4 for we obtain ,
and

(2)

From Fig. D.1 for we get

(3)

For the ratio of duct exit area to local area 
is, using the area equation from Example 11.8,

(4)

Using Eqs. 3 and 4 we get

A2

A*
� a

Ay

A*
b aA2

Ay
b � 11.242 11.8422 � 2.28

A2

Ay
�

0.1 � 10.522
0.1 � 10.322 � 1.842

1A2�Ay2x � �0.3 m,

Ay

A*
� 1.24

May � 0.56

p0,y

p0, x
� 0.66

May� 0.56py�px� 5.2,Max� 2.14

px

p0, x
� 0.10

Max � 2.14
x � �0.3 m,

Max � 2.8 Note that for the isentropic flow upstream of the shock,
1the actual throat area2, while for the isentropic flow down-

stream of the shock, 2.28�0.15 m2. With
we use Fig. D.1 and find and

(5)

Combining Eqs. 2 and 5 we obtain

(Ans)

When the back pressure, is set equal to 0.63 times the inlet
stagnation pressure, the normal shock will be positioned at

The corresponding T –s diagrams are shown in
Figs. E11.19a and E11.19b.

COMMENT Note that is less than the value of
this ratio for subsonic isentropic flow through the converging–
diverging duct, 1from Example 11.82 and is larger
than for duct flow with a normal shock at the exit
1see Fig. 11.132. Also the stagnation pressure ratio with the shock
at is much greater than the stagna-
tion pressure ratio, 0.38, when the shock occurs at the exit

of the duct.1x � �0.5 m2

�0.3 m, p0,y�p0, x � 0.66,x �

pIII�p0,x � 0.36,
 � 0.98p2�p0

p2�p0,x � 0.63

x � �0.3 m.
p0,x,

p2,

p2

p0, x
� a p2

p0,y
b a p0,y

p0, x
b � 10.952 10.662 � 0.63

p2

p0,y
� 0.95

Ma2 � 0.26A2�A* � 2.28
A*� A2�2.28� 0.35 m2�

0.10 m2
A* �

F I G U R E  E11.19
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T0, x = T0,y =
288 K

p0, x =
101 kPa (abs)

p0, y = 67 kPa (abs)

p2 = 64 kPa (abs)

11.6 Analogy between Compressible and Open-Channel Flows

During a first course in fluid mechanics, students rarely study both open-channel flows 1Chap-
ter 102 and compressible flows. This is unfortunate because these two kinds of flows are strik-
ingly similar in several ways. Furthermore, the analogy between open-channel and compressible
flows is useful because important two-dimensional compressible flow phenomena can be simply
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and inexpensively demonstrated with a shallow, open-channel flow field in a ripple tank or wa-
ter table.

The propagation of weak pressure pulses 1sound waves2 in a compressible flow can be
considered to be comparable to the movement of small amplitude waves on the surface of an
open-channel flow. In each case—two-dimensional compressible flow and open-channel flow—
the influence of flow velocity on wave pattern is similar. When the flow velocity is less than
the wave speed, wave fronts can move upstream of the wave source and the flow is subsonic
1compressible flow2 or subcritical 1open-channel flow2. When the flow velocity is equal to the
wave speed, wave fronts cannot move upstream of the wave source and the flow is sonic 1com-
pressible flow2 or critical 1open-channel flow2. When the flow velocity is greater than the wave
speed, the flow is supersonic 1compressible flow2 or supercritical 1open-channel flow2. Normal
shocks can occur in supersonic compressible flows. Hydraulic jumps can occur in supercritical
open-channel flows. Comparison of the characteristics of normal shocks 1Section 11.5.32 and
hydraulic jumps 1Section 10.6.12 suggests a strong resemblance and thus analogy between the
two phenomena.

For compressible flows a meaningful dimensionless variable is the Mach number, where

(11.46)

In open-channel flows, an important dimensionless variable is the Froude number, where

(11.157)

The velocity of the channel flow is the acceleration of gravity is g, and the depth of the flow
is y. Since the speed of a small amplitude wave on the surface of an open-channel flow, is 1see
Section 10.2.12

(11.158)

we conclude that

(11.159)

From Eqs. 11.46 and 11.159 we see the similarity between Mach number 1compressible flow2 and
Froude number 1open-channel flow2.

For compressible flow, the continuity equation is

(11.160)

where V is the flow velocity, is the fluid density, and A is the flow cross-sectional area. For an
open-channel flow, conservation of mass leads to

(11.161)

where is the flow velocity, and y and b are the depth and width of the open-channel flow. Com-
paring Eqs. 11.160 and 11.161 we note that if flow velocities are considered similar and flow area,
A, and channel width, b, are considered similar, then compressible flow density, is analogous to
open-channel flow depth, y.

