Design, Installation and Management of Irrigation Systems....

STMA, San Antonio, 2014

Let's talk "water"...

Why Am I Here?!

Understanding Irrigation Basic Design is the FIRST step to understanding outdoor water conservation and developing safe playing surfaces!

Irrigation System Design Workshop (1 day)

- Hydraulics
- Design Capacity
- Equipment Selection
- Precipitation Rates
- Equipment Layout/ Zoning
- Pipe Sizing
- Scheduling

Irrigating High Traffic Areas

What Should I Consider for a Retro and/ or New System?

* Site specifics - problems and potentials
* Location
* Water source/ water quality
*. Available hydraulics
* Equipment

Water Source \& Water Quality

* Metered system
* Well \& pump - sand/ silt
* Reclaimed - salts
* Gray - biodegradable fluids
* Gravity

Competent Irrigation Design

Core Basics:

Why Do We Need to Understand These?

* Sites Specifics
* Hydraulics
* Design Capacity
* Precipitation Rates
* Equipment Selection

* ET
* IR
* KC

Where to Start?

*Design.....

Available Hydraulics

Back to the
 basics...

- Pressure
- Volume
- Velocity

Irrigation Hydraulics

Affect:

Sprinkler performance Uniform coverage System cost

*Irrigation Hydraulics

\#1 Biggest Variable in a System? *Pressure!

Pressure.....

The force of water, measured in PSI (pounds per square inch) or Feet of Head

Water Pressure

- What are the two ways to create water pressure in a system?
- weight of water
- pump (mechanical pressurization)

Water Facts

What water weighs at $60^{\circ} \mathrm{F}$:

* 1 cubic foot $\left(\mathrm{ft}^{3}\right)=1728 \mathrm{cu}$. in. $=62.43$ 1bs
1 cubic inch $\left(\mathrm{in}^{3}\right)=0.0361 \mathrm{lbs}$

1 Cubic Foot of Water

Water Pressure from 1 Foot of Water

12 in. $^{3} \times 0.0361 \mathrm{lbs} / \mathrm{in} .^{3}=0.433 \mathrm{lbs}$

Facts to Memorize

- a column of water 1 ft . high $=0.433 \mathrm{psi}$
- a column of water 1 ft . high = 1 ft . of head
- 2.31 feet of head $=1 \mathrm{psi}(2.31 \times 0.433)$

Does Container Shape Make a Difference?

Pressure in Pool vs.... Lake

Pressure on diver in pool and lake
$4.33 \mathrm{psi}(10 \mathrm{ft} . \times 0.433 \mathrm{psi} / \mathrm{ft}=4.33 \mathrm{psi})$

Pressure Change vs. Elevation

- 1 foot of elevation change $=\underline{0.433}$ psi change

Static \& Dynamic

 Pressure* Static Pressure: water at rest * Dynamic Pressure: water in motion (working pressure)

Sprinkler System Static Pressure - Gain

Sprinkler System Static Pressure - Loss

High Pressure.....
Low Pressure....

Determining Pressures....

Liquid filled Pitot Tube

Static pressure w/ gauge

Pressure Gauges...

Pitot
Tubes....

Water Movement in Irrigation Systems

Volume

What is Volume?

Flow. The amount of

 water, measured in GPM (gallons per minute) or GPH (gallons per hour)
Volume....

* Different nozzles demand different flows * Varying pressures cause differing flows

Flow....

