

مؤسسة التدريب المهني مديرية البرامج والاختبارات ومصادر التعلم

سلسلة الوحدات التدريبية المبنية على الكفايات المهنية

كهروميكانيك مركبات هجينة الوحدة: صيانة المحركات الكهربائية في المركبات الهجينة (Maintenance of HV Electric Motors)

يعتبر الأردن من بين أكثر الدول التي تعاني نقصاً في موارد الطاقة مما يحتمّ على المسؤولين البحث عن مصادر بديلة للطاقة التقليدية وتوفير الوسائل المناسبة للحد من إستهلاكها. وأحد هذه الوسائل يكمن في إستخدام المركبات الهجينة وفي التشجيع على إستخدامها كبديل للمركبات التقليدية. ونتيجة للإستخدام المتزايد للمركبات الهجينة بادر مشروع تطوير القوى العاملة الممول من الوكالة الدمريكية للتنمية الدولية ومشروع ليدرز الممول من صندوق الائتماني الأوربي "مدد" بالتعاون مع مؤسسة التدريب المهني والمختصين ومزودي التدريب في القطاع الخاص ووكالات صيانة المركبات بتطوير مادة صيانة المركبات الهجينة ووضع برامج تعليمية وتدريبية لتأهيل كوادر فنية متخصصة في خدمة وإصلاح هذا النوع من المركبات ورفع كفاءة العاملين في هذا القطاع وتوفير فرص عمل جديدة لرفد مراكز إصلاح المركبات الهجينة وتطويرها.

المملكة الأردنية الهاشمية رقم الأيداع لدى دائرة المكتبة الوطنية (3646 / 7 / 2017) يتحمل المؤلف كامل المسؤولية القانونية عن محتوى مصنفه ولا يعبر هذا المصنف عن رأي دائرة المكتبة الوطنية

سلسلة الوحدات التدريبية المبنية على أساس الكفايات المهنية

المهنة: كهروميكانيك المركبات الهجينة الوحدة: صيانة المحركات الكهربائية في المركبات الهجينة (Maintenance of HV Electric Motors)

> إعــداد: م. سفيان توفيق أحمد السعيد

لا يجوز استنساخ أيِّ جزء من هذه النشـرة، أو تخزينهـا على نظام اســترجاعي، أو تحويلهــا إلى أيِّ شكل أو وسيلة سواء كانت إلكترونيــة، أو تصويريـــة، أو تســجيلها، أو أيِّ أســلوب أخرى دون الحصــول على إذن خطــي مســبق من مؤسســة التدريب المهنــي ومشــروع تطوير القوى العاملة في الأردن المُمول من الوكالة الأمريكية للتنمية الدولية.

ولقد بذل الناشــرون كافة الجهــود الممكنــة للاعتــــراف لأصحــاب حقــوق النشــر والإشارة إليهم، وفي حال تم إغفال أيٍّ منهم سيتم إجراء الترتيبات اللازمة لحفظ حقوق النشر لهم.

ونرحب بأيِّ معلومات من شــأنها أنْ تمكننــا من تصحيــح أيِّ حقــوق ملكيــة غير دقيقــة أو محذوفة في طبعة لاحقة.

ويُفترضُ عدم تحمل أيِّ مسؤولية حول المعلومات الواردة في هذه النشـرة، وتم النشـر من قِبَلِ مؤسســة التدريب المهني وبدعم من مشروع تطوير القوى العاملة في الأردن المُمول من الوكالة الأمريكية للتنمية الدولية، حيث تم العمل على تطوير الكفايات المهنية وإعتمادها بالتعاون مع مشروع ليدرز الممول من الصندوق الائتماني الأوربي "مدد".

تعتبر هذه الوحدة نسخة تجريبية قابلة للتعديل بعد مرورها على الميـدان لمدة دورة تدريبية كاملة على أن يتم تزويد مديرية البرامج والإختبارات بالتغذية الراجعة.

@مؤسسة التدريب المهنى (١٧) م.

قررت مؤسســة التدريــب المهني تطبيق هذه الوحــدة التدريبية بموجب قرار لجنــة الاعتماد الفنية رقم (٢.١٧/١٥) تاريخ ٢.١٧/٥/٤ بدءاً من العام الدراسي ٢.١٨-٢.١٠.

الإشراف العام:

مديرية البرامج والاختبارات ومصادر التعلم مشروع تطوير القوى العاملة في الأردن الممول من الوكالة الأمريكية للتنمية الدولية (USAID)

التدقيق والاشراف الفنى:

د. محمود عبدالله الديسي، م. أحمد عثمان عقل

لجنة الاعتماد الفنية:

المدير العام: م.هانى خليفات (رئيساً)

م. إبراهيم أحمد الطراونة

م. أحمد مصطفى عبدالله

م. داود محمود شقبوعة

م. عبدالله محمود الهور

م. "محمد خير" ارشيد

م. على حابس البدارين

د.محمود عبدالله الديسى (مقرراً)

التحرير اللغوى: جمال ذيب طه

التصميم: مشروع تطوير القوى العاملة في الأردن الممول من الوكالة الأمريكية للتنمية الدولية (USAID)

تدقيق الطباعة ومراجعتها: جمال ذيب، م. عصام الشامى، نور زعبلاوى.

الطبعة التجريبية الأولى (١٧ . ٢)م

فهرس المحتويات

رقم الصفحة:	الموضوع:	
	• دليل الوحدة	
V	۱. المقدمة	
V	٢. المتطلبات المسبقة	
V	٣. نتاجات التعلم	
٨	٤. أهداف التعلم	
٨	ه. الزمن المقترح	
٨	٦. أدلة التقييم الذاتي	
	هدف التعلم الأول:	
٩	١. المحركات الكهربائية في المركبات الهجينة	
٩	١-١ مبدأ عمل المحرك الكهربائي	
1 7	١-٦ تصنيف المحركات الكهربائية	
١٣	١-٣ مكونات المحرك الكهربائي الرئيسة	
lo	١-٤ استخدام المحركات الكهربائية في المركبات الهجينة	
۲.	١-ه التحكم بعمل المحركات الكهربائية في المركبات الهجينة	
۲۳	١-١ أوضاع عمل المحركات الكهربائية في المركبات الهجينة	
37	١-٧ تشخيص أعطال المحركات الكهربائية	
۲Λ	١-٨ فحص التسرب الكهربائي بوساطة جهاز الميجر	
۳۱	١-٩ التقييم الذاتي	
٣٣	١١ التمرين العملي	
	هدف التعلم الثاني:	
٤١	٢. صيانة المحركات الكهربائية في المركبات الهجينة	
بنة ا٤	١-٢ متطلبات الأمان في صيانة المحركات الكهربائية في المركبات الهجر	
٤٦	۲-۲ التقییم الذاتی	
٤٧	۲-۳ التمرين العملي	

۷. اختبار المعرفة	00
٨. اختبار الأداء	٥٨
٩. قائمة المصطلحات	11
. ١. قائمة المراجع	7.

ا. المقدمة:

حرصاً على ربط العلم بالعمل والنظرية بالتطبيق، اتجهت مؤسسة التدريب المهني نحو استخدام الكفايات المهنية في التدريب؛ وذلك لإكساب المتدربين المهارات العملية والمعلومات النظرية؛ إذ يتيح استخدامها مرونة التكيف مع المتغيرات المهنية التي تطرأ على ميدان العمل المهني ويوفر للمتدربين مجال التعلم والتدريب الذاتي والتقدم فيه بحسب قدراتهم. وقامت مؤسسة التدريب المهني حتى الآن بإعداد وحدات تدريبية على أساس الكفايات المهنية في مجال الصناعة والخدمات.

تقدم هذه الوحدة التدريبية/التعلمية القائمة على أساس الكفايات المهنية المادة التعلمية التدريبية اللازمة لاكتساب الكفاية بجوانبها الأدائية والمعرفية والاتجاهية المتعلقة بصيانة المحركات الكهربائية في المركبات الهجينة وفق معايير الكفايات المهنية الأردنية لعمل كهروميكانيك مركبات هجينة حيث تتضمن هذه الوحدة المادة التعلمية النظرية مدعمة بالرسومات التوضيحية كما تتضمن التمارين الأدائية المطلوبة، بالإضافة إلى أدلة التقييم الذاتية في المجالات الأدائية والمعرفية والاتجاهية.

// ٦. المتطلبات المسبقة:

قبل الشروع في دراسة هذه الوحدة يتطلب منك اجتياز الوحدات التدريبية التالية بنجاح:

- قياس الكميات الكهربائية.
- صيانة نظام نقل وتوزيع القدرة في المركبات الهجينة.
- صيانة بطارية الفولطية العالية فى المركبات الهجينة.

٣. نتاجات التعلم:

بعد الانتهاء من دراسة هذه الوحدة والتفاعل مع أنشطتها وخبراتها يتوقع منك أن تصبح قادراً على صيانة المحركات الكهربائية في المركبات الهجينة.

▮ ٤. أهداف التعلم:

بعد إتمام هذه الوحدة يجب أن تصبح قادراً على أن:

- تشخص أعطال المحركات الكهربائية في المركبات الهجينة.
 - تصون المحركات الكهربائية في المركبات الهجينة.

📗 ه. الزمن المقترح:

الفترة الزمنية المقترحة لتنفيذ أنشطة وتمارين هذه الوحدة هي ٤٥ ساعة تدريبية موزعة كما يلى:

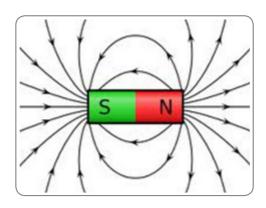
- دروس نظریة: ۸ ساعات.
- تنفيذ التمارين العملية: ٤٢ ساعة.
 - الدختبار النظرى: ساعة واحدة.
 - الاختبار العملى: ٣ ساعات.
 - التدريب الميداني: ١٥ يوم.

// 1. أدلة التقييم الذاتي

أجب عن أسئلة التقويم الذاتي المتوفرة في نهاية المادة النظرية المطلوبة لهذه الوحدة التدريبية القائمة على أساس الكفايات ثم اعرض إجاباتك على مدربك لتدقيقها، مما سيساعدك على مراجعة موضوعات الوحدة واستيعابها.

هدف التعلم الأول

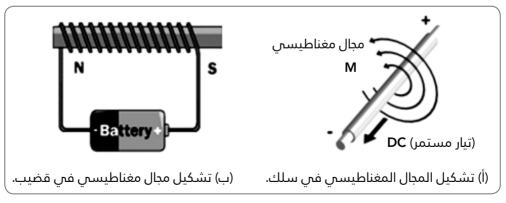
عند الانتهاء من تنفيذك أنشطة التعلم عليك أن تصبح قادراً على أن تشخص أعطال المحركات الكهربائية في المركبة الهجينة.


أنشطة التعلم	استعن بما يلي:
١. قراءة المادة التعلمية.	الوحدة التدريبية.
٢. تنفيذ التمارين العملية.	المشغل/بإشراف المدرب.
٣. زيارة المواقع الإلكترونية.	الشبكة العنكبوتية.
٤. التدريب الميداني.	ورش ومراكز صيانة المركبات الهجينة.

١. المحركات الكهربائية في المركبات الهجينة

تحتوي معظم المركبات الهجينة على اثنين من المحركات/المولدات الكهربائية، يستخدم أحدهما في المقام الأول كمولد للطاقة الكهربائية، بينما يعمل الآخر كمحرك جر، في توفير القوى لدفع المركبة عند الحاجة أثناء القيادة.