It should be pointed out that the similarity between Mach number and Froude number is gen-
erally not exact. If compressible flow and open-channel flow velocities are considered to be sim-
ilar, then it follows that for Mach number and Froude number similarity the wave speeds c and 
must also be similar.

From the development of the equation for the speed of sound in an ideal gas 1see Eqs. 11.34
and 11.352 we have for the compressible flow

(11.162)

From Eqs. 11.162 and 11.158, we see that if y is to be similar to as suggested by comparing Eq.
11.160 and 11.161, then k should be equal to 2. Typically or 1.67, not 2. This limitationk � 1.4

r

c � 21constant2 krk�1

coc

r,

Voc

ybVoc � constant

r

rAV � constant

Fr �
Voc

coc

coc � 1gy

coc,
Voc,

Fr �
Voc

1gy

Ma �
V
c

Compressible gas
flows and open-
channel liquid
flows are strikingly
similar in several
ways.
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A brief introduction to two-dimensional compressible flow is included here for those who are in-
terested. We begin with a consideration of supersonic flow over a wall with a small change of di-
rection as sketched in Fig. 11.27.

We apply the component of the linear momentum equation 1Eq. 5.222 parallel to the Mach
wave to the flow across the Mach wave. 1See Eq. 11.39 for the definition of a Mach wave.2 The
result is that the component of velocity parallel to the Mach wave is constant across the Mach
wave. That is, Thus, from the simple velocity triangle construction indicated in Fig.
11.27, we conclude that the flow accelerates because of the change in direction of the flow. If sev-
eral changes in wall direction are involved as shown in Fig. 11.28, then the supersonic flow accel-
erates 1expands2 because of the changes in flow direction across the Mach waves 1also called
expansion waves2. Each Mach wave makes an appropriately smaller angle with the upstream wall
because of the increase in Mach number that occurs with each direction change 1see Section 11.32.
A rounded expansion corner may be considered as a series of infinitesimal changes in direction.
Conversely, even sharp corners are actually rounded when viewed on a small enough scale. Thus,
expansion fans as illustrated in Fig. 11.29 are commonly used for supersonic flow around a “sharp”
corner. If the flow across the Mach waves is considered to be isentropic, then Eq. 11.42 suggests
that the increase in flow speed is accompanied by a decrease in static pressure.

When the change in supersonic flow direction involves the change in wall orientation
sketched in Fig. 11.30, compression rather than expansion occurs. The flow decelerates and the
static pressure increases across the Mach wave. For several changes in wall direction, as indicated
in Fig. 11.31, several Mach waves occur, each at an appropriately larger angle with the upstream
wall. A rounded compression corner may be considered as a series of infinitesimal changes in

a

a

Vt1 � Vt2.

11.7 Two-Dimensional Compressible Flow

Expansion Mach wave 

p2 < p1

V2 > V1

Vt2 = Vt1 

Vn2 
p1

V1

Vn1 
Vt1

F I G U R E  11.27 Flow acceleration
across a Mach wave.

F I G U R E  11.28 Flow acceleration
across Mach waves.

Expansion Mach waves

α1 α2
α3

α4

to exactness is, however, usually not serious enough to compromise the benefits of the analogy
between compressible and open-channel flows.

F I G U R E  11.30 Flow deceleration
across a Mach wave.

Compression Mach wave 

p2 > p1

V2 < V1

Vt2 = Vt1Vn2 

p1

V1

Vn1 
Vt1

F I G U R E  11.29 Corner expansion
fan.

V2  > V1

V1

Expansion fan

Supersonic flows
accelerate across
expansion Mach
waves.
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Compression Mach waves

F I G U R E  11.31 Flow decelera-
tion across Mach waves.

Attached
oblique shock

(a) (b)

Detached
curved shock

F I G U R E  11.33 Supersonic flow over a wedge: (a) Smaller wedge angle results in
attached oblique shock. (b) Large wedge angle results in detached curved shock.

In this chapter, consideration is given to the flow of gas involving substantial changes in fluid
density caused mainly by high speeds. While the flow of liquids may most often be considered
of constant density or incompressible over a wide range of speeds, the flow of gases and vapors

11.8 Chapter Summary and Study Guide

Compression
Mach waves 

V2 < V1

V1

Oblique shock wave 

F I G U R E  11.32 Oblique shock
wave.

direction and even sharp corners are actually rounded. Mach waves or compression waves can co-
alesce to form an oblique shock wave as shown in Fig. 11.32.

The above discussion of compression waves can be usefully extended to supersonic flow im-
pinging on an object. For example, for supersonic flow incident on a wedge-shaped leading edge
1see Fig. 11.332, an attached oblique shock can form as suggested in Fig. 11.33a. For the same in-
cident Mach number but with a larger wedge angle, a detached curved shock as sketched in Fig.
11.33b can result. A detached, curved shock ahead of a blunt object 1a sphere2 is shown in the pho-
tograph at the beginning of this chapter. In Example 11.19, we considered flow along a stagnation
pathline across a detached curved shock to be identical to flow across a normal shock wave.

