Design, Installation and Management of Irrigation Systems....

STMA, San Antonio, 2014

Experts on the Field, Partners in the Game.

Let's talk "water"...

Why Am I Here?!

Understanding Irrigation Basic Design is the FIRST step to understanding outdoor water conservation and developing safe playing surfaces!

Irrigation System Design Workshop (1 day)

- Hydraulics
- Design Capacity
- Equipment Selection
- Precipitation Rates
- Equipment Layout / Zoning
- Pipe Sizing
- Scheduling

Irrigating High Traffic Areas

What Should I Consider for a Retro and/ or New System?

- Site specifics problems and potentials
- Location
- Water source/ water quality
- Available hydraulics
- * Equipment

Water Source & Water Quality

- Metered system
- Well & pump sand/ silt
- Reclaimed salts
- Gray biodegradable fluids
- Gravity

Competent Irrigation Design

Core Basics:

Why Do We Need to Understand These?

- Sites Specifics
- Hydraulics
- Design Capacity
- Precipitation Rates
- Equipment Selection
- ET
- IR

Where to Start?

Available Hydraulics Back to the basics...

- Pressure
- Volume
- Velocity

Irrigation Hydraulics Affect:

- Sprinkler performance
- Uniform coverage
- System cost

*Irrigation Hydraulics

#1 Biggest Variable in a System? * Pressure!!

Pressure....

The force of water, measured in PSI (pounds per square inch) or Feet of Head

Water Pressure

What are the two ways to create water pressure in a system?

- weight of water
- pump (mechanical pressurization)

Water Facts

What water weighs at 60° F:

- 1 cubic foot (ft³) = 1728 cu. in. = 62.43
 lbs
- 1 cubic inch $(in^3) = 0.0361$ lbs

1 Cubic Foot of Water

Water Pressure from 1 Foot of Water

12 in.³ x 0.0361 lbs/in.³ = 0.433 lbs

Facts to Memorize

- a column of water 1 ft. high = 0.433 psi
- a column of water 1 ft. high = 1 ft. of head
- 2.31 feet of head = 1 psi (2.31 x 0.433)

Does Container Shape Make a Difference?

0.433 psi at the bottom

Pressure in Pool vs.... Lake

Pressure on diver in pool and lake 4.33 psi (10 ft. x 0.433 psi/ft = 4.33 psi)

Pressure Change vs. Elevation

1 foot of elevation change = <u>0.433</u> psi change

Static & Dynamic Pressure

- Static Pressure: water at rest
- Dynamic Pressure: water in motion (working pressure)

Sprinkler System <u>Static</u> Pressure - <u>Gain</u>

Sprinkler System <u>Static</u> Pressure - <u>Loss</u>

High Pressure....

Low Pressure....

Determining Pressures....

Liquid filled Pitot Tube

Static pressure w/ gauge

Dynamic pressure w/ pitot tube

Pressure Gauges...

Pitot Tubes....

Water Movement in Irrigation Systems

Volume

What is Volume?

Flow. The amount of water, measured in GPM (gallons per minute) or GPH (gallons per hour)

Volume....

Different nozzles demand different flows Varying pressures cause differing flows

Flow....

Nozzle	Pressure	Radius	Flow	Precip in/hr	
	PSI	ft	GPM		
	50	52	13.0	0.46	0.53
15 💿	60	54	13.2	0.44	0.5
Grey	70	56	14.4	0.44	0.5
, i	80	57	15.5	0.46	0.5
	50	58	13.7	0.39	0.4
18 🔴	60	59	15.2	0.42	0.4
Red	70	60	16.6	0.44	0.5
	80	62	17.8	0.45	0.5
	60	63	19.1	0.46	0.5
20 🔹	70	64	20.9	0.49	0.5
Dk. Brown	80	66	22.3	0.49	0.5
	90	66	23.9	0.53	0.6
	60	65	20.4	0.46	0.5
23 🔵	70	66	22.3	0.49	0.5
Dk. Green	80	67	24.0	0.51	0.5
	90	68	25.6	0.53	0.6
	60	66	22.0	0.49	0.5
25 💿	70	68	24.0	0.50	0.5
Dk. Blue	80	69	25.9	0.52	0.6
	90	70	27.2	0.53	0.6
	70	70	28.9	0.57	0.6
28 🜒	80	72	30.9	0.57	0.6
Black	90	74	32.9	0.58	0.67
	100	76	33.7	0.56	0.65

Notes:

Precipitation rates for the ON-Opposing Nozzle model are calculated at 360 degrees.