١-١ مبدأ عمل المحرك الكهربائي


قد يكون من المفيد أن تتعرف ماهية المغناطيس الدائم، فالمغناطيس الدائم المصنوع من المعادن الأرضية النادرة، هو المغناطيس الذي يحافظ على استمرارية المجال المغناطيسي والمجال المغناطيسي هو المنطقة المحيطة بالمغناطيس التي تظهر فيها آثار القوى المغناطيسية كما في الشكل (١) وحيث أن المجال المغناطيسي هو أحد صور الطاقة، لذا تستخدم المغانط في محركات ومولدات التيار الكهربائي فبدون مصدر لإنتاج المجال المغناطيسي فلن تحصل أبداً على القدرة الكهربائية منها.

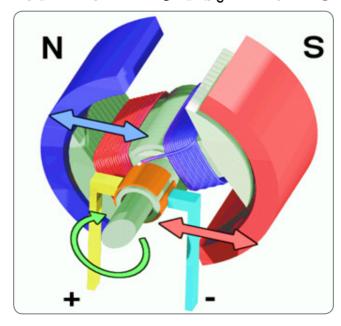
الشكل (١): مجال مغناطيسي.

ويسمى المجال المغناطيسي أحياناً بالحث المغناطيسي (Magnetic Field) وهي قوة مغناطيسية تنشأ في الحيز المحيط بالجسم المغناطيسي أو الموصل الذي يمر به تيار كهربائي، أو بتعبير أبسط يمكن وصفها بأنها المنطقة المحيطة بالمغناطيس ويظهر فيها أثره ويمكنك مشاهدة توزيع المجال المغناطيسي بنثر برادة الحديد على ورقة موضوعة على قضيب مغناطيسي أو ورقة يمر خلالها سلك يمر به تيار كهربائي حيث خطوط المجال المغناطيسي الداخلية المخال المغناطيسي الداخلية من الشمال إلى الجنوب وخطوط المجال المغناطيسي الداخلية من الشمال.

ويمكنك إنشاء مجال مغناطيسي بتمرير تيار كهربائي بسلك ما، حيث تتشكل دوائر مغناطيسية حول السلك ومركزها السلك نفسه كما في الشكل (٢). حيث أن التيار الكهربائي يولّد مجالاً مغناطيسياً والعكس صحيح. فمن المعروف أنه إذا ما تم تعليق قضيب مغناطيسي بين طرفي المغناطيس على شكل حذوة الحصان، فإنه سيدور حتى يصبح قطبه الشمالي في مقابل القطب الجنوبي للمغناطيس والقطب الجنوبي مقابل القطب الشمالي للمغناطيس.

الشكل (٢): المجال المغناطيسي.

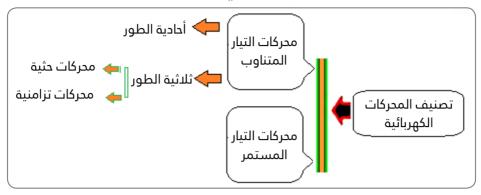
• تذكير: الأقطاب المغناطيسية المتشابهة تتنافر والمختلفة تتجاذب.


وإذا مر تيار كهربائي في سلك يتولد حول هذا السلك مجالاً مغناطيسياً تتناسب شدته طرداً مع شدة التيار المار فيه وإذا تم لف سلك على قضيب معدني وتم وصل طرفي السلك ببطارية فإنه سوف يتشكل على طرفي القضيب مجال مغناطيسي له قطب شمالي وقطب آخر جنوبي وإذا مر تيار في ملف على شكل مستطيل متقاطع مع مجال مغناطيسي، فإن الملف يتأثر بعزم مزدوج يعمل على دورانه حول محوره.

• **ملاحظة:** أثبتت التجارب أن أيّ سلك يسري فيه تيار الكهربائي يتولد حوله مجال مغناطيسي ويسمّى السلك في هذه الحال مغناطيس كهربائي.

مما سبق فإن عمل المحركات الكهربائية يرتكز على ثلاثة مبادئ رئيسة، هي:

- توليد المجال المغناطيسي.
- تحديد موقع الأقطاب المغناطيسية.
- تجاذب وتنافر الأقطاب المغناطيسية.


ويتكون المحرك الكهربائي البسيط من موصل كهربائي دوار، موضوع بين قطبين شمالي وجنوبي لمغناطيس ثابت يعرف باسم بنية المجال (عضو ثابت) كما في الشكل (٣)، يقوم بتوليد مجال مغناطيسي داخل المحرك وتتكون بنية المجال في محرك التيار المباشر البسيط من مغناطيس دائم يسمى مغناطيس المجال. وفي بعض المحركات الأكبر حجماً والأكثر تعقيدا تتركب بنية المجال من أكثر من مغناطيس كهربائي يتغذى بالكهرباء عن طريق مصدر خارجي. وتسمى مثل هذه المغانط الكهربائية ملفات المجال. وهناك أيضًا المبدِّل الذي يعدِّ جزءاً ضرورياً في كثير من المحركات الكهربائية وخاصة محركات التيار المباشر.

الشكل (٣): المحرك البسيط.

٢-١ تصنيف المحركات الكهربائية

تصنف المحركات الكهربائية بشكل عام كما يأتي:

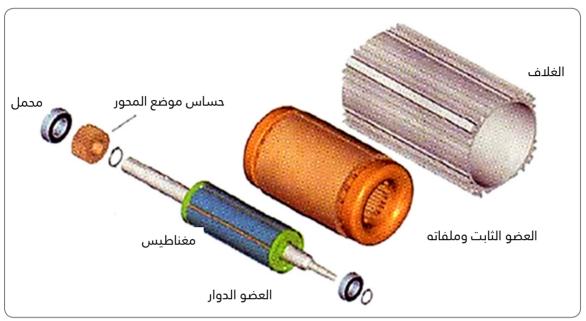
وتصنف المحركات الكهربائية من حيث التيار الكهربائي في نوعين، هما:

- محركات التيار المباشر (DC–Motors).
- محركات التيار المتناوب (AC-Motors).
- أ- محرك التيار المباشر: هناك ثلاثة أنواع رئيسة من محركات التيار المباشر وهي: محركات التوالي ومحركات التوازي والمحركات المُركبة. والاختلاف الرئيس فيما بينها هو في ترتيب الدارة الكهربائية بين العضو الدوار والعضو الثابت (بنية المجال) فيها.
- محركات التوالي: يتصل كل من العضو الدوار ومغناطيس المجال كهربائياً على التوالي. ويسري التيار خلال مغناطيس المجال ثم العضو الدوار. وعندما يسري التيار خلال البنية بهذا الترتيب يزيد من قوة المغانط. وتبدأ محركات التوالي العمل سريعاً حتى وإن كانت تعمل على حمل ثقيل.
- محركات التوازي: يوصل كل من المغناطيس والعضو الدوار على التوازي. ويسري جزء
 من التيار خلال المغناطيس، بينما يسري الجزء الآخر خلال بنية المجال. ويلف سلك
 رفيع حول مغناطيس المجال عدة مرات من أجل زيادة المغناطيسية. وتعتمد قوة
 التيار ودرجة المغناطيسية، على مقاومة السلك بدلاً من حمل المحرك. ويعمل محرك
 التوازى بسرعة ثابتة بغض النظر عن الحمل.
- المحرك المركب: للمحرك المركب مجالان مغناطيسيان متصلان بالعضو الدوار، أحدهما على التوالي والآخر على التوازي. وللمحركات المركبة مميزات كل من محرك التوالي ومحرك التوازي، إذ يسهل بدء تشغيلها مع حمل كبير وتحافظ على سرعة ثابتة نسباً حتى ولو زاد الحمل فحأة.
- ب- محركات التيار المتناوب: تستقبل معظم محركات التيار المتناوب (AC-Motors) القدرة

من مصادر كهربائية ويسمى الموصل الدوار فيها عادة بالعضو الدوار. أما الجزء الثابت الذي يشتمل على مغناطيس المجال وملفات المجال فيشار له أحيانًا باسم العضو الساكن. ومحركات التيار المتناوب سهلة الصنع ومريحة في الاستعمال ولا تحتاج إلى مبدلات ويعمل معظمها على الشبكة العمومية المستخدمة في المنازل. ومن أنواع محركات التيار المتناوب الشائعة الاستخدام المحركات الحثية والمحركات المتزامنة ويتكون العضو الدوار في المحرك الحثي من قلب من الحديد أسطواني الشكل به فتحات في جانبه الطولي. وتثبت قضبان من النحاس في هذه الفتحات وتُربط بحلقة نحاسية سميكة في كل طرف. ولا يتصل العضو الدوّار مباشرة بمصدر الكهرباء الخارجي. أما المحركات المتزامنة فتستخدم في الحالات التي تتطلب قدرات عالية وإقلاعاً متكرراً.

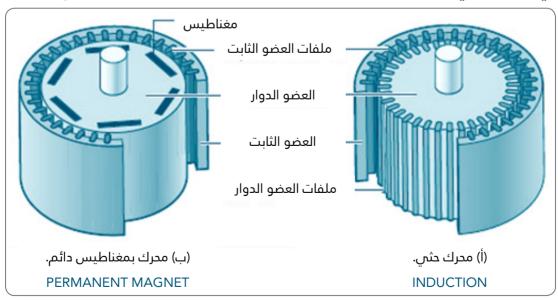
وتستخدم المحركات ذات التيار المتناوب في الوقت الحاضر في مختلف أنواع المركبات الهجينة وتوجد في أنواع مختلفة منها ما هو مبين في الشكل (٤) وهي:

- المحركات الحثية (Induction Motors).
- المحركات التزامنية (Switched Reluctance Motors).
- المحركات المزودة بمغناطيس دائم (Permanent Magnet Motors).


الشكل (٤): أنواع من المحركات الكهربائية.

١-٣ مكونات المحرك الكهربائي الرئيسة

يتكون المحرك الكهربائي من الأجزاء الأساسية التالية المبينة في الشكل (٥):

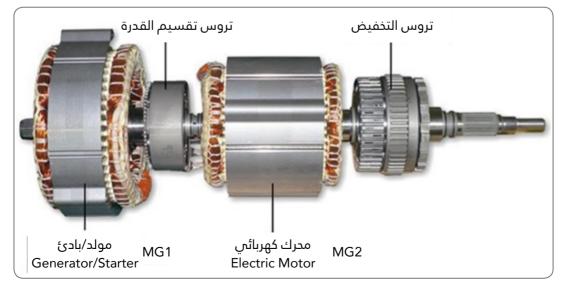

أ - العضو الثابت (بنية المجال): ويتكون من صفائح فولاذية معزولة عن بعضها، مزودة بملفات خاصة وظيفتها توليد مجال مغناطيسي بين قطبي المغناطيس داخل المحرك والعضو الثابت في محركات التيار المباشر البسيطة هو مغناطيس دائم (مغناطيس المجال) وفي المحركات الذكبر حجماً والأكثر تعقيداً يتكون من أكثر من مغناطيس.

ب- العضو الدوار (Rotor): وهو ملف أسطواني أو عدة ملفات تشكل مغناطيساً كهربائياً عند مرور التيار الكهربائي فيها وتدور بين قطبي مغناطيس، حيث ينجذب قطبها الشمالي مع القطب الجنوبي للعضو الثابت وقطبها الجنوبي مع الشمالي وعند عكس اتجاه التيار يصبح قطب العضو الدوار الشمالي جنوبياً، فيحدث تنافر بين الأقطاب، ليتحرك العضو الدوار نصف دورة وهكذا.

الشكل (٥): مكونات المحرك الكهربائس.