I-40 DUAL OPPOSING NOZZLE PERFORMANCE DATA				view nozzle	
Nozzle	Pressure	Radius	Flow	Prec	in/hr
	PSI	ft	GPM		A
15	50	52	13.0	0.46	0.53
	60	54	13.2	0.44	0.50
Grey	70	56	14.4	0.44	0.51
	80	57	15.5	0.46	0.53
18	50	58	13.7	0.39	0.45
	60	59	15.2	0.42	0.49
Red	70	60	16.6	0.44	0.51
	80	62	17.8	0.45	0.51
20	60	63	19.1	0.46	0.53
	70	64	20.9	0.49	0.57
Dk. Brown	80	66	22.3	0.49	0.57
	90	66	23.9	0.53	0.61
23	60	65	20.4	0.46	0.54
	70	66	22.3	0.49	0.57
Dk. Green	80	67	24.0	0.51	0.59
	90	68	25.6	0.53	0.62
25	60	66	22.0	0.49	0.56
	70	68	24.0	0.50	0.58
Dk. Blue	80	69	25.9	0.52	0.60
	90	70	27.2	0.53	0.62
28	70	70	28.9	0.57	0.66
	80	72	30.9	0.57	0.66
Black	90	74	32.9	0.58	0.67
	100	76	33.7	0.56	0.65

Notes:
Precipitation rates for the ON-Opposing Nozzle model are calculated at 360 degrees.

Volume....

Flow....

Velocity

What is Velocity?

The speed at which water travels, measured in FPS (feet per second) Maximum speed: 5 fps

Factors Affecting Friction Loss in Pipe

- velocity
- inside diameter
- roughness
- length

Velocity

8 gpm - 1-in. Sch 40 PVC

Roughness

Length

10 gpm - 1-in. Sch 40 PVC

10 gpm - 1-in. Sch 40 PVC

Pressure Loss $=4.80$ psi total 200 feet of pipe

Irrigation Hydraulics...

Minimize Your Friction Losses!

It affects your Pressure!!

*Design Capacity

What comes first in designing an efficient system?

* Determine available flow
* Determine pressure available at point of connection
* Estimate pressure available for sprinkler operation
* Estimate the number of sprinklers that can be operated on a single zone

Definitions:

City Water Main: Municipal water line bringing water to project
Service Line: Connects city main to water meter Delivery Line: Line between water meter and POC Point of Connection [POC] Location where system is
connected to water supply

How Much Pressure is Available for Sprinkler Operation?
Dynamic Pressure (psi) at Design Capacity (gpm) at POC (67.00 psi)... but how much pressure will be available at the Highest Head?

Design Capacity Sample Problem

Calculation of Dynamic Pressure at Design Capacity

Estimate Dynamic Pressure at Point of Connection using Design Capacity

* pressure loss in the service line
* pressure loss in the delivery line
* pressure loss in the water meter
* pressure loss in the isolation valves
* pressure loss in the other system components

Determine Design Capacity

Three Factors Restricting Available Flow:

* pressure loss through the water meter
* volume through the meter
* velocity through the service line

Determine Design Capacity "Rule of Three"

B. Determine Design Capacity

Factor	Restriction	GPM With Restriction
10 Pressure loss through the water meter.	Not to exceed 10\% of available psi at the source (Line 1)	GPM
11 Volume through the water meter.	Not to exceed 75% of maximum safe flow of the meter.	GPM
12 Velocity through the service line.	Velocity not to exceed 7.5 fps (Main to meter)	GPM
13 Design Capacity		GPM

Lowest GPM of the three flows rates - lines 10, 11, and 12.

Estimating the Pressure Available at the "Worst Case" Head

- pressure changes due to the change in elevation
- $1 / 3$ of the dynamic pressure is lost through valves, pipe and fittings
- 2/3 of the dynamic pressure remains available for sprinkler operation

Design Capacity

Worksheet

Equipment Selection...

Equipment Selection

- What's new? What saves water and could help you sell the job?
* Check with your local Irrigation distributor \& manufacturer's rep
- Obtain new product catalogues at tradeshows!
- Check with your local sales representative
- Ask your neighbor

Component Locations...

Volkswagen

Cadillac...

Design Goal:

Have all sprinklers controlled by one valve within + or - 10% of the pressure at which they were designed to operate!

- Example: 60 psi dynamic operating pressure $=54 \mathrm{psi}$ to 66 psi at each sprinkler for optimum performance.