From this brief look at two-dimensional supersonic flow, one can easily conclude that the
extension of these concepts to flows over immersed objects and within ducts can be exciting,
especially if three-dimensional effects are considered. Reference 6 provides much more on this sub-
ject than could be included here.

V11.8 Two-
dimensional com-
pressible flow
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compressible flow
ideal gas
internal energy
enthalpy
specific heat ratio
entropy
adiabatic
isentropic
Mach number
speed of sound
stagnation pressure
subsonic
sonic
Mach wave
supersonic
Mach cone
transonic flows
hypersonic flows
converging – diverging

duct
throat
temperature – entropy

(T – s) diagram
choked flow
critical state
critical pressure ratio
normal shock wave
oblique shock wave
expansion wave
overexpanded
underexpanded
nonisentropic flow
Fanno flow
Rayleigh flow

may involve substantial fluid density changes at higher speeds. At lower speeds, gas and vapor
density changes are not appreciable and so these flows may be treated as incompressible.

Since fluid density and other fluid property changes are significant in compressible flows,
property relationships are important. An ideal gas, with well-defined fluid property relationships,
is used as an approximation of an actual gas. This profound simplification still allows useful con-
clusions to be made about compressible flows.

The Mach number is a key variable in compressible flow theory. Most easily understood as
the ratio of the local speed of flow and the speed of sound in the flowing fluid, it is a measure
of the extent to which the flow is compressible or not. It is used to define categories of com-
pressible flows which range from subsonic (Mach number less than 1) to supersonic (Mach num-
ber greater than 1). The speed of sound in a truly incompressible fluid is infinite so the Mach
numbers associated with liquid flows are generally low.

The notion of an isentropic or constant entropy flow is introduced. The most important isen-
tropic flow is one that is adiabatic (no heat transfer to or from the flowing fluid) and frictionless
(zero viscosity). This simplification, like the one associated with approximating real gases with an
ideal gas, leads to useful results including trends associated with accelerating and decelerating
flows through converging, diverging, and converging–diverging flow paths. Phenomena including
flow choking, acceleration in a diverging passage, deceleration in a converging passage, and the
achievement of supersonic flows are discussed.

Three major nonisentropic compressible flows considered in this chapter are Fanno flows,
Rayleigh flows, and flows across normal shock waves. Unusual outcomes include the conclusions
that friction can accelerate a subsonic Fanno flow, heating can result in fluid temperature reduc-
tion in a subsonic Rayleigh flow, and a flow can decelerate from supersonic flow to subsonic
flow across a very small distance. The value of temperature–entropy (T –s) diagramming of flows
to better understand them is demonstrated.

Numerous formulas describing a variety of ideal gas compressible flows are derived. These
formulas can be easily solved with computers. However, to provide the learner with a better grasp
of the details of a compressible flow process, a graphical approach, albeit approximate, is used.

The striking analogy between compressible and open-channel flows leads to a brief discus-
sion of the usefulness of a ripple tank or water table to simulate compressible flows.

Expansion and compression Mach waves associated with two-dimensional compressible
flows are introduced as is the formation of oblique shock waves from compression Mach waves.

The following checklist provides a study guide for this chapter. When your study of the entire
chapter and end-of-chapter exercises is completed you should be able to

write out the meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in italic, bold, and color
type in the text.

estimate the change in ideal gas properties in a compressible flow.

calculate Mach number value for a specific compressible flow.

estimate when a flow may be considered incompressible and when it must be considered
compressible to preserve accuracy.

estimate details of isentropic flows of an ideal gas though converging, diverging, and con-
verging–diverging passages.

estimate details of nonisentropic Fanno and Rayleigh flows and flows across normal shock
waves.

explain the analogy between compressible and open-channel flows.

Some of the important equations in this chapter are:

Ideal gas equation 
of state

(11.1)

Internal energy change (11.5)

Enthalpy (11.6) ȟ � ǔ �
p

r

 ǔ2 � ǔ1 � cv1T2 � T12

 r �
p

RT
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Enthalpy change (11.9)

Specific heat difference (11.12)

Specific heat ratio (11.13)

Specific heat at
constant pressure (11.14)

Specific heat at
constant volume

(11.15)

First Tds equation (11.16)

Second Tds equation (11.18)

Entropy change (11.21)

Entropy change (11.22)

Isentropic flow (11.25)

Speed of sound (11.34)

Speed of sound in gas (11.36)

Speed of sound in liquid (11.38)

Mach cone angle (11.39)

Mach number (11.46)

Isentropic flow (11.48)