Volume....

Flow....

Velocity

What is Velocity?

The speed at which water travels, measured in FPS (feet per second) Maximum speed: 5 fps

Factors Affecting Friction Loss in Pipe

- velocity
- inside diameter
- roughness
- length

8 gpm - 1-in. Sch 40 PVC

Roughness C=150 10 gpm - 1-in. Sch 40 PVC

10 gpm - 1-in. Sch 40 PVC

Irrigation Hydraulics...

Minimize Your Friction Losses!

It affects your Pressure!!

* Design Capacity

What comes first in designing an efficient system?

- Determine available flow
- Determine pressure available at point of connection
- Stimute pressure available for sprinkler operation
- * Estimate the number of sprinklers that can be operated on a single zone

City Water Main: Municipal water line bringing water to project **Service Line**: Connects city main to water meter **Delivery Line**: Line between water meter and POC **Point of Connection** [POC] Location where system is connected to water supply

How Much Pressure is Available for Sprinkler Operation?

Calculation of Dynamic Pressure at Design Capacity

Estimate Dynamic Pressure at Point of Connection using Design Capacity

- pressure loss in the service line
- pressure loss in the delivery line
- pressure loss in the water meter
- pressure loss in the isolation values
- pressure loss in the other system components

Determine Design Capacity

Three Factors Restricting Available Flow:

- pressure loss through the water meter
- volume through the meter
- velocity through the service line

Determine Design Capacity "<u>Rule of Three</u>"

B. Determine Design Capacity

<u>Factor</u>	<u>Restriction</u>	<u>Restriction</u>
10 Pressure loss through the water meter.	Not to exceed 10% of available psi at the source (Line 1)	GPM
11 Volume through the water meter.	Not to exceed 75% of maximum safe flow of the meter.	GPM
12 Velocity through the service line.	Velocity not to exceed 7.5 fps (Main to meter)	GPM
13 Design Capacity		GPM

GPM With

Lowest GPM of the three flows rates - lines 10, 11, and 12.

Estimating the Pressure Available at the "Worst Case" Head

- pressure changes due to the change in elevation
- 1/3 of the dynamic pressure is lost through valves, pipe and fittings
- 2/3 of the dynamic pressure remains available for sprinkler operation

Worksheet

Equipment Selection...

Equipment Selection

- What's new? What saves water and could help you sell the job?
- Check with your local Irrigation distributor & manufacturer's rep
- Obtain new product catalogues at tradeshows!
- Check with your local sales representative
- Ask your neighbor

Component Locations...

Volkswagen

Cadillac...

Design Goal:

Have all sprinklers controlled by one valve within + or – 10% of the pressure at which they were designed to operate!

 Example: 60 psi dynamic operating pressure = 54 psi to 66 psi at each sprinkler for optimum performance.

Sprinkler Placement

- type and size of the planting areas (hydrozones)
- the manufacturer's maximum spacing ratings
- the effect of wind on spacing

Sprinkler Placement Considerations

- the size of the hydrozone
- flow and pressure available for the system
- select the sprinkler pattern that provides the least overspray

What You Need to Know

- design with head-to-head coverage
- place heads in corners
- place heads around the perimeters
- place heads in the middle

Friction Loss Charts

Friction Loss Charts

- determine "friction loss" in pipe
- determine velocity
- use pressure losses and/or velocities to size pipe

Friction Loss Charts

- •A = Type of pipe
- •E = "C" factor
- •F = PSI loss/ 100'
- •G = Nominal size of pipe
- •H J = Actual sizes of pipe
- •K = Flow quantities
- •L = Velocity in FPS
- •M = PSI loss/ 100' of pipe
- •N = NO-NO Zone for Velocity

Use of Pressure Loss Charts

Figure 18 below represents a portion of one of the pressure loss charts taken from the Hunter Friction Loss Tables found in the back of this design manual.