ويبين الشكل (٦/أ) مكونات المحرك الكهربائية الحثية والشكل (٦/ب) مكونات المحرك دائم المغناطسية (Permanent Magnet Motor) المستخدمة في المركبات الهجينة، التي تعتمد في عملها على وجود عدة مجالات مغناطيسية متعامدة مع بعضها بعضاً.

الشكل (٦): مكونات المحرك الكهربائي في المركبة الهجينة.

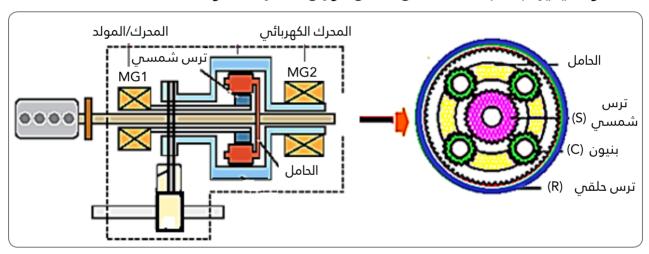

ويتكون عضو المحرك دائم المغناطيسية الدوار من مغناطيس دائم ولهذا السبب تم تسمية هذا النوع من المحركات بهذا الاسم (Permanent Magnet, PM) وهذه المحركات ممغنطة شعاعياً حيث، يتناوب فيها كل من القطبين الشمالي والجنوبي على طول محيط العضو الدوار وفيها تعمل ملفات المحرك كمغناطيس كهربائي فعند مرور التيار الكهربائي في ملفاتها تتولد حقول مغناطيسة تتجاذب وتتدافع مغناطيسياً مما يؤدي لنشوء قوى مختلفة يتجمع تأثيرها على الجزء الدوار في المحرك، فيدور وعند إزالة مصدر الطاقة الكهربائية، تفقد الملفات الصفات المغناطيسية ويتوقف المحرك عن الدوران. وبهذه الطريقة تدار المحركات الكهربائية المستخدمة في المركبة الهجينة من قبل سائق المركبة.

وتمتاز المحركات الكهربائية التي تستخدم المغناطيس الدائم، بما يلي:

- الكفاءة العالية للمحرك، حيث لا يوجد امتصاص للطاقة الكهربائية من قبل نظام إثارة (تحفيز)الحقل المغناطيسى.
- ارتفاع عزم الدوران والقدرة المنتجة لكل وحدة حجم، مقارنة بتلك المحركات التي تستخدم الإثارة الكهرومغناطيسية.
- أداء ديناميكي أفضل من المحركات ذات الإثارة الكهرومغناطيسية (فيض مغناطيسي أعلى).
 - بساطة التركيب والصيانة.

١-٤ استخدام المحركات الكهربائية في المركبات الهجينة

كمثال على استخدام المحركات الكهربائية في المركبات الهجينة، يبين الشكل (٧) المحرك الكهربائي المستخدم في إحدى المركبات الهجينة، ويتكون من:

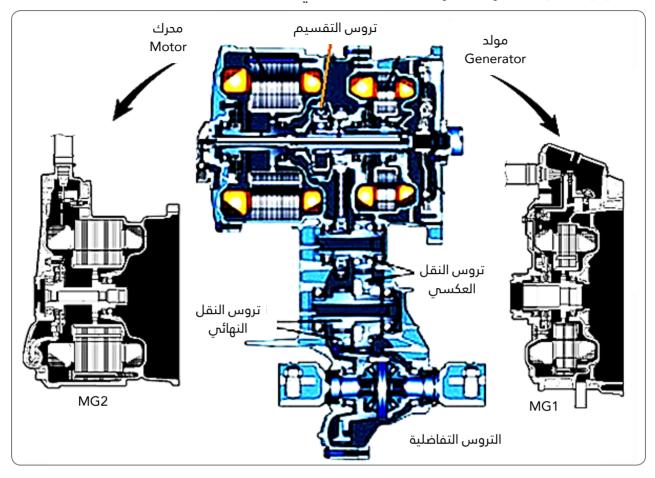


الشكل (٧): المحركات الكهربائية في المركبات الهجينة.

أ - المحرك/المولد (المولد)

يعمل المولد (Motor/Generator, MG1) كبادئ حركة في تشغيل محرك الاحتراق الداخلي في المركبة وفي توليد الطاقة الكهربائية اللازمة لشحن البطارية عالية الفولطية وتأمين الطاقة اللازمة لتشغيل محرك الجر الكهربائي في المركبة.

ولتشغيل محرك الاحتراق الداخلي المستخدم في المركبة الهجينة بوساطة المحرك/ المولد (MG1)، تم ربطه بالترس الشمسي بوحدة تقسيم القدرة في المركبة كما في الشكل (٨)، ليقوم بالعمل في هذه الحال كمحرك لبدء التشغيل باستخدام الطاقة الكهربائية من بطارية الفولطية العالية، فإذا كانت المركبة متوقفة، يعمل الترس الشمسي على تدوير حامل التروس الكوكبية المرتبط بمحرك الاحتراق الداخلي والذي سوف يديره بنسبة محددة من معدل دوران المحرك/المولد.



الشكل (٨): وحدة تقسيم الفدرة وربطها بالمحركات الكهربائية.

وبمجرد بدء الحركة وبتمرير الوقود إلى محرك الاحتراق وحدوث الشرارة ينتظر المحرك المولد (MG1) لحين وصول سرعة محرك الاحتراق إلى (MG1) تقريباً في غضون أقل من ثانية. وهذه السرعة تكفي ليعمل محرك الاحتراق على إدارة نفسه ذاتيا بقدرته الخاصة وتكون النتيجة هي البدء على نحو سلس خال من الضوضاء وبدء الحركة بهذه الطريقة يحد من التآكل الذي يصاحب بدء التشغيل في المحركات التقليدية. ومع إدارة محرك الاحتراق نفسه ذاتيا وبقدرته الخاصة، تقوم وحدة التحكم بعمل المركبة بالتحكم بقرص الخنق للحصول على سرعة الخمول المناسبة خلال فترة الإحماء ولم يعد المحرك/ المولد بحاجة إلى تغذية كهربائية حيث يبدأ بالعمل كمولد لتوليد الطاقة الكهربائية اللازمة لشحن البطارية.

ويبين الشكل (٩) مقطعاً في محركات القدرة الكهربائية المستخدمة في مركبة من نوع

تويوتا بريوس، بالإضافة إلى ناقل الحركة في المركبة.

الشكل (٩): المحركات الكهربائية في مركبة هجينة.

وبشكل عام هناك نوعان رئيسان من المولدات الكهربائية، هما:

• مولدات التيار المتناوب

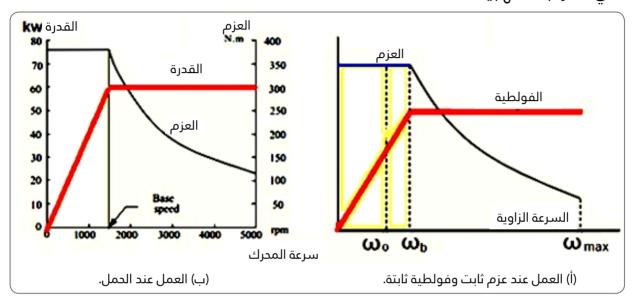
تنتج مولدات التيار المتناوب تياراً كهربائياً يعكس اتجاهه مرات عديدة في كل ثانية. وتختلف مولدات التيار المتناوب العملية عن مولدات التيار المتناوب البسيطة في عدة أوجه. فالمولدات العملية مزودة بمولد إضافي (مولد استثارة) يعمل على إمداد المغناطيس الكهربائي بالتيار المستخدم في إحداث المجال المغناطيسي داخل المولد. ويتكون العضو الساكن (حافظة) في مولد التيار المتناوب من أسلاك من النحاس ملفوفة على شكل مئات من اللفات حول شقوق محفورة في قلب فولاذي. ويتكون المغناطيس الكهربائي من قضبان نحاسية ملفوفة حول قلوب فولاذية. وفي معظم مولدات التيار المتناوب تكون الحافظة هي العضو الساكن وبنية المجال هي العضو الدوار. ومعنى ذلك أن المغناطيس الكهربائي الذي ينتج بنية المجال، يدور لكي يقطع المجال المغناطيسي ملفات الدافظة. وفي هذه المولدات تستخدم حلقات الانزلاق لنقل المغناطيسي ملفات الدافظة. وفي هذه المولدات تستخدم حلقات الانزلاق لنقل التيار المباشر من المولد المستثير إلى المغناطيس الكهربائي في بنية المجال. وتتصل

ملفات الحافظة مباشرة بأسلاك خارجية لنقل التيار المتناوب. وقد وجد المهندسون أنه من الأسهل اتباع تلك الطريقة في توصيل التيار المنخفض نسبيا من المستثير بوساطة حلقات الانزلاق وأخذ التيار العالي المتولد مباشرة من بنية المجال. ويطلق على هذا النوع من مولدات التيار المتناوب المولدات المتزامنة، لأنها تنتج فولطية لها ذبذبة متناسبة أو متزامنة مع سرعة العضو الدوار. وغالبية مولدات التيار المتناوب لها ثلاث مجاميع من الملفات لكل قطب ولذا فهي تنتج ثلاثة تيارات في الوقت نفسه. وتعرف هذه الأنواع بالمولدات ثلاثية الطور وتنتج قدرة أكبر من التي تنتجها المولدات أحادية الطور كما أنها تحسن نقل القدرة الكهربائية واستخدامها.

• مولدات التيار المباشر

تنتج مولدات التيار المباشر تياراً كهربائياً مباشراً يسرى في اتجاه واحد وتعمل من خلال دوران المبدل مع حلقة السلك كما تفعل تماماً حلقة الانزلاق مع العضو الدوار لمولد التيار المتناوب. ويقسم المبدل إلى نصفين معزولين، يسمى كل منهما فلقة المبدل ويكون كل منهما معزولاً عن الآخر. وتوصل نهايتا حلقة السلك الدوارة بنصفى المبدل وتتلامس فرشتان كربونيتان متصلتان بالدارة الخارجية مع نصفى المبدل. وتوصل إحدى الفرشتين التيار إلى خارج المولد، بينما تغذى الأخرى داخله. ولقد صمم المبدل بحيث يكون نصفه الذي يحتوي على التيار الخارج دائما يلامس الفرشاة الخارجة، مهما تغير اتجاه التيار في داخل حلقة المبدل. وفي بعض مولدات التيار المباشر، يأتي التيار المباشر اللازم للمغناطيس الكهربائي الذي يكوِّن بنية المجال من مصدر خارجي كما في معظم مولدات التيار المتناوب. ويعتمد مولد التيار المباشر ذاتى الاستثارة على المغناطيسية المتبقية وهى جزء صغير من المغناطيسية يتبقى في المغناطيس الكهربائي بعد توقف المولد. ولولا وجود تلك المغناطيسية لكان من المحال تشغيل المولد ذاتى الاستثارة بعد توقفه ويعتمد نوع المولد المستخدم فى أداء عمل معين على درجة التحكم في الفولطية المطلوب. فالمولد الذي يستخدم في شحن البطاريات مثلاً، يحتاج إلى تحكم بسيط في الفولطية ولهذا يمكن استخدام مولد متصل على التوازي، بينما يحتاج المولد الذي يغذي المصعد مثلا إلى تحكم أكثر تعقيداً في الفولطية ولذا يستخدم مولد منفصل الاستثارة. ونظرًا لأن المبدل المستخدم في المولد معقد ومكلف، فقد تم استبدال الكثير من مولدات التيار المباشر بمولدات للتيار المتناوب المزودة بمقومات إلكترونية. والمقوم الإلكتروني جهاز يسمح بسريان التيار في اتجاه واحد فقط.