Isentropic flow (11.49)

Isentropic flow (11.56)

Isentropic flow (11.59)

Isentropic flow (11.60)

Isentropic flow-critical 
pressure ratio (11.61)

Isentropic flow-critical
temperature ratio

(11.63) 
T*

T0

�
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k � 1
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� a 2

k � 1
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k�1k�12

 
r

r0
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Isentropic flow (11.71)

Fanno flow        (11.98)

Fanno flow (11.101)

Fanno flow (11.103)

Fanno flow (11.107)

Fanno flow (11.109)

Rayleigh flow (11.123)

Rayleigh flow (11.128)

Rayleigh flow (11.129)

Rayleigh flow
(11.131)

Rayleigh flow (11.133)

Normal shock (11.149)

Normal shock (11.150)

Normal shock (11.151)

Normal shock (11.154)

Normal shock (11.156)
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. 
(© 2009 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an 1*2 are intended to be solved with
the aid of a programmable calculator or a computer. If

the figures of Appendix D can be used to simplify a
problem solution. Problems designated with a 1†2 are “open-
ended” problems and require critical thinking in that to work
them one must make various assumptions and provide the
necessary data. There is not a unique answer to these prob-
lems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. 

Section 11.1 Ideal Gas Relationships

11.1 Distinguish between flow of an ideal gas and inviscid flow of
a fluid.

11.2 Compare the density of standard air listed in Table 1.8 with
the value of standard air calculated with the ideal gas equation of
state, and comment on what you discover.

11.3 Five pounds mass of air are heated in a closed, rigid container
from , 15 psia to . Estimate the final pressure of the air
and the entropy rise involved.

11.4 Air flows steadily between two sections in a duct. At section 112,
the temperature and pressure are 
and at section 122, the temperature and pressure are 

Calculate the (a) change in internal energy be-
tween sections 112 and 122, (b) change in enthalpy between sections
112 and 122, (c) change in density between sections 112 and 122, (d)
change in entropy between sections 112 and 122. How would you es-
timate the loss of available energy between the two sections of this
flow?

11.5 Does the entropy change during the process of Example 11.2
indicate a loss of available energy by the flowing fluid?

11.6 As demonstrated in Video V11.1, fluid density differences
in a flow may be seen with the help of a schlieren optical system.
Discuss what variables affect fluid density and the different ways
in which a variable density flow can be achieved.

11.7 Describe briefly how a schlieren optical visualization system
(Videos V11.1 and V11.4, also Fig. 11.4) works. How else might
density changes in a fluid flow be made visible to the eye?

p2 � 181 kPa1abs 2.
T2 � 180 °C,

p1 � 301 kPa1abs2,T1 � 80 °C,

500 °F80 °F

k � 1.4

11.8 Explain why the Bernoulli equation (Eq. 3.7) cannot be ac-
curately used for compressible flows.

11.9 Air at 14.7 psia and is compressed adiabatically by a
centrifugal compressor to a pressure of 100 psia. What is the min-
imum temperature rise possible? Explain.

11.10 Methane is compressed adiabatically from 100 kPa1abs2 and
to 200 kPa1abs2. What is the minimum compressor exit tem-

perature possible? Explain.

11.11 Air expands adiabatically through a turbine from a pressure
and temperature of 180 psia, to a pressure of 14.7 psia. If
the actual temperature change is 85% of the ideal temperature
change, determine the actual temperature of the expanded air and
the actual enthalpy and entropy differences across the turbine.

11.12 An expression for the value of for carbon dioxide as a
function of temperature is

where is in and T is in Compare the change
in enthalpy of carbon dioxide using the constant value of (see
Table 1.7) with the change in enthalpy of carbon dioxide using the
expression above, for equal to (a) (b) (c)

Set 

11.13 Are the flows shown in Videos V11.1 and V11.4 compress-
ible? Do they involve high-speed flow velocities? Discuss.

Section 11.2 Mach Number and Speed of Sound

11.14 Confirm the speed of sound for air at listed in Table
B.3.

11.15 From Table B.1 we can conclude that the speed of sound
in water at is . Is this value of c consistent with the
value of bulk modulus, , listed in Table 1.5?

11.16 If the observed speed of sound in steel is 5300 mZs, deter-
mine the bulk modulus of elasticity of steel in The density
of steel is nominally How does your value of for
steel compare with for water at Compare the speeds
of sound in steel, water, and air at standard atmospheric pressure
and and comment on what you observe.

11.17 Using information provided in Table C.1, develop a table
of speed of sound in as a function of elevation for U.S. stan-
dard atmosphere.

ft�s

15 °C

15.6 °C?Ev
Ev7790 kg�m3.

N�m3.