Sprinkler Placement

- type and size of the planting areas (hydrozones)
- the manufacturer's maximum spacing ratings
- the effect of wind on spacing

Sprinkler Placement Considerations

- the size of the hydrozone
- flow and pressure available for the system
- select the sprinkler pattern that provides the least overspray

What You Need to Know

- design with head-to-head coverage
- place heads in corners
- place heads around the perimeters
- place heads in the middle

Friction Loss Charts

Use of Pressure Loss Charts

Figure 18 below represents a portion of one of the pressure loss charts taken from the Hunter Friction Loss Tables found in the back of this design manual.

Friction Loss Charts

- determine "friction loss" in pipe
- determine velocity
- use pressure losses and/or velocities to size pipe

Friction Loss Charts

- $\mathbf{A}=$ Type of pipe
-E = "C" factor
-F = PSI loss/ 100'
- $\mathbf{G}=$ Nominal size of pipe
- $\mathbf{H}-\mathbf{J}=$ Actual sizes of pipe
-K = Flow quantities
-L = Velocity in FPS
-M = PSI loss/ 100' of pipe
- N = NO-NO Zone for Velocity

Use of Pressure Loss Charts

Figure 18 below represents a portion of one of the pressure loss charts taken from the Hunter Friction Loss Tables found in the back of this design manual.

Velocity Limit Pipe Sizing

- Maintains low velocity to reduce potential water hammer
- Maximum velocities usually:
- PVC: 5 fps
- Polyethylene: 6 fps
- Copper: 7 to 7.5 fps
- If used in lateral lines can result in excessive pressure variation

Velocity Limit Pipe Sizing Maximum PVC Mainline Flow Rates*

Pipe Size and Type

1/2" Schedule 40 PVC
3/4" Schedule 40 PVC
1" Schedule 40 PVC
1-1/4" Schedule 40 PVC
1-1/2" Schedule 40 PVC
2" Class 315 PVC
2-1/2" Class 315 PVC 3" Class 315 PVC

Maximum Flow Rate At 5 FPS

$1 / 2 "$ Schedule 40 PVC	4.7 GPM
$3 / 4 "$ Schedule 40 PVC	8.3 GPM
$1 "$ Schedule 40 PVC	13.5 GPM
$1-1 / 4 "$ Schedule 40 PVC	23.4 GPM
$1-1 / 2 "$ Schedule 40 PVC	31.8 GPM
$2 "$ Class 315 PVC	50.2 GPM
$2-1 / 2 "$ Class 315 PVC	73.5 GPM
$3 "$ Class 315 PVC	109 GPM

-If other pipe types are used, maximum flow rates determined by appropriate velocity for pipe type.

Velocity Limit Pipe Sizing Maximum SDR PE Mainline Flow Rates*

Pipe Size and Type

Maximum Flow Rate At 6 FPS
5.7 GPM
3/4" SDR Polyethylene

10.0 GPM
1" SDR Polyethylene

16.2 GPM
11/4" SDR Polyethylene 28.0GPM
11/2" SDR Polyethylene 38.1 GPM
2" SDR Polyethylene 62.8 GPM
1/2" SDR Polyethylene 89.6 GPM
3" SDR Polyethylene138.4 GPM
-If other pipe types are used, maximum flow rates determinedby appropriate velocity for pipe type.

Zoning of Sprinklers

- Match precipitation rates or....
- Same type sprinklers zoned together
- Understand water windows
* + or - 10\% rule

Mainline Sizing Single Valve vs. Multiple Valve Operation

- Residential through medium commercial projects:
- ONLY ONE valve operates at a time.
- Large commercial projects, parks, golf courses and agricultural projects:
- Multiple valves operate simultaneously.