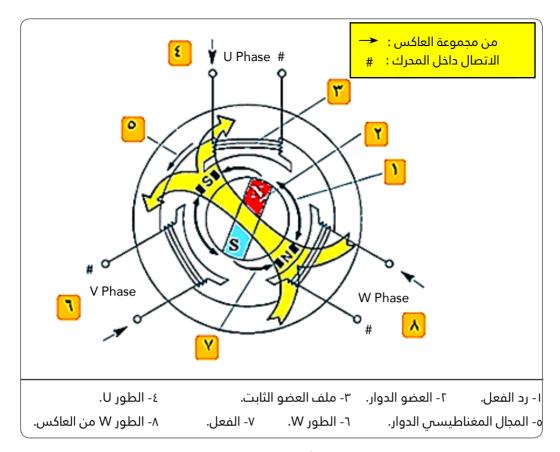
وتشبه المولدات المستخدمة في المركبات الهجينة في تركيبها المحركات الكهربائية المستخدمة في هذه المركبات، حيث تستخدم مولدات من النوع المتزامن ذات سرعات عالية تتراوح ما بين (rpm 10000-6500) للعمل على تأمين المحرك الكهربائي بالطاقة الكهربائية الضرورية لتشغيله وتحتوي هذه المركبات على محركين كهربائيين كما في الشكل (١٠) الذي يبين المحركات المستخدمة من قبل إحدى شركات تصنيع المركبات الهجينة.


الشكل (١٠): المحركات الكهربائية في مركبة هجينة.

ب - محرك الجر الكهربائي: ويعمل محرك الجر الكهربائي (Motor/Generator MG2) كمحرك مساند لمحرك الاحتراق في تأمين القدرة اللازمة لجر المركبة وكمولد في حال استرجاع وتجديد الطاقة ويستخدم هذه الأيام في المركبات الهجينة نوعان من المحركات الكهربائية هما: المحركات ذات المغناطيس الدائم المبينة في الشكل (١١) والمحركات الحثية.

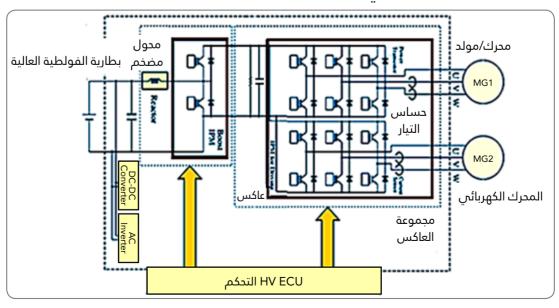
الشكل (١١): مكونات المحرك الكهربائي المستخدم في المركبة الهجينة.

ولبيان خواص المحركات الكهربائية المستخدمة في المركبات الهجينة، انظر الشكل (١٢/أ) وهذه المحركات تمتاز بإمكانية العمل عند عزم ثابت وفولطية ثابته والفولطية عند عمل المحرك بعزم ثابت تتناسب وسرعة الزاوية والتدفق المغناطيسي فيه. أما في حال العمل عند جهد ثابت فإن المجال المغناطيسي يضعف بزيادة السرعة الزاوية. والمخطط المبين في الشكل (١٢/ب) يبين خواص أحد المحركات الكهربائية المستخدمة في المركبات الهجينة.

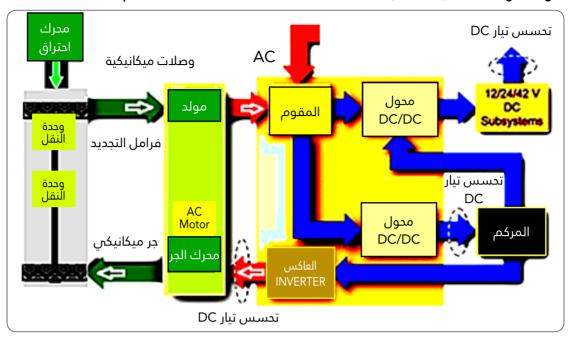


الشكل (١٢): خواص المحركات الكهربائية.

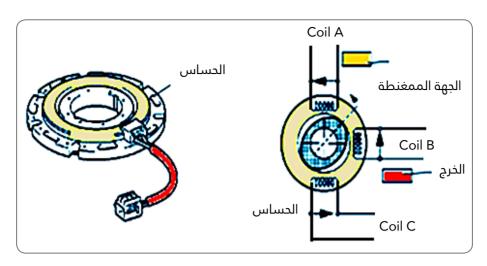
ويلاحظ من الشكل السابق عندما تكون سرعة المحرك مقاربة للصفر يكون العزم أعلى ما يمكن (عزم الذروة Peak Torque) وذلك بعكس محرك الاحتراق الداخلي الذي يتم تحديد أقصى قدرة وعزم له مخبرياً عند سرعة محددة لعمود المرفق.


١-ه التحكم بعمل المحركات الكهربائية في المركبات الهجينة

كما تعلمت سابقاً، يستخدم في المركبات الهجينة محركات كهربائية متزامنة ثلاثية الطور (٣ فاز) ذات تيار متناوب ومجال مغناطيسي دائم ويتكون الجزء الدوار فيها من مغناطيس قوي لا يتصل بأية أسلاك كهربائية والجزء الثابت من ثلاثة ملفات تتغذى كهربائيا من العاكس لتعمل كمصدر للعزم الدوراني وتعتمد في عملها على السرعة الزاوية والفواقد الناجمة عن تحميل المركبة. وعند سريان التيار الكهربائي في ملفات المحرك يتولد مجال مغناطيسي يتم التحكم فيه زمنيا تبعا لحركة العضو الدوار، حيث يعمل على سحب المغانط الدائمة في المحرك مما يؤدي إلى استدارة العضو الدوار وتوليد العزم الذي يتناسب والتيار المار في ملفات العضو الثابة عمل.


الشكل (١٣): أطوار المحرك الكهربائي.

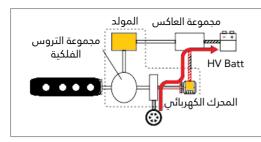
وفي هذا النظام تقوم مجموعة العاكس/المحول بتحويل الفولطية العالية القادمة من البطارية (DC) إلى تيار متناوب ثلاثي الطور لاستخدامه في تشغيل المحركات الكهربائية وبالإضافة إلى ذلك تقوم مجموعة العاكس بإرسال البيانات اللازمة للتحكم بالتيار مثل قيمة التيار والفولطية إلى وحدة التحكم كما في الشكل (١٤) الذي يبين الترابط بين المحركات الكهربائية ومجموعة العاكس في المركبة.


الشكل (١٤): توصيل المحركات الكهربائية بمجموعة العاكس.

ولتوضيح التحكم بعمل محرك الجر الكهربائي، يبين الشكل (١٥) مخطط عمل المركبة الهجينة ومحركاتها الكهربائية بالإضافة إلى المحولات اللازمة لتشغيل النظام.

الشكل (١٥): عمل المحركات الكهربائية.

ومن المعلوم أن البطارية الهجينة تغذي مجموعة العاكس بتيار مباشر (DC) وأن المحركات الكهربائية في المركبة تعمل بوساطة تيار متناوب (AC) ولتأمين هذا التيار تعمل مجموعة العاكس على تحويل التيار المباشر القادم من البطارية إلى تيار متناوب لتشغيل المحركات الكهربائية تقوم بشحن البطارية في بعض حالات القيادة مثلاً الكهربائية كما أن المحركات الكهربائية تقوم بشحن البطارية في بعض حالات القيادة مثلاً عند التباطؤ حيث يعمل العاكس في هذه الحال على تحويل التيار المتناوب إلى تيار مباشر. ويستخدم في دارة التحكم بعمل المحرك الكهربائي حساسات تحديد السرعة والموضع للتحكم بدقة عمل المحرك وظيفتها تحسس موضع الأقطاب المغناطيسية للمحركات المستخدمة في المركبة لتأمين عملها بكفاءة عالية. ويتكون العضو الثابت للحساس من ثلاث ملفات والمخرج من ملفين (B, C) يعملان زاوية مقدارها (٩٠٥) فيما بينهما كما هو مبين في الشكل (١٦) وبما أن عضو الحساس الدائر بيضاوي فإن الفراغ بين عضوي الحساس الدوار والثابت متغير بحسب دوران العضو الدوار، لذا عند مرور التيار عبر الملف (A) يكون الخرج عبر الملفات (B,C) وسيتم تحديد الموضع بحسب قيمة الفرق بين الخرج في كل منهما والذي يتم حسابه بوساطة وحدة التحكم في الفولطية العالية في المركبة.


الشكل (١٦): حساس السرعة ومضع الأقطاب.

١-١ أوضاع عمل المحركات الكهربائية في المركبة الهجينة

يبين الجدول (١) مخططات عمل المولد والمحرك الكهربائي في المركبات الهجينة، أثناء قيادة المركبة الهجينة.

الجدول (١): مخططات عمل المولد والمحرك الكهربائي.

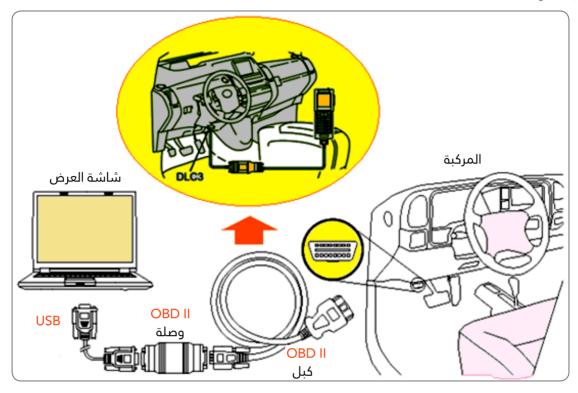
مخطط عمل المركبة	الوضع	الرقم
مجموعة العاكس المولد HV Batt الفلكية المحرك الكهربائي	يسري التيار من البطارية الهجينة إلى المحرك الكهربائي لتشغيله، لإمداد عجلات المركبة بالطاقة الحركية اللازمة لتحريك المركبة.	I
مجموعة العاكس المولد المجموعة التروس HV Batt الفلكية المحرك الكهربائي	أثناء إدارة العجلات بوساطة المحرك الكهربائي، يدار المولد بوساطة محرك الاحتراق عبر مجموعة التروس الفلكية للعمل على إمداد المحرك الكهربائي بالطاقة اللازمة لتشغيله وإمداد العجلات بطاقة حركية إضافية.	Т
مجموعة العاكس المولد الكهربائي المحرك الكهربائي	إدارة المولد بوساطة محرك الاحتراق عبر مجموعة تروس التقسيم الفلكية لشحن مجموعة البطارية الهجينة.	٣

أثناء تباطؤ المركبة يتم استرجاع طاقة الحركة من عجلات المركبة بوساطة المحرك الكهربائي وتحويلها إلى طاقة كهربائية تستخدم في شحن مجموعة البطارية الهجينة.

١-٧ تشخيص أعطال المحركات الكهربائية

تستخدم أنواع مختلفة من أجهزة الفحص في تشخيص أعطال المحركات الكهربائية المستخدمة في المركبات الهجينة وأنظمة تشغيلها الكهربائية وتوفر هذه التكنولوجيا لمراكز صيانة المركبات الفرص العديدة لتصبح مراكز صيانة متخصصة بعد توفير ما يلى:

- التدریب الموجه علمیا وعملیا على تكنولوجیا المركبات الهجینة وأنظمتها ذات الفولطیة
 العالیة.
 - أجهزة الفحص والتشخيص والبرامج الخاصة بأنظمة الفولطية العالية في المركبة.
 - الخدمة الفنية المختصة لخدمة المركبات الهجينة الحديثة.