Ev
4814 ft�s60 °F

70 °F

T1 � 540 °R.3000 °R.
1000 °R,10 °R,T2 � T1

cp

°R.1ft # lb2� 1lbm # °R2cp

cp � 286 �
1.15 � 10 5

T
�

2.49 � 106

T2

cp

1600 °R

25 °C

70 °F
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11.18 Using information provided in Table C.2, develop a table
of speed of sound in as a function of elevation for U.S. stan-
dard atmosphere.

11.19 Determine the Mach number of a car moving in standard
air at a speed of (a) 25 mph, (b) 55 mph, and (c) 100 mph.

†11.20 Estimate the Mach number levels associated with space
shuttle main engine nozzle exit flows at launch (see Video V11.3).

Section 11.3 Categories of Compressible Flow

11.21 Obtain a photograph image showing visualisation of flow
phenomena caused by an object moving through a fluid at a Mach
number exceeding 1.0. Explain what is happening, and identify
zones of silence and of action.

11.22 Cite one specific and actual example each of a hypersonic
flow, a supersonic flow, a transonic flow, and a compressible sub-
sonic flow.

11.23 At a given instant of time, two pressure waves, each mov-
ing at the speed of sound, emitted by a point source moving with
constant velocity in a fluid at rest are shown in Fig. P11.23. De-
termine the Mach number involved and indicate with a sketch the
instantaneous location of the point source.

�

m�s
11.25 Sound waves are very small amplitude pressure pulses that
travel at the “speed of sound.” Do very large amplitude waves
such as a blast wave caused by an explosion (see Video V11.7)
travel less than, equal to, or greater than the speed of sound?
Explain.

11.26 How would you estimate the distance between you and an
approaching storm front involving lightning and thunder?

11.27 If a person inhales helium and then talks, his or her voice
sounds like “Donald Duck.” Explain why this happens.

11.28 If a high-performance aircraft is able to cruise at a Mach
number of 3.0 at an altitude of 80,000 ft, how fast is this in (a) mph,
(b) ftZs, (c) mZs?

11.29 At the seashore, you observe a high-speed aircraft mov-
ing overhead at an elevation of 10,000 ft. You hear the plane 
8 s after it passes directly overhead. Using a nominal air tem-
perature of estimate the Mach number and speed of the
aircraft.

11.30 Explain how you could vary the Mach number but not
the Reynolds number in air flow past a sphere. For a constant
Reynolds number of 300,000, estimate how much the drag co-
efficient will increase as the Mach number is increased from 0.3
to 1.0.

Section 11.4 Isentropic Flow of an Ideal Gas

11.31 Obtain photographsZimages of convergingZdiverging noz-
zles used to achieve supersonic flows, and briefly explain each ap-
plication.

11.32 Obtain photographsZimages of supersonic diffusers used to
decelerate supersonic flows to subsonic flows, and briefly explain
each application.

11.33 Starting with the enthalpy form of the energy equation (Eq.
5.69), show that for isentropic flows, the stagnation temperature
remains constant. Why is this important?

11.34 Explain how fluid pressure varies with cross-sectional area
change for the isentropic flow of an ideal gas when the flow is (a)
subsonic, (b) supersonic.

11.35 For any ideal gas, prove that the slope of constant pressure
lines on a temperature–entropy diagram is positive and that higher
pressure lines are above lower pressure lines. Why is this impor-
tant?

11.36 Air flows steadily and isentropically from standard
atmospheric conditions to a receiver pipe through a converging
duct. The cross-sectional area of the throat of the converging
duct is Determine the mass flowrate through the duct if
the receiver pressure is (a) 10 psia, (b) 5 psia. Sketch tempera-
ture – entropy diagrams for situations (a) and (b). Verify results
obtained with values from the appropriate graph in Appendix D
with calculations involving ideal gas equations. Is condensation
of water vapor a concern? Explain.

11.37 Determine the static pressure to stagnation pressure ratio
associated with the following motion in standard air: (a) a runner
moving at the rate of 10 mph, (b) a cyclist moving at the rate of
40 mph, (c) a car moving at the rate of 65 mph, (d) an airplane
moving at the rate of 500 mph.

11.38 The static pressure to stagnation pressure ratio at a point in
a gas flow field is measured with a Pitot-static probe as being equal
to 0.6. The stagnation temperature of the gas is Determine
the flow speed in mZs and the Mach number if the gas is air. What
error would be associated with assuming that the flow is incom-
pressible?

20 °C.

0.05 ft2.

40 °F,

10 in.

2 in.

5 in.

F I G U R E  P11.24

0.15 m

0.1 m

0.01 m

F I G U R E  P11.23

11.24 At a given instant of time, two pressure waves, each moving
at the speed of sound, emitted by a point source moving with con-
stant velocity in a fluid at rest, are shown in Fig. P11.24. Determine
the Mach number involved and indicate with a sketch the instan-
taneous location of the point source.
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11.39 The stagnation pressure and temperature of air flowing
past a probe are 120 kPa1abs2 and respectively. The air
pressure is 80 kPa1abs2. Determine the air speed and the Mach
number considering the flow to be (a) incompressible, (b) com-
pressible.