Velocity Limit Sizing

Sample Problem - PVC Mainline Single Valve Operation

Sample Problem PVC Mainline Single Valve Operation

1/2" Schedule 40 PVC	4
3/4" Schedule 40 PVC	8
1" Schedule 40 PVC	13
1-1/4" Schedule 40 PVC	23
1-1/2" Schedule 40 PVC	32
2" Class 315 PVC	50

Typical Zone Sizing

Hunter I20 ADS \#8 nozzle = 8 gpm at 50 psi
\bigoplus Hunter ICV, sized appropriately
—PVC Class 200, sized appropriately

Sprinkler System Flow and psi Loss

Hunter I20 ADS \#8 nozzle $=8 \mathrm{gpm}$ at 60 psi
PVC Class 200, sized appropriately
\bigoplus Hunter ICV, sized appropriately

What happens to friction loss? What are velocities?

$$
\begin{gathered}
\text { Irrigation } \\
\text { Hydraulics... }
\end{gathered}
$$

Minimize Your Friction Losses!

It affects your Pressure!!

Decoder Systems Usage and Applications

How Decoder Systems Work

The Basic Decoder

- Interprets encoded signal from controller
-Acts as a relay.

Decoders come in many sizes

* 1, 2, 4, \& 6-station decoders
* Two-way decoders activation confirms \& reports
* Each output can be individually activated

Why Decoders?

* Save Copper Wire
* Decoder Systems typically use 60\% less copper wire, an expensive, non-renewable resource.

Less Labor

Run More Stations, Over Longer Distances (up to $15,000 \mathrm{ft} / 4.5 \mathrm{~km}$)

Flexibility!

- Easy to add valves after initial installation... no spare wires or trenching.

Troubleshooting- only 2 wires to solve.

* Lightning Resistance- fewer copper paths in-ground

Easy to Repair.

Two-wire technology for large systems

Conserving Time and Resources

* Save wire (and labor) in large installations

* Electrically efficient: operate more stations with less power
* Expand systems after installation, without costly trenching
* Simplify large-system troubleshooting!

How Decoder Systems Work

The single pair of wire is run from the controller through the area to be irrigated. Usually with the main pipeline.

How Decoder Systems Work

When the controller turns on a station, it sends power down the wire pair, along with the digital Station Number for the decoder.

Two-wire technology for large systems Decoder technology allows us to run multiple valves over a single pair of wires... for miles!

The power for the solenoids and a digital signal (for the zone we want to operate), are sent over the same 2 wires.

Where Decoder Systems Work Best

Estates
Industrial Parks

Sports Fields
Cemeteries
Commercial Projects
Multi-Family Home projects
Zoos...

- Systems with 24 valves and larger are usually the best candidates for decoder applications.
- Phased projects where it would be difficult and expensive to run wires back to a controller, or where the final number of zones is undetermined...

Decoders- the Flexible Choice for a Changing World

* Decoders are only required as they are needed

* It is possible to start at the furthest point, with the bare minimum number of decoders...
* ...as phased projects build out, add decoders, when you add the valves

Planning Your Wire Paths

* Place a decoder by each 24VAC valve (standard solenoids)
*. Max distance from controller to furthest decoder on each path:
* Follow Manufacturer's specs.
* Max distance from decoder to solenoid, 150 ft (recommended maximum)

Planning Your Wire Paths

* Two-wire paths may be spliced!
* Follow splice rules
* Use pipe trenches to route wire cheapest way
* Use a different colored cable for each path.
* Max wire distance applies to each wire path- from controller to each end of each run (10k/15k ft.)

Design.....

"Other Considerations"...

Local Codes...

Local Codes...

Irrigation Wires and Cables
 \&
 Electrical Code Requirements (NEC^{\circledR} and CEC ${ }^{\circledR}$)

Palge

Local Codes...