ولإجراء التشخيص الصحيح في تحديد أعطال محركات هذا النوع من المركبات تستخدم أجهزة الفحص ومسح الأعطال الإلكترونية، في قراءة ومسح أعطال النظام الكهربائي الهجين من خلال قراءة إشارات الحساسات المستخدمة في أنظمتها، حيث تقوم هذه الأجهزة بالعمليات التالية إضافة إلى تسجيل المعلومات وعرضها:

- قراءة رموز الأعطال (DTC).
- قراءة معلومات الأنظمة (Current Data).
- تفعيل وتشغيل مشغلات أنظمة عمل المركبة.

وفي كثير من الأحيان تتطلب هذه الأجهزة البرمجيات المكلفة لقراءة كل رموز أعطال المركبة المعنية بالتشخيص حيث بدون هذه البرمجيات والبيانات وبالاعتماد فقط على قدرات التشخيص الخاصة بك سيكون تشخيص المشكلة محدودا للغاية لأن الرموز لديك لا تغطي جميع العيوب التى قد تحدث فى النظام الهجين للمركبة المعنية بالإصلاح.

وتوفر جميع شركات تصنيع المركبات في الوقت الحاضر المخططات التفصيلية لكافة رموز الأعطال الخاصة بمركباتها والتي تشمل وصفا للعطل والرسوم الخاصة بدارات المركبة وطريقة الإصلاح خطوة بخطوة التي يجب القيام بها لعزل الخطأ وإصلاحه.

وللوصول إلى التشخيص السليم لأعطال المركبة الهجينة تحتاج إلى جهاز المسح الإلكتروني (Scan Tools). لقراءة رموز الأعطال عبر الفحص المباشر من على ظهر المركبة (OBD) كما هو مبين في الشكل (١٧)، فعند إضاءة مصباح التحذير في المركبة، عليك استخدام جهاز الفحص، لقراءة رمز العطل وأية بيانات تم تخزينها لمساعدتك في تشخيص العطل بدقة وتحديد موقعه.

الشكل (١٧): استخدام جهاز المسح.

وكما تعلم فإن من مشاكل المركبات الهجينة الشائعة حدوث تسريب في الفولطية العالية عبر كبلات ووصلات داراتها الكهربائية ذات الفولطية العالية: ففي حال إضاءة مصباح التحذير الرئيس المبين في الشكل (١٨) وظهور رمز العطل الخاص بالتسريب، احترس! وتفقد عزل البطارية وكبلات الفولطية العالية وتآكل وصلاتها وافحص داراتها الكهربائية وأنظمة التحكم في عملها.

الشكل (١٨): إضاءة مصباح التحذير الرئيس.

وبشكل عام تقسم الأعطال المحتمل حدوثها في محركات المركبة الكهربائية الى قسمين، هما:

أ - الأعطال الكهربائية : إمكانية احتراق الملفات في المحركات الكهربائية المستخدمة في المركبات الهجينة واردة في أثناء تشغيلها وقيادتها، كما هو مبين في الشكل (١٩)، إلا أن هذا العطل (احتراق الملفات) أقل شيوعاً في المركبات التي يتم لها إجراء الصيانة الحورية في الفترات الموصى بها من قبل الشركات الصانعة.

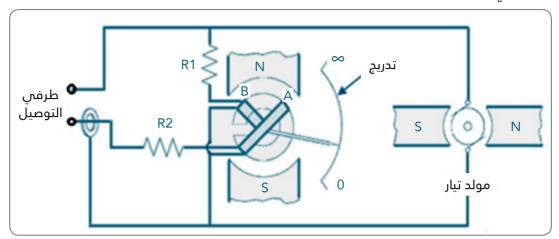
الشكل (١٩) : احتراق الملفات.

ومن المعلوم أن المحرك الكهربائي ثلاثي الطور يمتلك مقاومات كهربائية متساوية في ملفاته، لكنه عند حدوث قصر في أحد ملفاته يؤدي إلى اختلاف قيم المقاومات في ملفات المحرك كما في فيها ويتم قياس هذا الاختلاف من خلال قياس المقاومات في ملفات المحرك كما في حليل الصيانة الخاص بالمركبة المعنية بالفحص ولهذه الغاية يستخدم جهاز القياس متعدد الأغراض (الملتميتر) (DVOM).

ويتم قياس هذه المقاومات من أطراف كبلات تغذية المحرك (طور-طور)، وحيث أن أطوار المحرك مبينة بالرموز (W, V,W) كما في الشكل (٢٠) فإنك تحتاج إلى ثلاث قياسات وهي (U-V, V-w, W-U).

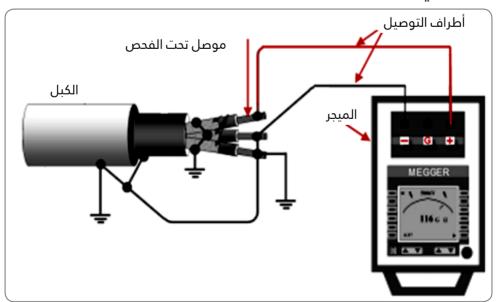
الشكل (٢٠): أطوار المحرك U, V, W.

والمقاومة في ملفات المحركات المستخدمة في المركبات الهجينة عادة تقاس عند درجة حرارة مرجعية (20°C) والقياس غير ذلك يكون غير صحيح ويجب تعديله. وبما أن مقاومة أسلاك النحاس تزداد بارتفاع درجات الحرارة لذا يجب قياس المقاومة في كبلات المركبة الهجينة النحاسية وهي باردة (يجب ترك المركبة لتبرد على الأقل ثماني ساعات ومن ثم أخذ القياسات) وغير ذلك فيجب تصحيح القراءات بحسب تعليمات الشركة الصانعة ولضمان السلامة العامة والشخصية لك وللمركبة، يجب فحص مقاومة العزل في أجهزة المركبة الكهربائية دوريا للتأكد من عدم إمكانية حدوث تماس كهربائي أو تسريب التيار إلى هيكل المركبة وكذلك لحماية وإطالة عمر الأجهزة والمحركات الكهربائية المستخدمة في المركبة.

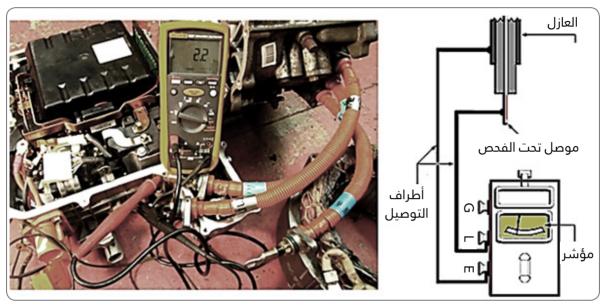

ب- الأعطال ميكانيكية: ومن هذه الأعطال وأسبابها ما هو مبين في الجدول (٢)

الجدول (٢): أعطال المحركات الكهربائية وأسبابها.

السبب	العطل	الرقم
تآكل محامل المحاور، انحناء في المحور، خطأ في التوصيل، قصر في الملفات.	ارتفاع صوت المحرك.	I
نقص أحد الأطوار، تلف المحامل، الزيادة الكبيرة في حمل المحرك.	المحرك يصدر صوتاً ولا يدور.	7
عدم وجود فولطية، خطأ في التوصيل، احتراق ملفات المحرك.	المحرك لا يحدث صوتاً ولا يدور.	٣
تلف المحامل، قصر في الملفات.	المحرك يدور أقل من سرعته المطلوبة.	٤
قصر فـي الـمـلـفـات، تـمـاس مـلـفـات المحرك بالأرضي، تآكل المحامل، زيادة الحمل، خلل في التبريد.	ارتفاع حرارة المحرك أثناء العمل.	O


۱-۸ فحص التسرب الكهربائي بوساطة جهاز الميجر

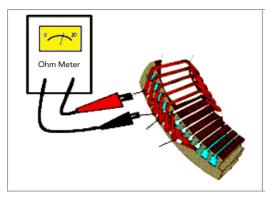
جهاز الميجر (Megger) هو جهاز أومميتر ذو مدى واسع من القراءات يحتوي على مولد تيار مباشر كما في الشكل (٢١).


الشكل (٢١): جهاز الميجر.

ويستخدم هذا الجهاز في قراءة مقاومة العزل المباشرة بالأوم أو الكيلو أوم أوالميجا أوم، للأجهزة الكهربائية مثل المحركات والمولدات والمحولات والكابلات الكهربائية بين الأطوار بعضها بعضاً أو بين الطور الواحد والأرضي. كما تستخدم لقياس استمرارية التوصيل في الدوائر الكهربائية المختلفة من خلال توصيل أطراف الميجر بكبل الجهاز الكهربي المراد قياس مقاومة العزل له كما في الشكل (٢٢) حيث يتم توصيل طرف بأحد الأطوار والطرف الآخر يتم توصيله بالأرضى.

الشكل (٢٢): قياس مقاومة العزل بين أحد الأوجه والأرضى لكبل بثلاث موصلات.

ويمكنك باستخدام جهاز الميجر (Megger) قياس مقاومة العزل (Insulation Resistance) لكبلات تغذية المحركات الكهربائية في المركبة الهجينة كما هو مبين في الشكل (٢٣) ويستخدم هذا الجهاز في تحديد سلامة الملفات أو الكبلات في المحركات والمحولات وغيرها من الأجهزة الكهربائية المستخدمة في المركبة ويتم تحديد طريقة الفحص بحسب نوع الجهاز التي يجري فحصه والسبب في إجراء الفحص.



الشكل (٢٣): قياس مقاومة العزل بوساطة جهاز الميجر.

ويبين الجدول (٣) فحص ملفات المحرك/المولد (Testing Motor Generator Windings)

الجدول (٣): فحص ملفات المحرك/المولد.

السبب	العطل	الرقم
Meg-Ohm Meter	فحص جدار العزل: يجب فحص جدار العزل للملفات للتحقق من عدم وجود أي خلل فيها باستخدام جهاز الميجر كما في الشكل المجاور. فعند استخدام الجهاز يتم وصل أحد أطرافه في الملف وطرفه الآخر بالهيكل ومن ثم يتم العمل على تنشيط الجهاز وأخذ القراءة لمقاومة جدار العزل.	I

فحص الاستمرارية: لكل محرك مجموعة من الملفات المرتبطة داخلياً في المحرك يمكنك استخدام جهاز الميجر في فحصها عبر قياس المقاومة لكل مجموعة منها على حدة كما في الشكل المجاور.

وللحصول على قياسات دقيقة يجب عليك دراسة النظام الكهربائي تحت الاختبار لتحقيق أفضل النتائج والتقيد بما يأتى:

- فصل النظام أو الجهاز المعنى بالفحص عن الدارات الأخرى في المركبة.
- التأكد من خلو سطح الموصل من الكربون والأوساخ التي يمكن أن تصبح موصل في حال وجود رطوبة.
- إجراء الفحص في درجة حرارة الموصلات القياسية (200°C) حيث مقاومة العزل تتناسب عكسياً مع درجة الحرارة (المقاومة تنخفض بارتفاع درجة الحرارة).
 - تنبيه: تتبع إجراءات الشركة الصانعة وتحقق من عدم وجود فولطية عالية في توصيلات الكبلات قبل البدء بالعمل.
- احتياطات استخدام جهاز الميجر: إن جودة مقاومة العازل لأي نظام كهربائي تتدهور مع مرور الوقت بسبب ظروف العمل وتأثير البيئة المحيطة مثل درجة الحرارة والرطوبة وغيرها. ومن هذه العوامل أيضا وجودها تحت تأثير فولطية كهربائية وجهد ميكانيكي أثناء العمل ومن هنا تأتي أهمية فحص مقاومة العوازل للأنظمة الكهربائية بشكل دوري لتجنب حدوث أي مخاطر كالصدمات الكهربائية أو حدوث فصل في الدارة بسبب تلف العوازل لذا يجب التقيد بما يأتي عند استخدام أجهزة قياس مقاومة العزل:
 - أخد الحذر عند التعامل مع الجهاز لأنه يولد فولطية عالية.
- تفریغ اللجهزة أو اللنظمة المراد فحصها من أي شحنة كهربائية متبقیة فیها قبل بدء التعامل معها، أو حتى لمسها.
 - عدم تشغيل جهاز الفحص في جو مشبع بأبخرة قابلة للاشتعال.
- فصل النظام الواقع تحت الفحص عن أي أجهزة ملحقة لحمايتها ولكي لا تؤثر على قراءة المقاومة حيث أن الفولطية المسلطة على العازل تكون كبيرة.