11.40 The stagnation pressure indicated by a Pitot tube mounted
on an airplane in flight is 45 kPa1abs2. If the aircraft is cruising in
standard atmosphere at an altitude of 10,000 m, determine the speed
and Mach number involved.

†11.41 Estimate the stagnation pressure level necessary at the en-
trance of a space shuttle main engine nozzle to achieve the over-
expansion condition shown in Video V11.5.

*11.42 An ideal gas enters subsonically and flows isentropically
through a choked converging–diverging duct having a circular
cross-sectional area A that varies with axial distance from the
throat, x, according to the formula

where A is in square feet and x is in feet. For this flow situation,
sketch the side view of the duct and graph the variation of Mach
number, static temperature to stagnation temperature ratio,
and static pressure to stagnation pressure ratio, through the
duct from to Also show the possible
fluid states at and using temperature –
entropy coordinates. Consider the gas as being helium 

Sketch on your pressure variation graph
the nonisentropic paths that would occur with over- and under-
expanded duct exit flows (see Video V11.6) and explain when
they will occur. When will isentropic supersonic duct exit flow
occur?

*11.43 An ideal gas enters supersonically and flows isentropi-
cally through the choked converging –diverging duct described
in Problem 11.42. Graph the variation of Ma, and 
from the entrance to the exit sections of the duct for helium

Show the possible fluid states at
and using temperature–entropy

coordinates. Sketch on your pressure variation graph the nonisen-
tropic paths that would occur with over- and underexpanded duct
exit flows (see Video V11.6) and explain when they will occur.
When will isentropic supersonic duct exit flow occur?

11.44 An ideal gas flows subsonically and isentropically through
the converging–diverging duct described in Problem 11.42. Graph
the variation of Ma, and from the entrance to the exit
sections of the duct for air. The value of is 0.6708 at 
Sketch important states on a T –s diagram.

11.45 An ideal gas is to flow isentropically from a large tank
where the air is maintained at a temperature and pressure of 
and 80 psia to standard atmospheric discharge conditions. Describe
in general terms the kind of duct involved and determine the duct
exit Mach number and velocity in ftZs if the gas is air.

11.46 An ideal gas flows isentropically through a converging–
diverging nozzle. At a section in the converging portion of the noz-
zle, and 
For section 122 in the diverging part of the nozzle, determine 
and if and the gas is air.

11.47 Upstream of the throat of an isentropic converging–
diverging nozzle at section 112, kPa1abs2,
and If the discharge flow is supersonic and the throat
area is determine the mass flowrate in kg s for the flow
of air.

�0.1 m2,
T1 � 20 °C.

V1 � 150 m�s, p1 � 100

Ma2 � 3.0T2

A2, p2,
Ma1 � 0.6.A1 � 0.1 m2, p1 � 600 kPa1abs 2, T1 � 20 °C,

59 °F

x � 0 ft.p�p0

p�p0T�T0,

�0.6 ftx � �0.6 ft, 0 ft,
1use 0.051 � Ma � 5.1932.

p�p0T�T0,

5.1932.0.051 � Ma �
1use 

�0.6 ftx � �0.6 ft, 0 ft,
x � �0.6 ft.x � �0.6 ft

p�p0,
T�T0,

A � 0.1 � x2

100 °C,
11.48 The flow blockage associated with the use of an intrusive
probe can be important. Determine the percentage increase in sec-
tion velocity corresponding to a 0.5% reduction in flow area due to
probe blockage for air flow if the section area is 
and the unblocked flow Mach numbers are (a) (b)

(c) (d)

11.49 (See Fluids in the News article titled “Rocket nozzles,” Sec-
tion 11.4.2.) Comment on the practical limits of area ratio for the
diverging portion of a converging– diverging nozzle designed to
achieve supersonic exit flow.

Section 11.5.1 Adiabatic Constant Area Duct Flow 
with Friction (Fanno Flow)

11.50 Cite an example of an actual subsonic flow of practical im-
portance that can be approximated with a Fanno flow.

11.51 An ideal gas enters [section 112] an insulated, constant cross-
sectional area duct with the following properties:

For Fanno flow, determine corresponding values of fluid tempera-
ture and entropy change for various levels of pressure and plot the
Fanno line if the gas is helium.

11.52 For Fanno flow, prove that

and in so doing show that when the flow is subsonic, friction ac-
celerates the fluid, and when the flow is supersonic, friction decel-
erates the fluid.