American Society of Irrigation Consultants

ASIC Guideline 100-2002 (January 2, 2009) For Earth Grounding Electronic Equipment in Irrigation Systems

For the latest rev. go to http://www.asic.org/design quides. htm

American Society of Irrigation Consultants
P.0. Box 426
125. Paradise.Lane

Phone: (508) 763-814
Fax: (508) 763-8102
Website: www.asic.org
E-mail: info@asic.org

Other Design Criteria

- Main line size - two zones at one time
- Equipment selection
- Hydro zones
- Infields
- Synthetic surfaces

Synthetic

A Guide to Synthetic and Natural Turfgrass for Sports Fields

Selection, Construction and Maintenance Considerations

내NN
 mANAGERG ABSOCIATION

Synthetic

Equipment Selection

- Check with your local Irrigation distributor
- Obtain new product catalogues at this tradeshow!
- Check with your local sales representative
- Ask your neighbor

Equipment Selection

Back to the Basics...

Key Buzzwords...(quick quiz)

* Pr
* Ir
* Et
*Kc

Precipitation Rates...(Pr)

What is a "Precipitation Rate"?

A) How fast water is applied as measured in inches per hour (in/hr)
or
B) An amount of water applied over a period of time, usually measured in inches per hour

Are all Precipitation Rates the Same?

* high $\quad 1.0 \mathrm{in} / \mathrm{hr}$ and above * medium 0.5 to $1.0 \mathrm{in} / \mathrm{hr}$ * low $0.5 \mathrm{in} / \mathrm{hr}$ and below

High...

Medium

Low...

The Sprinkler Spacing

 Method...$P_{r}=\frac{34650 \times \text { GPM (for any arc) }}{=\frac{\text { Degrees Arc } \times \text { Head Spacing } \times \text { Row Spacing }}{}}$

The Sprinkler Spacing Method...

The Total Area Method...

$$
P_{r}=\frac{96.25 \times \text { Total GPM }}{\text { Total Area }}
$$

Total Area Method...

Matched Precipitation Rates

- all the heads have similar precipitation rates
- sprinklers by themselves do not have matched precipitation rates
- matched precipitation rates can help to avoid wet and dry spots AND help save water!

Heads WITHOUT Matched Precipitation Rates

Area Covered 78.5 sq. ft. - 4 GPM

Half Circle
Head

Area Covered 157 sq. ft. - 4 GPM

Area Covered 314 sq. ft. - 4 GPM

Matched Precipitation Rates

Quarter Circle Half Circle
Head

Area Covered 78.5 sq. ft. - 1 GPM

Head

Area Covered 157 sq. ft. - 2 GPM

Area Covered 314 sq. ft. - 4 GPM

Match precipitation rates through scheduling the controller

Infiltration Rate - (IR)

What is an Infiltration Rate?

The rate that water moves into the soil surface, measured in in./hr (inches per hour)

Sprinkler Head Selection

When selecting sprinkler
heads, it is necessary to limit their precipitation rate to the infiltration rate of the soil

SOILTEXTURE	MAXIMUM PRECIPITATION RATES (inches per hour):							
	0to 5\% slope		5 to 8% slope		8 to 12% slope		12\%+ slope	
	Cover	Bare	Cover	Bare	Cover	Bare	Cover	Bare
Coarse sandy soils	200	200	200	1.50	1.50	100	1.00	050
Coarse sandy soils over compact subsoils	175	1.50	125	1.00	1.00	0.75	0.75	0.40
Uniform light sandy loams	175	1.00	1.25	080	1.00	0.60	0.75	0.40
Light sandy loams over compact subsoils	125	0.75	1.00	050	0.75	040	0.50	0.30
Uniform silt loams	1.00	0.50	080	040	0.60	0.30	0.40	020
Silt loams over compact subsoil	0.60	030	0.50	0.25	040	015	0.30	0.10
Heavy clay or clay loam	0.20	0.15	0.15	0.10	0.12	008	0.10	006

Evapotranspiration Rate (ET)

Evapotranspiration Rate...

The rate at which water is transpired by the plant and evaporated from the soil.

What Affects ET?