۱-۹ التقييم الذاتي

- ١. أجب عن الأسئلة المدرجة أدناه.
- 7. إذا كنت غير قادر على إجابة أي من أسئلة التقييم، ارجع إلى المعلومات النظرية أو استشر مدربك إن كان ذلك ضرورياً.

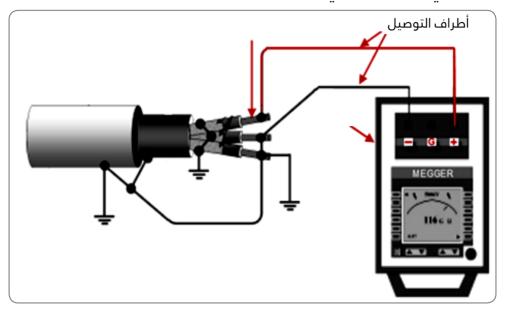
الأســـئلة:

السؤال الأول:

ضع دائرة حول رمز الإِجابة الصحيحة لكل فقرة من الفقرات الآتية:

- ١- لون كبلات الفولطية العالية في المركبات الهجينة هو اللون:
- أ . البرتقالي . ب . الأبيض . ج . البني الغامق . د . الأخضر .
 - ٢- من وظائف المحرك/المولد (MG1):
 - أ . تشغيل محرك الدحتراق الداخلي في بداية تشغيل المركبة.
 - ب. تأمين قوة الجر اللازمة للمركبة عند السرعات البطيئة.
 - ج . تأمين قوة الجر اللازمة للمركبة عند السرعات العالية.
 - د . تأمين قوة الجر اللازمة للمركبة عند جميع السرعات.
 - ٣- يستخدم في معظم المركبات الهجينة محركات كهربائية من النوع:
 - أ . دائمة المغناطيسية. ب. محركات ترددية.
 - ب. محركات بفراشي كربونية. د . محركات خطية.

السؤال الثانى:


ضع علامة صح (\checkmark) أمام العبارة الصحيحة وعلامة خطأ (x) أمام العبارة الخاطئة فيما يأتي:

خطأ	صح	العبارة	
		الأقطاب المغناطيسية المتشابهة تتجاذب والأقطاب المغناطيسية المختلفة	ı
		تتنافر.	
		يدار العديد من مولدات التيار المباشر بوساطة محرك تيار متناوب.	7
		عند سريان التيار المتناوب عبر أطوار ملفات العضو الساكن في المحرك	٣
		الكهربائي يتولد مجال مغناطيسي دوراني.	
		يستخدم المولد الكهربائي في تحويل الطاقة الكهربائية إلى طاقة حركة.	٤
		المحركات التزامنية، لها سرعة ثابتة حتى في وجود حمل متغير.	0

السؤال الثالث:

اشرح طريقة عمل حساس السرعة والموضع، المبين في الشكل التالي واذكر أين يستخدم.

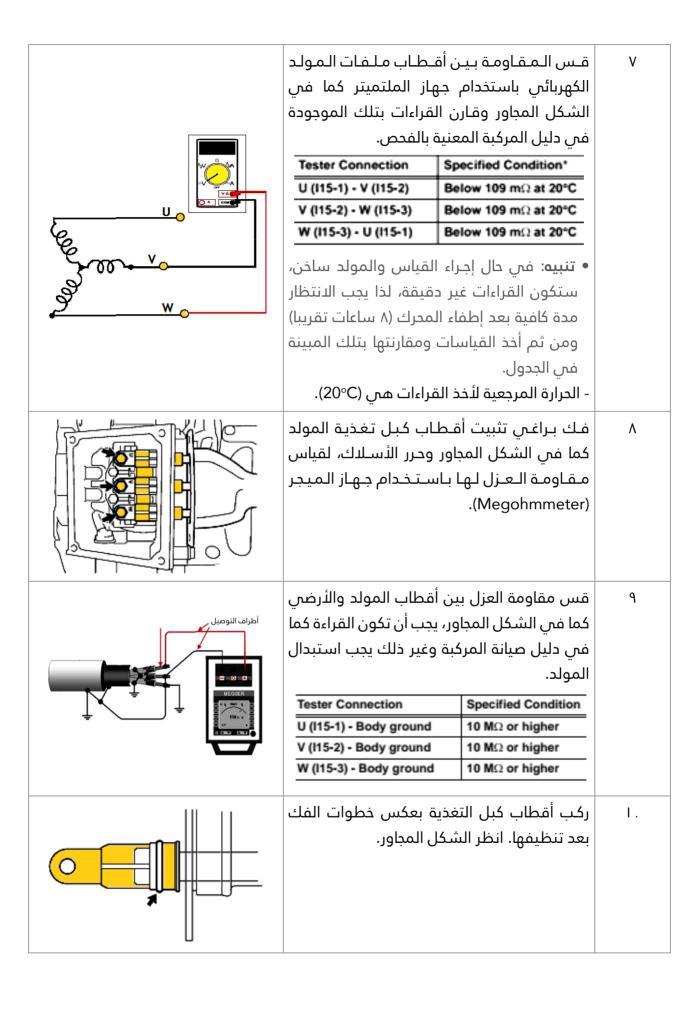
السؤال الرابع: ما الجهاز المبين في الشكل التالي؟ أذكر استخداماته.

۱-.۱ التمرين العملي

الزمن المخصص للتمرين	رقم التمرين: (۱)
۱۲ ساعة	اسم التمرين: فحص عازلية كبلات تغذية المحرك/ المولد في المركبة الهجينة.

الإجراءات السلامة والصحة المهنية عند تطبيق تمارين هذه الوحدة

إن تطبيقك لإجراءات السلامة والصحة المهنية والسلوك المهني السليم عند تطبيق تمارين هذه الوحدة هو الطريقة الأمثل لنجاحك واكتساب احترام وتقدير الآخرين وتجنبك للحوادث المحتمل حدوثها أثناء العمل. ومن أهم هذه السلوكيات ما يأتى:


- التقيد بلباس التدريب داخل المشغل وارتداء معدات الوقاية الشخصية المناسبة لطبيعة العمل.
 - المحافظة على نظافة وترتيب المشغل ومكان العمل.
 - المحافظة على الأجهزة والأدوات واستخدامها وصيانتها بحسب تعليمات الشركة الصانعة.
 - التأكد من تهوية مكان العمل.
 - احترام قواعد العلاقات البينية والعمل كعضو ضمن فريق في بيئة العمل.
 - التقيد بتعليمات السلامة الخاصة بالمركبة المعنية بالإصلاح.
- الأهداف: يتوقع منك بعد تنفيذ هذا التمرين أن تصبح قادراً على أن تفحص عازلية كبل تغذية المحرك/المولد.
 - شروط الأداء
 حسب تعليمات المدرب
 - الأدوات والتجهيزات والمواد اللازمة لتنفيذ الأداء

الأدوات والتجهيزات والمواد				
مركبة عاملة.	٤	صندوق عدة.	I	
كفوف عازلة.	0	مفتاح عزم.	Г	
		جهاز الميجر (Megohmmeter).	٣	

- الأنظمة والتعليمات والمراجع اللازمة لتنفيذ الأداء
 - ١. نسخة من الوحدة التدريبية.
 - ٢. دليل الفحص والصيانة.

• خطوات العمل

الرسوم التوضيحية	خطوات العمل والنقاط الحاكمة	الرقم
جهز المواد والعدد والأدوات اللازمة لتنفيذ العمل وتأكد من صلاحيتها قبل الاستعمال.		
	أمن المركبة في موقع العمل.	٢
لفحص كما في الدليل.	تعرف تعليمات السلامة الخاصة بالمركبة وطريقة اا	٣
	البس الكفوف العازلة لتجنب المخاطر الكهربائية.	٤
	انزع قاطع الخدمة من المركبة وسالب البطارية المساندة كما في الشكل المجاور وانتظر لمدة . ٩ ثانية لعدم تفعيل عمل أحزمة الأمان والوسائد الهوائية. • تنبيه: إدارة مفتاح التشغيل على وضع التشغيل (ON) في حال نزع قاطع الخدمة من المركبة سـوف يـؤدي إلى حـدوث أعطال في مجموعة توليد القدرة في المركبة.	0
	انزع غطاء وصلة كبل تغذية المولد من جهة العاكس كما في الشكل الـمجاور وافحص الفولطية بوساطة الفولطميتر (طـور- طـور) للتحقق من عدم وجود فولطية عالية كما يلي: • تنبيه: يجب أن تكون الفولطية مساوية للصفر في حال عدم وجود فولطية عالية.	٦

تأكد من شد براغي التثبيت المبينة في الشكل المجاور بمفتاح العزم حسب الشد المطلوب في الدليل.	11
ركب غطاء وصلة مجموعة العاكس.	17
ركب قاطع الخدمة وسالب البطارية المساندة.	١٣
شغل المركبة وتفقد العمل.	1 &
اجمع العدة واحفظها ونظف مكان العمل.	lo

الزمن المخصص للتمرين	رقم التمرين: (۲)
٦ ساعات	اســم التمرين: تحديد مـواقـع تسريب الفولطية العالية في الخطوط المتصلة بالمحركات الكهربائية بــاســتـخــدام الأجــهــزة (Detected).

• الأهداف: يتوقع منك بعد تنفيذ هذا التمرين أن تصبح قادراً على أن تحدد مواقع تسريب الفولطية العالية في الخطوط المتصلة بالمحركات الكهربائية باستخدام الأجهزة.

• شروط الأداء

حسب تعليمات المدرب

• الأدوات والتجهيزات والمواد اللازمة لتنفيذ الأداء

الأدوات والتجهيزات والمواد			
جهاز فحص (Scan Tool).	٤	صندوق عدة.	I
مركبة عاملة.	0	مفتاح عزم.	٢
		جهاز الميجر	٣
		.(Megohmmeter Insulation Test Meter)	

- الأنظمة والتعليمات والمراجع اللازمة لتنفيذ الأداء
 - ١. نسخة من الوحدة التدريبية.
 - ٢. دليل الصيانة وتعليمات الشركة الصانعة.

• خطوات العمل

الرقم	خطوات العمل والنقاط الحاكمة	الرسوم التوضيحية
I	جهز المواد والعدد والأدوات اللازمة لتنفيذ العمل وتأكد من صلاحيتها قبل الاستعمال.	
7	أمن المركبة في موقع العمل.	
٣	تعرف تعليمات السلامة الخاصة بالمركبة وطريقة الفحص كما في الدليل.	