11.53 Standard atmospheric air 1 psia2 is
drawn steadily through a frictionless and adiabatic converging noz-
zle into an adiabatic, constant cross-sectional area duct. The duct
is 10 ft long and has an inside diameter of 0.5 ft. The average fric-
tion factor for the duct may be estimated as being equal to 0.03.
What is the maximum mass flowrate in slugsZs through the duct?
For this maximum flowrate, determine the values of static temper-
ature, static pressure, stagnation temperature, stagnation pressure,
and velocity at the inlet [section 112] and exit [section 122] of the
constant area duct. Sketch a temperature– entropy diagram for this
flow.

11.54 The upstream pressure of a Fanno flow venting to the at-
mosphere is increased until the flow chokes. What will happen to
the flowrate when the upstream pressure is further increased?

11.55 The duct in Problem 11.53 is shortened by 50%. The duct
discharge pressure is maintained at the choked flow value determined
in Problem 11.53. Determine the change in mass flowrate through
the duct associated with the 50% reduction in length. The average
friction factor remains constant at a value of 0.03.

11.56 If the same mass flowrate of air obtained in Problem 11.53
is desired through the shortened duct of Problem 11.55, determine
the back pressure, required. Assume f remains constant at a
value of 0.03.

11.57 If the average friction factor of the duct of Example 11.12
is changed to (a) 0.01 or (b) 0.03, determine the maximum mass
flowrate of air through the duct associated with each new friction

p2,

T0 � 59 °F, p0 � 14.7

dV

V
�

f k1Ma2�22 1dx�D2
1 � Ma2

 Ma1 � 0.2

 p0 � 101 kPa1abs 2
 T0 � 293 K

Ma � 30.Ma � 1.5,Ma � 0.8,
Ma � 0.2,

T0 � 20 °C,1.0 m2, 
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factor; compare with the maximum mass flowrate value of Exam-
ple 11.12.

11.58 Air flows adiabatically between two sections in a constant
area pipe. At upstream section 112, psia,
and At downstream section 122, the flow is choked. Es-
timate the magnitude of the force per unit cross-sectional area ex-
erted by the inside wall of the pipe on the fluid between sections
112 and 122.

Section 11.5.2 Frictionless Constant Area Duct Flow
with Heat Transfer (Rayleigh Flow)

11.59 Cite an example of an actual subsonic flow of practical im-
portance that may be approximated with a Rayleigh flow.

11.60 Standard atmospheric air [ kPa1abs2]
is drawn steadily through an isentropic converging nozzle into a
frictionless diabatic constant area duct. For
maximum flow, determine the values of static temperature, sta-
tic pressure, stagnation temperature, stagnation pressure, and
flow velocity at the inlet [section 112] and exit [section 122] of the
constant area duct. Sketch a temperature – entropy diagram for
this flow.

11.61 Air enters a 0.5-ft inside diameter duct with 
and What frictionless heat addition rate

in Btu s is necessary for an exit gas temperature 
Determine and also.

11.62 Air enters a length of constant area pipe with 
1abs2, and If 500  kJ kg of energy is
removed from the air by frictionless heat transfer between sections
112 and 122, determine and Sketch a temperature–entropy
diagram for the flow between sections 112 and 122.
11.63 Describe what happens to a Fanno flow when heat transfer
is allowed to occur. Is this the same as a Rayleigh flow with fric-
tion considered?

Section 11.5.3 Normal Shock Waves

11.64 Obtain a photograph image of a normal shock wave and
explain briefly the situation involved.

11.65 The Mach number and stagnation pressure of air are 2.0
and 200 kPa1abs2 just upstream of a normal shock. Estimate the
stagnation pressure loss across the shock.

11.66 The stagnation pressure ratio across a normal shock in an
air flow is 0.6. Estimate the Mach number of the flow entering the
shock.

11.67 Just upstream of a normal shock in an air flow,
and Estimate values of Ma,

and V downstream of the shock.

11.68 A total pressure probe like the one shown in Video V3.8 is
inserted into a supersonic air flow. A shock wave forms just up-
stream of the impact hole. The probe measures a total pressure of
500 kPa1abs2. The stagnation temperature at the probe head is 500 K.
The static pressure upstream of the shock is measured with a wall
tap to be 100 kPa1abs2. From these data, estimate the Mach num-
ber and velocity of the flow.

11.69 The Pitot tube on a supersonic aircraft (see Video V3.8)
cruising at an altitude of 30,000 ft senses a stagnation pressure of
12 psia. If the atmosphere is considered standard, determine the
airspeed and Mach number of the aircraft. A shock wave is pre-
sent just upstream of the probe impact hole.