- Wind
- Humidity
- Temperature
 *SOLAR RADIATION

Potential ET Rates

- Cool Humid
- Cool Dry
- Warm Humid
- Warm Dry
- Hot Humid
- Hot Dry
0.10-0.15
0.15-0.20
0.15-0.20
0.20-0.25
$0.20-0.30$
$0.30-0.50$

Crop Coefficient (Kc)

or

Plant Factor

Crop Coefficient...

Factor used to compensate for differences in plant usage. (\% of ET)

Different Plants

 Have Different Needs.

Scheduling:

$T=\frac{60 \times \text { Eto } \times \text { Kc }}{\text { PR } \times \text { EA }}$

Scheduling

* EXAMPLE:
- Kc = cool season turf = . 80
* ETo = .25"/ day
- DU = 70\%
- Soil = sandy loam
* PR = .50" / hr.
$* T=\frac{60 \times \text { ETo } \times \mathrm{Kc}}{\mathrm{PR} \times \mathrm{DU}} \quad \mathrm{T}=\underset{60 \times .25 \times .80}{.50 \times .70}$
* $T=\frac{12.0}{.35}$
$T=34$ minutes run time

How it All Comes Together in the Field

Installation Criteria

- Main line \& lateral depth
- Sprinklers and quick couplers
. Grade
- Boxes
- Trenches properly backfilled and compacted
- Provide a color-coded, laminated
" "As-Built" for controller box

Installation...

(XX) $\frac{1-40 \text { ROTOR HEAD }}{\text { SCALE: } 3^{\prime \prime}=1^{\prime}-0^{\prime \prime} \text { Wumlage IRRIGATION DETAIL }}$

OPTIONS:
$\square R=$ FACTORY INSTALLED RECLAIMED RUBBER COVER
$\square O N=F U L L-C I R C L E ~ D U A L ~ O P P O S I N G ~ N O Z Z L E ~$

Proper Installation Heights

Proper Installation Practices...

Professional Irrigation Installation

Site inspections are cheap insurance policies!

Efficient Irrigation Maintenance/ Management

Efficient Irrigation Maintenance/ Management...

Efficient Irrigation Maintenance/ Management

Maintenance Check-list

- Set pressures to specifications
- Adjust heads to correct grades
- No missing heads or broken sprinklers
- No interference to heads by landscape
- Annual equipment check-up
- Understand proper winterization \& spring start-up techniques

Education Opportunities

Join IA | Get Certified | Find a Member | Find a Certified Professional HOME | LOGOFF | MANAGE PROFILE | CALENDAR | REGISTER | STORE | MY CART

Home $>$ Education $>$ Oniine Learning

EDUCATION

Calendar
Register
Classes
Online Learning
Online Class
Descriptions
Sponsor a Class
Education Resources

Learning on Demand

Training for Today's Mobile Workforce

IA's online learning center - Learning on Demand - makes continuing education easier and more affordable than ever Learning on Demand lets you and your employees study whenever and wherever you're most focused and ready to learn.

Lessons are hands-on and interactive, allowing students to assess their performance and move forward at their own pace.

- Lesson summaries review each section.
- Sample calculations walk though complex formulas step by step
- Practice problems apply learning to real-world situations.
- A final assessment completes each course.

Earn four CEUs for each online class.

Hunter Industries is Pleased to Introduce Our New Hunter Training Website:

http://training.hunterindustries.com

New product training is now available to our customers online. The product information is presented by Hunter's experienced team of Product Managers and Technical Support staff who have decades of experience in Hunter products and our industry. Training courses will assist you in gaining a better understanding of the features, benefits, and operation of Hunter and FX lighting products.

the carse vas verempect 5 veribe

amasaxa Tis hiver Cra Ruce irimy

What does it all

mean?

Complexities? Simplicities? Pitfalls!

STMA...

Experts on the Field, Partners in the Game.
www.stma.org

- Lynda Wightman 406.273.3073 (o) 406.544.1911 (m)
lynda.wightman@hunterindustries.com

Troubleshooting Irrigation Systems

Irrigation Troubleshooting

Minimize the need to "Troubleshoot" a System by
Maintaining and Inspecting Your System on a Regular Basis!