٤	البس القفازات العازلة لتجنب المخاطر الكهربائية.	
0	صل جهاز الفحص الإلكتروني بالمركبة واقرأ رموز الأعطال المخزنة في وحدة التحكم كما في دليل جهاز الفحص ودليل صيانة المركبة المعنية.	DLC3
1	تحقق من ظهور الرمز الخاص بالتسريب الكهربائي من خطوط الفولطية العالية على شاشة جهاز الفحص.	
V	افحص بشـكل مسـتقل من خـلال المراقبـة وتطبر المحتمل وجود تسـريب فيها واحداً تلو الآخر، لأن ها موقع التسريب بدقة باستخدام جهاز الميجر (gger ووقع التسريب بدقة باستخدام جهاز الميجر (gger ملاحظـة: يمكـن أن يكون هناك خطأ في عزل أجو أي مـكان فـي دارات ووصلات المركبة المرتبطة بالتالـي (مجموعـة العاكس وكبلات التوصيل والمحالية الهجينة).	مذا سـيوفر لك الوقت للتحقّق من تحديد (Me). هزة ووصلات كبلات الفولطية العالية في بالمحركات الكهربائية المبينة في الشِــكل
٨	أدر مفتاح الإشعال على وضع التشغيل (ON)، فإذا ظهر رمز العطل الخاص بالتسريب، يكون التسريب من البطارية الهجينة، لأن المرحل الرئيس في المركبة مفتوح والمكان الوحيد الموجود به فولطية عالية في هذه الحال هو البطارية وتلامس أحد مكوناتها بالأرضي سوف يتسبب بذلك.	

أدر مفتاح الإشعال على وضع جاهزية المركبة للعمل (Ready) وبسرعة ضع عتلة الغيار على وضع الحياد، فإذا ما ظهر رمز التسريب الكهربائي يكون التسريب من أحد الكابلات المرتبطة بهيكل المركبة أومن مجموعة العاكس. • تنبيــه: المقاومـة فــي مجموعة العاكس ووحــدة التحكم أقــل من تلك المقاومـة لملفات محركات المركبة الكهربائية والبطارية الهجينة فيها.		٩
493 3	وللتحق مـن مـكان الـتـسـريـب بـدقـة، انــزع قاطع الخدمة وقطب البطارية السالب كما في الشـكل المجاور وانتظر لمدة ٩٠ ثانية لعدم تفعيل عمل أحزمة الأمان والوسائد الهوائية. • تنبيه: إدارة مفتاح التشغيل على وضع التشغيل (ON) فــي حــال نزع قاطــع الخدمة مــن المركبة ســوف يؤدي إلى حــدوث أعطال فــي مجموعة توليد القدرة في المركبة.	1.
	افصل وصلة وحدة التحكم (HCU) ببطارية الفولطية العالية لفحص كبلات ووصلات الفولطية العالية كما في الشكل المجاور.	11
	• تنبيــه: مــن المهــم أن تعــرف أن موصــل وحــدة التحكــم (HCU) ببطاريــة الفولطيــة العالية في المركبــة (HV) يمتلــك فولطية البطارية نفســها حتى لو تم فصل قابس الخدمة في المركبة.	71
	نظف أقطاب الفولطية العالية من الصدأ لأنه أحد مسببات التسريب الكهربائي. انظر الشكل المجاور.	14
+ Trans	تحقق من التسريب باستخدام جهاز الميجر (Megger) من كبلات وملفات المحركات الكهربائية ووصلاتها كما في الشكل التالي.	1 £

تحقق مـن الـتـسـريـب بـاسـتـخـدام جـهـاز الميجر (Megger) من كبلات ووصلات مجموعة العاكس المتصلة بالمحركات الكهربائية كما في الشكل المجاور.	lo
كرر التمرين نفسها لمركبة هجينة من نوع آخر.	۱٦

هدف التعلم الثاني

عند الانتهاء من تنفيذك أنشطة التعلم أدناه، عليك أن تصبح قادراً على أن تصون المحركات الكهربائية المستخدمة في المركبة الهجينة.

أنشطة التعلم	استعن بما يلي:
١. قراءة المادة التعلمية.	الوحدة التدريبية.
٢. تنفيذ التمارين العملية في الوحدة.	المشغل/بإشراف المدرب.
٣. زيارة المواقع الإلكترونية.	الشبكة العنكبوتية.
٤. التدريب الميداني.	مراكز صيانة متخصصة.

٢. صيانة المحركات الكهربائية في المركبات الهجينة

المركبة الهجينة هي آلة معقدة تتكامل فيها المكونات الميكانيكية مع عدد كبير من المكونات الكهربائية مثل المحركات الكهربائية التي تلعب دورا أساسيا في أداء هذا النوع من المركبات والبطارية الهجينة وغيرها من الأجهزة الكهربائية التي يمكن أن تخفق في عملها أثناء استثمار المركبة وللقيام بصيانة أعطال هذه المركبات يتطلب منك التدريب المستمر لتقوم بهذا العمل بدقة، حيث أن تكنولوجيا توليد القدرة والفولطية العالية في المركبات الهجينة وضعت تحديات كبيرة من حيث المعرفة المتخصصة والمهارات المطلوبة في مجال صيانة وإصلاح المركبات الهجينة.

١-٢ متطلبات الأمان في صيانة المحركات الكهربائية في المركبات الهجينة

تعد الحماية الشخصية عند التعامل المباشر أوغير المباشر مع الأنظمة الكهربائية المستخدمة في المركبات الهجينة وأجهزتها أثناء تنفيذ عمليات الفحص والصيانة من أهم الأمور الواجبة، لتفادي وقوع الحوادث والإصابات وذلك بالرغم من تزويد أنظمة الفولطية العالية في هذه المركبات بكل وسائل الحماية الممكنة من قبل الشركات الصانعة من التيار والفولطية الزائدين ومن قصر الدارات الكهربائية والأقواس الكهربائية.

أ - قبل البدء بتنفيذ الإصلاح وقبل البدء بتنفيذ الإصلاح اللازم للمحركات الكهربائية في المركبة الهجينة يجب عليك معرفة طريقة عملها ونظام نقل الحركة والقدرة المستخدم في المركبة، حيث توجد أنواع عديدة من المركبات الهجينة التي تشترك فيما بينها بوجود إشارات وبيانات التهجين على الجزء الخلفي من جسم المركبة أو على جانب المركبة أو تحت غطاء المحرك، لذا يجب تعرف المركبة المراد التعامل معها أو لا.

ومع ازدياد استخدام الأجهزة الكهربائية في المركبات، تم تحديد عدد من المجالات المثيرة للقلق للتخفيف من مخاطر التعامل معها غير المتوقعة، فعلى سبيل المثال وقبل تنفيذ عمليات التشخيص والصيانة للمركبة الهجينة، يجب تثبيت عجلات المركبة وفرامل الوقوف وتعرف بيانات المركبة وطريقة تشغيلها ومن ثم نزع مفتاح التشغيل وحفظه في مكان آمن وتأمين زر التشغيل على وضع الإغلاق وفصل أقطاب المركم وعدم لمس أو قطع خطوط الفولطية العالية ونزع قابس الخدمة من المركبة الخاص بالصيانة ووضعه في مكان أمن كما يجب أن تكون ملماً بالتعامل مع المركبات الهجينة من خلال التدريب المستمر.

• تنبيه: يجب العلم أن الفولطية والتيار في المركبات الهجينة يكفي أن يكون قاتلا في حال التماس المباشر مع دارات الفولطية العالية فيها، علماً أنها معزولة بالكامل عن جسم المركبة في جميع أنواع المركبات الهجينة، لذا عليك استخدام كفوف عازلة وواقية من الصعقات الكهربائية أثناء العمل.

ب- عند إجراء الصيانة

ومن الأمور الواجب عليك معرفتها عند التعامل مع دارات المحركات الكهربائية المحاذير المبينة في الدليل الخاص بالمركبة الهجينة المعنية بالإصلاح والمقدم من قبل الشركة الصانعة مثل عدم قطع أسلاك الفولطية العالية أو التسبب في تلفها وخاصة الخط الواصل بين بطارية الفولطية العالية المثبة في مؤخرة المركبة وأجهزة التحكم في عمل محركاتها الكهربائية. وبمثابة تحذير واضح للسائق ولفني الصيانة فإن جميع خطوط دارات الفولطية العالية في هذه المركبات ذات لون برتقالي فاقع كما هو مبين في الشكل (٢٤).

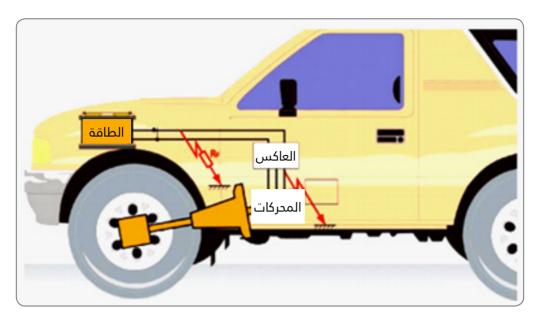
الشكل (٢٤): خطوط الفولطية العالية/لون برتقالى.

وعلى سبيل المثال تم تزويد المركبات الهجينة بوسائل السلامة التالية لحمايتها والسائق فى حال وقوع حادث ما للمركبة وذلك للحد من أخطار الفولطية العالية ومنها:

- مفاتيح قصور ذاتي تعمل على فصل خطوط الفولطية العالية والوقود من خلال وقف مضخة الوقود عن العمل عند تعرض المركبة لحادث ما.
- فصل نظام الفولطية العالية عن العمل في أي حال يوضع فيها مفتاح التشغيل على وضعية البغلاق (OFF).
- مصهر (Fuse) حماية لبطارية الفولطية العالية في حال ارتفاع قيمة التيار الكهربائي.
- حساسات حرارية تعمل على فصل بطارية الفولطية العالية عن الدارات الكهربائية
 عند ترك مفتاح التشغيل على وضعية التشغيل (ON) وارتفاع درجة حرارة مجموعة
 المركم.
- تم تصميم توصيلات الفولطية العالية بطريقة يتم فصلها في حال ارتفاع التيارات
 الكهربائية في الدارات.

وفي حال تعذر سحب مفتاح التشغيل من المركبة لسبب ما، يجب عمل التالي:

- نزع المركم المساعد (12V) من المركبة.
- فصل المصهر الرئيس من علبة المصهرات (الفيوزات) والانتظار لمدة عشر دقائق قبل بدء العمل.
- الانتباه لخطوط وأجهزة الفولطية العالية وعدم قطع أي خط أو فتح أي جهاز من أجهزة الضغط العالمي وقبل التعامل معها يجب فحصها باستخدام مفك فحص خاص للتأكد من أن الفولطية فيها لا تزيد عن (١٢) فولط.


وأصبح متاحاً في الوقت الحاضر وعلى نطاق واسع استبدال أو إصلاح أحد المحركات الكهربائية من مجموعة النقل والقدرة في المركبة الهجينة بدلا من استبدال المجموعة بالكامل وقبل إجراء هذا العمل يجب عليك:

- قراءة دليل الصيانة للمركبة المعنية بالعمل وتعرف خطوات الفك والتركيب.
- قراءة رموز الأعطال المخزنة في وحدة التحكم والتحقق من وجود رموز الأعطال الخاصة
 بالمحركات الكهربائية وبالتسريب الكهربائي من خطوط الفولطية العالية الموصولة
 بها على شاشة جهاز الفحص.
- تنظيف أقطاب كبلات الفولطية العالية من الصدأ لأنها من مسببات التسرب الكهربائي وبعد نزع مجموعة محركات القدرة الكهربائية عن المركبة وقبل تركيب محركات جديدة أو استبدال ملفاتها، عليك تفقد ملفات المحركات الكهربائية على وجود أثار لارتفاع حرارتها أثناء عملها على المركبة وحدوث حرق فيها كما هو مبين في الشكل (٢٥) للتأكد من تلفها وتحديد السبب في ارتفاع حرارتها لمعالجة السبب.