T0, T, p0, p,p � 30 psia.T � 600 °R,
Ma � 3.0,

�

V2.p2, T2,

�V1 � 400 m�s.T1 � 500 K,
200 kPap1 �

Ma2p2, V2,
T2 � 1500 °F?�

V1 � 200 ft�s.T1 � 80 °F,
p1 � 20 psia,

1q � 500 kJ�kg2
p0 � 101T0 � 288 K,

Ma1 � 0.5.
T0,1 � 600 °R,p0,1 � 100

11.70 An aircraft cruises at a Mach number of 2.0 at an alti-
tude of 15 km. Inlet air is decelerated to a Mach number of 0.4
at the engine compressor inlet. A normal shock occurs in the in-
let diffuser upstream of the compressor inlet at a section where
the Mach number is 1.2. For isentropic diffusion, except across
the shock, and for standard atmosphere, determine the stagna-
tion temperature and pressure of the air entering the engine com-
pressor.

11.71 Determine, for the air flow through the frictionless and adi-
abatic converging–diverging duct of Example 11.8, the ratio of
duct exit pressure to duct inlet stagnation pressure that will result
in a standing normal shock at: (a) (b)
(c) How large is the stagnation pressure loss in each
case?

11.72 A normal shock is positioned in the diverging portion of a
frictionless, adiabatic, converging–diverging air flow duct where the
cross-sectional area is and the local Mach number is 2.0. Up-
stream of the shock, psia and If the duct
exit area is determine the exit area temperature and pressure
and the duct mass flowrate.

11.73 Supersonic air flow enters an adiabatic, constant area 1in-
side ft2 30-ft-long pipe with The pipe
friction factor is estimated to be 0.02. What ratio of pipe exit pres-
sure to pipe inlet stagnation pressure would result in a normal shock
wave standing at (a) or (b) where x is the dis-
tance downstream from the pipe entrance? Determine also the duct
exit Mach number and sketch the temperature –entropy diagram
for each situation.

11.74 Supersonic air flow enters an adiabatic, constant area pipe
1inside m2 with The pipe friction fac-
tor is 0.02. If a standing normal shock is located right at the pipe
exit, and the Mach number just upstream of the shock is 1.2, de-
termine the length of the pipe.

11.75 Air enters a frictionless, constant area duct with
and psia. The air is deceler-

ated by heating until a normal shock wave occurs where the local
Mach number is 1.5. Downstream of the normal shock, the sub-
sonic flow is accelerated with heating until it chokes at the duct
exit. Determine the static temperature and pressure, the stagnation
temperature and pressure, and the fluid velocity at the duct en-
trance, just upstream and downstream of the normal shock, and at
the duct exit. Sketch the temperature–entropy diagram for this
flow.

11.76 Air enters a frictionless, constant area duct with 
and kPa1abs2. The gas is decelerated by

heating until a normal shock occurs where the local Mach num-
ber is 1.3. Downstream of the shock, the subsonic flow is accel-
erated with heating until it exits with a Mach number of 0.9. De-
termine the static temperature and pressure, the stagnation
temperature and pressure, and the fluid velocity at the duct en-
trance, just upstream and downstream of the normal shock, and
at the duct exit. Sketch the temperature– entropy diagram for this
flow.

■ Life Long Learning Problems

11.77 Is there a limit to how fast an object can move through the
atmosphere? Explain.

11.78 Discuss the similarities between hydraulic jumps in open-
channel flow and shock waves in compressible flow. Explain how
this knowledge can be useful.

p0 � 101T0 � 20 °C,
Ma � 2.5,

p0,1 � 14.7Ma1 � 2.0, T0,1 � 59 °F,

Ma1 � 2.0.diameter � 0.1

x � 10 ft,x � 5 ft,

Ma1 � 3.0.diameter � 1

0.15 ft2,
T0 � 1200 °R.p0 � 200

0.1 ft2

x � �0.4 m.
x � �0.2 m,x � �0.1 m,



11.79 Estimate the surface temperature associated with the re-
entry of the Space Shuttle into the earth’s atmosphere. Why is
knowing this important?

11.80 [See Fluids in the News article titled “Hilsch tube (Ranque
vortex tube),” Section 11.1.] Explain why a Hilsch tube works and
cite some high and low gas temperatures actually achieved. What
is the most important limitation of a Hilsch tube and how can it be
overcome?

11.81 [See Fluids in the News article titled “Supersonic and com-
pressible flows in gas turbines,” Section 11.3.] Using typical phys-
ical dimensions and rotation speeds of manufactured gas turbine
rotors, consider the possibility that supersonic fluid velocities

relative to blade surfaces are possible. How do designers use this
knowledge?

11.82 Develop useful equations describing the constant tem-
perature 1isothermal2 flow of an ideal gas through a constant
cross section area pipe. What important practical flow situations
would these equations be useful for? How are real gas effects
estimated?

■ FE Exam Problems

Sample FE 1Fundamentals of Engineering2 exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.
com/college/munson.
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