Velocity Limit Pipe Sizing

- Maintains low velocity to reduce potential water hammer
- Maximum velocities usually:
 - PVC: 5 fps
 - Polyethylene: 6 fps
 - Copper: 7 to 7.5 fps
- If used in lateral lines can result in excessive pressure variation

Velocity Limit Pipe Sizing Maximum PVC Mainline Flow Rates*

Pipe Size and Type	Maximum Flow Rate	
	At 5 FPS	
1/2" Schedule 40 PVC	4.7 GPM	
3/4" Schedule 40 PVC	8.3 GPM	
1" Schedule 40 PVC	13.5 GPM	
1-1/4" Schedule 40 PVC	23.4 GPM	
1-1/2" Schedule 40 PVC	31.8 GPM	
2" Class 315 PVC	50.2 GPM	
2-1/2" Class 315 PVC	73.5 GPM	
3" Class 315 PVC	109 GPM	

•If other pipe types are used, maximum flow rates determined by appropriate velocity for pipe type.

Velocity Limit Pipe Sizing Maximum SDR PE Mainline Flow Rates*

Pipe Size and Type	Maximum Flow Rate At <mark>6 FPS</mark>
1/2" SDR Polyethylene	5.7 GPM
3/4" SDR Polyethylene	10.0 GPM
1" SDR Polyethylene	16.2 GPM
$1^{1/4}$ " SDR Polyethylene	28.0GPM
$1^{1/2}$ " SDR Polyethylene	38.1 GPM
2" SDR Polyethylene	62.8 GPM
1/2" SDR Polyethylene	89.6 GPM
3" SDR Polyethylene	138.4 GPM

•If other pipe types are used, maximum flow rates determined by appropriate velocity for pipe type.

Zoning of Sprinklers

- Match precipitation rates or....
- Same type sprinklers zoned together
- Understand water windows
- + or 10% rule

Mainline Sizing Single Valve vs. Multiple Valve Operation

- Residential through medium commercial projects:
 - ONLY ONE valve operates at a time.
- Large commercial projects, parks, golf courses and agricultural projects:
 - Multiple valves operate simultaneously.

Velocity Limit Sizing

Sample Problem - PVC Mainline Single Valve Operation

Typical Zone Sizing

Hunter I20 ADS #8 nozzle = 8 gpm at 50 psi
 Hunter ICV, sized appropriately
 PVC Class 200, sized appropriately

Sprinkler System Flow and psi Loss

Hunter I20 ADS #8 nozzle = 8 gpm at 60 psi

PVC Class 200, sized appropriately

What happens to friction loss? What are velocities?

Irrigation Hydraulics...

Minimize Your Friction Losses!

It affects your Pressure!!

Decoder Systems Usage and Applications

How Decoder Systems Work

The Basic Decoder

- Interprets *encoded* signal from controller
- •Acts as a relay.

Decoders come in many sizes

- 1, 2, 4, & 6-station decoders
- Two-way decoders activation confirms & reports
- Each output can be individually activated

Why Decoders?

Save Copper Wire

- Decoder Systems typically use 60% less copper wire, an expensive, non-renewable resource.
- Less Labor
- Run More Stations, Over Longer Distances (up to 15,000ft/4.5km)
- Flexibility!
 - Easy to add valves after initial installation... no spare wires or trenching.
- Troubleshooting- only 2 wires to solve.
- Lightning Resistance- fewer copper paths in-ground
- Easy to Repair.

Two-wire technology for large systems

Conserving Time and Resources

- Save wire (and labor) in large installations
- Electrically efficient: operate more stations with less power
- Expand systems after installation, without costly trenching
- Simplify large-system troubleshooting!

Decoder Wiring

How Decoder Systems Work

The single pair of wire is run from the controller through the area to be irrigated. Usually with the main pipeline.

Additional decoders are spliced in as needed.

How Decoder Systems Work

When the controller turns on a station, it sends power down the wire pair, along with the digital Station Number for the decoder.

Two-wire technology for large systems *Decoder* technology allows us to run multiple valves over a *single pair* of wires... for miles!

The power for the solenoids *and* a digital signal (for the zone we want to operate), are sent over the same 2 wires.

Where Decoder Systems Work Best

Industrial Parks

Cemeteries

Estates

Commercial Projects

Multi-Family Home projects

Sports Fields

Zoos...

- Systems with 24 valves and larger are usually the best candidates for decoder applications.
- Phased projects where it would be difficult and expensive to run wires back to a controller, or where the final number of zones is undetermined...