Troubleshooting Sequence

- Confirm Water Supply
- Backflow devices
- Automatic Controller
- Field Wiring
- Valves
- Sprinkler Heads
- Pipe and Fittings

Confirm Water Supply...

- Is system pressurized?
- Is supply line connected?
- Is master valve flow control open?
- Are any manual/ isolation valves closed?

Backflow Devices...

- Is device open and operating?
- Check petcocks for debris in lines
- Check isolation valves
- Consult manufacturer's instructions

Electrical Problems Troubleshooting Sequence

Seek to Isolate the Problem into One of Three Areas (in this order):

1) Clock
2) Field Wiring
3) Solenoid

Automatic Controller...

- No Operation or Display
- No 120V power supply
- Blown fuse, overload or short
- Tripped circuit breaker
- Damaged controller

Automatic Controller...

- No Program Execution
- Bad programming
- No field connection (cut, loose, disconnected wiring)
- Sensors activated
- Valve and/ or meter turned off
- No controller output power

Automatic Controller...

- No Controller Output
- No power supply to field
- Blown field common line fuse (24V)
- Tripped field common line breaker (24V)
- Loose connector for field wiring
- No output operated device connected

Most Common Controller Problems

Programming Error - must have: Start Time, Run Time, Days to Water, Correct day and Time

- Total System Failure (no 120 V incoming)
- No Output to Valves (no 24 V outgoing)
- Is A Sensor (rain, wind or freeze) Active?
- Meters - (Voltmeter: to check controller;

Ohm meter: to check field wiring)

Field Wiring...

- Bad splices due to improper use of connectors
- Broken or nicked field wires
- Use cable fault locators to track problems
- Ohm meter for field wiring checks

Electric Control Valves...

Forward Solenoid Flow Valve

Forward Solenoid Flow Valve

Forward Solenoid Flow Valve

Electric Control Valves...

- Valve does not close
- Damaged diaphragm
- Seats are corroded or broken
- Upper chamber filter is plugged
* Worn or damaged solenoid
- Flow control handle turned full open
- Manual bleed screw is corroded
- Valve has been disassembled in field and reassembled improperly

Electric Control Valves...

- Valve does not open
- Bad solenoid
- No power to solenoid from controller
- Insufficient voltage at valve
- Flow control turned down
- Solenoid port/ path is plugged
- Flow demand to low for valve specs
- If pressure regulated, regulator could be damaged or incorrectly adjusted

Sprays Heads...

- Severe misting...too much pressure
- Install regulating device or turn down flow control handle on valve
- Spray pattern spiking - plugged orifice
- Water puddling at sprinkler
- Popup stroke too small
- Head buried too low
- Low head drainage - check valve
- Vertical stream of water around riser
- Worn or damaged wiper seal; cap not on tight

Spray Heads...

Leaky cap/ wiper seal

Internal psi regulator

Rotors...

- Gear (ball \& cam) Drives
- Non-rotation
- Stator mechanism is blocked by debris
- Reversing springs misaligned
* Water leaking around riser
- Worn or damaged wiper seal
- Water puddling around sprinkler
- Head buried too low
- Low head drainage
- Spray distorted by adjustment screw
- Back off screw

Rotors...

Rotors...

- Gear Drives
- Too low of pressure
- Change nozzle to smaller flow (increase run-time)
- Open flow control handle on valve
- Check for semi-closed isolation valves
- Divide zone; add another valve
- Add booster pump

Pipe and Fittings Maintenance Check-list

- Use Swing Joints on all Heads
- Solvent Cement PVC fittings Properly
- Clamp Poly Pipe Properly
- Proper Burial Depth for all Piping
- Thrust blocks where required
- Winterize (Blow-out) System Properly

Irrigation System Troubleshooting...

"The Ideal System applies water uniformly, is easy to repair and maintain and is operationally simple."