Decoders- the Flexible Choice for a Changing World

Decoders are only required as they are needed It is possible to start at the furthest point, with the bare minimum number of decoders... ...as phased projects build out, add decoders, when you add the valves Π Π 177

Planning Your Wire Paths

- Place a decoder by each 24VAC valve (standard solenoids)
- Max distance from controller to furthest decoder on each path:
 - Follow Manufacturer's specs.
- Max distance from decoder to solenoid, 150 ft (recommended maximum)

Planning Your Wire Paths

- Two-wire paths may be spliced!
 - Follow splice rules
 - Use pipe trenches to route wire cheapest way
- Use a different colored cable for each path.
- Max wire distance applies to each wire path- from controller to each end of each run (10k/15k ft.)

"Other Considerations"...

Local Codes...

Local Codes...

Irrigation Wires and Cables & **Electrical Code** Requirements (NEC[®] and CEC[®])

Local Codes...

Other Design Criteria

- Main line size two zones at one time
- Equipment selection
- Hydro zones
- Infields
- Synthetic surfaces

Synthetic

A Guide to Synthetic and Natural Turfgrass for Sports Fields

Selection, Construction and Maintenance Considerations

Equarts on the Field, Pertners in the Game.

Synthetic

Equipment Selection

- Check with your local Irrigation distributor
- Obtain new product catalogues at this tradeshow!
- Check with your local sales representative
- Ask your neighbor

Equipment Selection

Back to the Basics...

Key Buzzwords...(quick quiz)

Pr
Ir
Et
Kc

Precipitation Rates...(Pr)

What is a "Precipitation Rate"?

A) How fast water is applied as measured in inches per hour (in/hr)

or

B) An amount of water applied over a period of time, usually measured in inches per hour

Are all Precipitation Rates the Same?

high 1.0 in/hr and above
medium 0.5 to 1.0 in/hr
low 0.5 in/hr and below

Medium

Low....

The Sprinkler Spacing Method...

 $\mathbf{P}_{\Gamma} = \frac{34650 \text{ x GPM (for any arc)}}{\text{Degrees Arc x Head Spacing x Row Spacing}}$

The Sprinkler Spacing Method...

The Total Area Method...

$P_r = \frac{96.25 \times \text{Total GPM}}{\text{Total Area}}$

Total Area Method...

- \bigcirc 6 Half circle x 4.0 GPM = 24 GPM
- 4 Quarter circle x 2.0 GPM = $\underline{8 \text{ GPM}}$

_____Total = 48 GPM

Total Area 40 ft. x 60 ft. = 2400 sq. ft.

Full circle sprinkler - 8.0 GPM
Half circle sprinkler - 4.0 GPM
Quarter circle sprinkler - 2.0 GPM

Matched Precipitation Rates

- all the heads have similar precipitation rates
- sprinklers by themselves do not have matched precipitation rates
- matched precipitation rates can help to avoid wet and dry spots AND help save water!

Heads <u>WITHOUT</u> Matched Precipitation Rates

Matched Precipitation Rates

Match precipitation rates through scheduling the controller

Infiltration Rate - (IR)

What is an Infiltration Rate?

The rate that water moves into the soil surface, measured in in./hr (inches per hour)

Sprinkler Head Selection

When selecting sprinkler heads, it is necessary to limit their precipitation rate to the infiltration rate of the soil

	MAXIMUM PRECIPITATION RATES (inches per hour):								
SOIL TEXTURE	0 to 5% slope		5 to 8% slope		8 to 12% slope		12%+ slope		
	Cover	Bare	Cover	Bare	Cover	Bare	Cover	Bare	
Coarse sandy soils	2.00	2.00	2.00	1.50	1.50	1.00	1.00	0.50	
Coarse sandy soils over compact subsoils	1.75	1.50	1.25	1.00	1.00	0.75	0.75	0.40	
Uniform light sandy loams	1.75	1.00	1.25	0.80	1.00	0.60	0.75	0.40	
Light sandy loams over compact subsoils	1.25	0.75	1.00	0.50	0,75	0.40	0.50	0.30	
Uniform silt loams	1.00	0.50	0.80	0.40	0.60	0.30	0.40	0 20	
Silt loams over compact subsoil	0,60	0.30	0.50	0.25	0,40	0 15	0:30	0.10	
Heavy clay or clay loam	0.20	0.15	0.15	0.10	0.12	0.08	0.10	0.06	

Evapotranspiration Rate (ET)

Evapotranspiration Rate...

The rate at which water is transpired by the plant and evaporated from the soil.

What Affects ET?

Wind Humidity Temperature

*** SOLAR RADIATION**

Potential ET Rates

- Cool Humid
- Cool Dry
- Warm Humid
- Warm Dry
- Hot Humid
- Hot Dry

- 0.10 0.15
- 0.15 0.20
- 0.15 0.20
- 0.20 0.25
- 0.20 0.30
- 0.30 0.50

Crop Coefficient (Kc) or Plant Factor

Crop Coefficient...

Factor used to compensate for differences in plant usage. (% of ET)

Different Plants Have Different Needs.

Scheduling:

$T = \frac{60 \times Eto \times Kc}{PR \times EA}$

Scheduling

- EXAMPLE:
- Kc = cool season turf = .80
- ETo = .25"/ day
- **DU** = **70%**
- Soil = sandy loam
- PR = .50"/ hr.
- $T = \frac{60 \times ETo \times Kc}{PR \times DU}$ $T = \frac{60 \times .25 \times .80}{.50 \times .70}$
- $T = \frac{12.0}{.35}$ $\frac{T = 34 \text{ minutes run time}}{.35}$

How it All Comes Together in the Field

Installation Criteria

- Main line & lateral depth
- Sprinklers and quick couplers
 - Grade
 - **Boxes**
- Trenches properly backfilled and compacted
- Provide a color-coded, laminated
- * "As-Built" for controller box

Installation...

Proper Installation Heights

Proper Installation Practices...

DBRY-6

Professional Irrigation Installation

Site inspections are <u>cheap</u> insurance policies!

Efficient Irrigation Maintenance/ Management

Efficient Irrigation Maintenance/ Management...

Efficient Irrigation Maintenance/ Management

Maintenance Check-list

- Set pressures to specifications
- Adjust heads to correct grades
- No missing heads or broken sprinklers
- No interference to heads by landscape
- Annual equipment check-up
- Understand proper winterization & spring start-up techniques

Education Opportunities

Join IA | Get Certified | Find a Member | Find a Certified Professional HOME | LOGOFF | MANAGE PROFILE | CALENDAR | REGISTER | STORE | MY CART

A DECEMBER OF STREET									
ABOUT	MEMBERSHIP	EDUCATION	CERTIFICATION	EVENTS	POLICY	RESOURCES	NEWS	Search	GO

Enhance your expertise with IA and Foundation classes and education resources. Basic to advanced tools improve the performance of your team, paying off in the office and in the field.

Home > Education > Online Learning

EDUCATION

Calendar

Register

Classes

Irrigation

Learning on Demand

Training for Today's Mobile Workforce

IA's online learning center — Learning on Demand — makes continuing education easier and more affordable than ever. Learning on Demand lets you and your employees study whenever and wherever you're most focused and ready to learn.

Online Learning

Online Class Descriptions

Sponsor a Class

Education Resources

Lessons are hands-on and interactive, allowing students to assess their performance and move forward at their own pace.

- · Lesson summaries review each section.
- · Sample calculations walk though complex formulas step by step.
- · Practice problems apply learning to real-world situations.
- · A final assessment completes each course.

Earn four CEUs for each online class.

Fantastic!!

Hunter Industries is Pleased to Introduce Our New Hunter Training Website:

http://training.hunterindustries.com ≯

New product training is now available to our customers online. The product information is presented by Hunter's experienced team of Product Managers and Technical Support staff who have decades of experience in Hunter products and our industry. Training courses will assist you in gaining a better understanding of the features, benefits, and operation of Hunter and FX lighting products.

minuling the new sites field teatures. Roston, the inclusive leading multi-

The Humer Residential Controller OVEVEW Incl. des.the XC, SRG, Pto-D. X-Gno-and Battery Operated

Residental Controllers

The FX Luminaire Overview covers the features and benefits of Uptilias, PortLikes Well has Downlikes and Transfarment:

NP Rotati

The MP Rotatolis a

waithing post at Usive

régulièr. It features a uniquia

which accury totating all semi

Bulling abor in Darflard.

FX Luminaire

Rotors Overview

This course was developed to provide

the rotor products, which includes the

PGP | 20 . | 48, 80, and 90 Rotors.

you with intermation on Hundar's full

conditie you with information on

offering, which includes the MP

stream rotating nuzzle.

Humon's spray and ridzzle product

Sprays Overview

Latest Training Courses Con Friday 1914 1021 IN USAFESING STREET to the first sector es on a hd seve to e Programming capacity provide

STATISTICS.

07146-pm

de very system that actiones water concentrational

Little Retarts The Hunter Office Roberts Instraining was developed to previde you with information on the FGE. 20. J 35 and 1-40 Used Rotors.

What does it all mean?

Complexities? Simplicities? Pitfalls!

STMA...

SportSuffers association

Experts on the Field, Partners in the Game.

www.stma.org

Lynda Wightman 406.273.3073 (o) 406.544.1911 (m)

lynda.wightman@hunterindustries.com

Troubleshooting Irrigation Systems

Irrigation Troubleshooting

Minimize the need to "Troubleshoot" a System by Maintaining and Inspecting Your System on a Regular Basis!

Troubleshooting Sequence

- Confirm Water Supply
- Backflow devices
- Automatic Controller
- Field Wiring
- Valves
- Sprinkler Heads
- Pipe and Fittings

Confirm Water Supply...

- Is system pressurized?
- Is supply line connected?
- Is master valve flow control open?
- Are any manual/ isolation valves closed?

Backflow Devices...

- Is device open and operating?
- Check petcocks for debris in lines
- Check isolation values
- Consult manufacturer's instructions

<u>Electrical</u> Problems Troubleshooting Sequence

- Seek to Isolate the Problem into One of Three Areas (in this order):
- 1) Clock
- 2) Field Wiring
- 3) Solenoid

Automatic Controller...

- No Operation or Display
 - No 120V power supply
 - Blown fuse, overload or short
 - Tripped circuit breaker
 - Damaged controller

Automatic Controller...

No Program Execution

- Bad programming
- No field connection (cut, loose, disconnected wiring)
- Sensors activated
- Valve and/ or meter turned off
- No controller output power

Automatic Controller...

No Controller Output

- No power supply to field
- Blown field common line fuse (24V)
- Tripped field common line breaker (24V)
- Loose connector for field wiring
- No output operated device connected

Most Common Controller Problems

Programming Error - must have: Start Time, Run Time, Days to Water, Correct day and Time

- Total System Failure (no 120 V incoming)
- No Output to Valves (no 24 V outgoing)
- Is A Sensor (rain, wind or freeze) Active?
- Meters (Voltmeter: to check controller; Ohm meter: to check field wiring)

Field Wiring...

- Bad splices due to improper use of connectors
- Broken or nicked field wires
- Use cable fault locators to track problems
- Ohm meter for field wiring checks

Forward Solenoid Flow Valve

Forward Solenoid Flow Valve

Forward Solenoid Flow Valve

Electric Control Valves...

Valve does not close

- Damaged diaphragm
- Seats are corroded or broken
- Upper chamber filter is plugged
- Worn or damaged solenoid
- Flow control handle turned full open
- Manual bleed screw is corroded
- Valve has been disassembled in field and reassembled improperly

Electric Control Valves...

Valve does not open

- Bad solenoid
- No power to solenoid from controller
- Insufficient voltage at valve
- Flow control turned down
- Solenoid port/ path is plugged
- Flow demand to low for valve specs
- If pressure regulated, regulator could be damaged or incorrectly adjusted

Sprays Heads...

Severe misting...too much pressure

Install regulating device or turn down flow control handle on valve

Spray pattern spiking – plugged orifice

Water puddling at sprinkler

- Popup stroke too small
- . Head buried too low
- Low head drainage check valve

Vertical stream of water around riser

• Worn or damaged wiper seal; cap not on tight

Spray Heads...

High psi

Adj. psi

Leaky cap/ wiper seal

Internal psi regulator

Rotors...

Gear (ball & cam) Drives

- Non-rotation
 - Stator mechanism is blocked by debris
 - . Reversing springs misaligned
- Water leaking around riser
 - . Worn or damaged wiper seal
- Water puddling around sprinkler
 - . Head buried too low
 - . Low head drainage
- Spray distorted by adjustment screw
 - Back off screw

Rotors...

Rotors...

Gear Drives

- Too low of pressure
 - Change nozzle to smaller flow (increase run-time)
 - Open flow control handle on valve
 - Check for semi-closed isolation valves
 - Divide zone; add another valve
 - Add booster pump

Pipe and Fittings Maintenance Check-list

- Use Swing Joints on all Heads
- Solvent Cement PVC fittings
 Properly
- Clamp Poly Pipe Properly
- Proper Burial Depth for all Piping
- Thrust blocks where required
- Winterize (Blow-out) System
 Properly

Irrigation System Troubleshooting...

"The Ideal System applies water uniformly, is easy to repair and maintain and is operationally simple."