الشكل (٢٥):ملف محروق.

ومن بنود الصيانة الضرورية في المركبات الهجينة إجراء الفحص المنتظم لأجهزتها الكهربائية مثل البطارية الهجينة ومحركات المركبة الكهربائية والأجزاء المرتبطة بها والكشف عن التسربات الكهربائية (High Voltage Leaks) إلى الهيكل، حيث يعد تسريب الفولطية العالية إلى هيكل المركبة، من أكثر الأعطال انتشارا فيها، بالمقارنة مع أجهزة وأنظمة الطاقة الأخرى في المركبة كما هو مبين في الشكل (٢٦).

الشكل (٢٦): التسريب الكهربائي لجسم المركبة.

۲-۲ التقييم الذاتي

- ١. أجب عن الأسئلة المدرجة أدناه.
- 7. إذا كنت غير قادر على إجابة أي من أسئلة التقييم، ارجع إلى المعلومات النظرية أو استشر مدربك إن كان ذلك ضرورياً.

ــئلة:	الأســ

:ر	السؤال الأول
ر سحب مفتاح التشغيل من المركبة لسبب ما يجب عمل التالي قبل البدء	في حال تعذ
ت الإصلاح:	بتنفيذ عمليار
	•

السؤال الثاني: ما جهاز الميجر؟ ولماذا يستخدم؟

السؤال الثالث:

اذكر خمساً من متطلبات الأمان عند صيانة المحركات الكهربائية في المركبة الهجينة.

۲-۳ التمرين العملي

الزمن المخصص للتمرين	رقم التمرين: (۱)
۱۲ ساعة	اسم التمرين: استبدال ملفات محرك الجر (MG2)
	في المركبة الهجينة.

الإجراءات السلامة والصحة المهنية عند تطبيق تمارين هذه الوحدة

إن تطبيقك لإجراءات السلامة والصحة المهنية والسلوك المهني السليم عند تطبيق تمارين هذه الوحدة هو الطريقة الأمثل لنجاحك واكتساب احترام وتقدير الآخرين وتجنبك للحوادث المحتمل حدوثها أثناء العمل. ومن أهم هذه السلوكيات ما يأتى:

- التقيد بلباس التدريب داخل الورشة وارتداء معدات الوقاية الشخصية المناسبة لطبيعة العمل.
 - المحافظة على نظافة وترتيب المشغل ومكان العمل.
- المحافظة على الأجهزة والأدوات واستخدامها وصيانتها بحسب تعليمات الشركة الصانعة.
 - المحافظة على البيئة والاقتصاد في استخدام المواد والطاقة.
 - احترام قواعد العلاقات البينية والعمل كعضو ضمن فريق في بيئة العمل.
 - التقيد بتعليمات السلامة الخاصة بالمركبة المعنية بالإصلاح.
- الأهداف: يتوقع منك بعد تنفيذ هذا التمرين أن تصبح قادراً على استبدال ملفات محرك الجر (MG2) في المركبة الهجينة.
 - شروط الأداء
 حسب تعليمات المدرب
 - الأدوات والتجهيزات والمواد اللازمة لتنفيذ الأداء

الأدوات والتجهيزات والمواد			
رافعة هيدرولية.	٤	صندوق عدة.	I
أدوات الوقاية الشخصية.	0	مفتاح عزم.	Г
		قطع غيار.	٣

- الأنظمة والتعليمات والمراجع اللازمة لتنفيذ الأداء
 - ۱. نسخة من الوحدة التدريبية.
 - ٢. دليل الفحص والصيانة.

• خطوات العمل

الرسوم التوضيحية	خطوات العمل والنقاط الحاكمة	الرقم		
جهز المواد والعدد والأدوات اللازمة للعمل وتأكد من صلاحيتها قبل الاستعمال.				
	أمن وقوف المركبة في موقع العمل.	Г		
عرف موقع المحرك الكهربائي معه أثناء	اقرأ دليل الإصلاح وتعليمات السلامة الخاصة وتع وطريقة الفك والتركيب.	٣		
عمل.	انزع قاطع الخدمة وانتظر عشر دقائق قبل البدء بالا	٤		
ارفع المركبة على رافعة مناسبة وأمنها وحرر مجموعة النقل والمحركات من جميع الوصلات الميكانيكية والكهربائية المتصلة بمجموعة المحركات كما في الشكل المجاور.				
	فك براغي تثبيت غطاء المحرك الكهربائي وانزعه كما في الشكل المجاور وضعه جانباً.	1		
	تفقد ملفات المحرك كما في الشكل المجاور وتعرف طريقة نزعها من المجموعة كما في دليل المركبة المعنية.	V		

انزع العضو الدوار وملفات المحرك كوحدة واحدة وضعها جانبا كما في الشكل المجاور.	٨
جهز وتفقد قطع الغيار الجديدة المبينة في الشكل المجاور (الملفات والعضو الدوار).	9
ضع وحدة ملفات المحرك المراد استبدالها بجانب القديمة وتأكد من أنها تحمل المواصفات نفسها كما في الشكل المجاور.	Ι.
ركب مجموعة ملفات المحرك الجديدة والعضو الــدوار في غلافها داخل المركبة وصل وصلاتها الكهربائية كما في الشكل المجاور.	11
نظف غطاء المحرك الكهربائي ومن ثم ضع طبقة من معجون منع التسريب على حوافه كما في الشكل المجاور.	17

	ركب الغطاء في مكانه كما في ال ومـن ثـم شـد بـراغـي التثبيت بالا بحسب الدليل.	18
موعة التي تم فكها عند نزع ملفات المحرك.	صل جميع الوصلات المرتبطة بالمج	1 &
	شغل المركبة وتفقد العمل.	lo
خر.	كرر التمرين لمركبة نفسه من نوع آ	١٦
نسب التعليمات ونظف موقع العمل.	اجمع العدة بعد تنظيفها واحفظها ،	IV

الزمن المخصص للتمرين	رقم التمرين: (۲)
۱۲ ساعة	اسم التمرين: استبدال المحرك/المولد في المركبة
	الهجينة.

- **النُهداف:** يتوقع منك بعد تنفيذ هذا التمرين أن تصبح قادراً على استبدال المحرك/ المولد في المركبة الهجينة.
 - شروط الأداء

حسب تعليمات المدرب

• الأدوات والتجهيزات والمواد اللازمة لتنفيذ الأداء

الأدوات والتجهيزات والمواد						
ا صندوق عدة. ٤ رافعة هيدرولية.						
أدوات الوقاية الشخصية.	0	مفتاح عزم.	٢			
		قطع غيار.	٣			

- الأنظمة والتعليمات والمراجع اللازمة لتنفيذ الأداء
 - ١. نسخة من الوحدة التدريبية.
 - ٢. دليل الفحص والصيانة.

• خطوات العمل

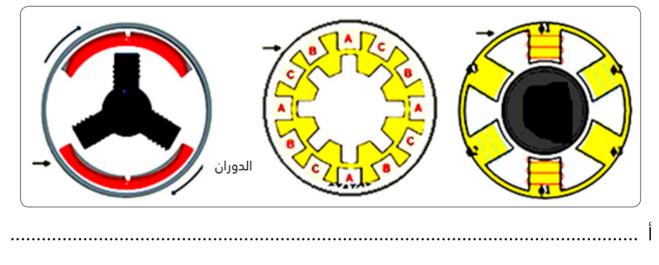
الرسوم التوضيحية	خطوات العمل والنقاط الداكمة	الرقم		
جهز المواد والعدد والأدوات اللازمة للعمل وتأكد من صلاحيتها قبل الاستعمال.				
أمن وقوف المركبة في موقع العمل.				
كبة المعنية وتعرف طريقة نزع المحركات	اقرأ دليل الإصلاح وتعليمات السلامة الخاصة بالمر عن المركبة.	٣		

	انـزع سـالـب البطارية المساندة وقـاطع الخدمة وانتظر عشر دقائق قبل البدء بالعمل.	٤
	ارفع المركبة على رافعة مناسبة وأمنها.	O
	فرغ مجموعة المحركات من الزيت وسائل التبريد.	٦
الوصلات الميكانيكية والكهربائية المتصلة	حرر مجموعة النقل ومحركات توليد الطاقة من جميع بمجموعة المحركات كما في الشكل المجاور.	V
	انزع مجموعة المحركات من المركبة وانقلها إلى طاولة العمل كما في الشكل المجاور.	٨
	ثبت مجموعة محركات القدرة على طاولة العمل كما في الشكل المجاور.	٩

	افصل مجموعة المحركات الكهربائية عن محرك الاحتراق الداخلي كما في الشكل المجاور.	Ι.
	انزع المحرك/المولد من مجموعة محركات القدرة.	11
ىسھا.	استبدل المحرك/المولد بآخر جديد وبالمواصفات نف	7 1
	اجمع مجموعة المحركات بعكس خطوات الفك كما في الشكل المجاور.	18
	ركب المجموعة في مكانها كما في الشكل المجاور ومـن ثـم شـد بـراغـي التثبيت بالعزم المناسب بحسب الدليل.	18
فكها عند نزع ملفات المحرك.	صل جميع الوصلات المرتبطة بالمجموعة التي تم ة	Io
	ضع زيتاً جديداً كما في الشكل المجاور وسائل تبريد جديد بحسب مواصفات الشركة الصانعة.	۱٦

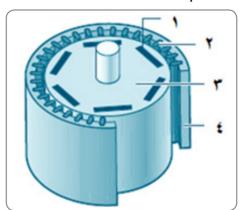
شغل المركبة وتفقد العمل.	IV
كرر التمرين لمركبة من نوع آخر.	۱۸
اجمع العدة بعد تنظيفها واحفظها بحسب التعليمات ونظف موقع العمل.	19

٧. اختبار المعرفة

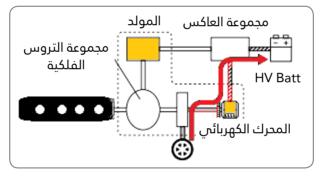

اسم الوحدة التدريبية: صيانة المحركات الكهربائية في المركبات الهجينة.	
المهنة: كهروميكانيك المركبات الهجينة.	
اسم المتدرب:	•••••
اسم المدرب:	
علامة المتدرب:	
تعليمات الدختبار:	
١. أجب عن الأسئلة الآتية جميعها وعددها (٦ أسئلة).	
7. مدة الاختبار: (ساعة واحدة).	
السؤال الأول: (١٥ علامة)	
ضع دائرة حول رمز الإجابة الصحيحة لكل فقرة من الفقرات الآتية:	
١- كبلات الضغط العالي في المركبات تكون عادة باللون:	
أ . البرتقالي. ب. البني الغامق. ج. الأبيض. د. الأخضر.	
٢- من وظائف المحرك/المولد (MG1 or 2): أ . تشغيل محرك الاحتراق الداخلي في بداية تشغيل المركبة. ب. تأمين قوة الجر اللازمة للمركبة عن السرعات البطيئة. ج . تأمين قوة الجر اللازمة للمركبة عن السرعات العالية. د . تأمين قوة الجر اللازمة للمركبة عند جميع السرعات.	
٣- يستخدم في معظم المركبات الهجينة محركات من النوع:	
أ . دائمة المغناطيسية. ب. الترددية.	
ج . ذي الفراشي الكربونية.	
السؤال الثاني: (١٥ علامة) يجب التقيد بما يأتي عند استخدام أجهزة قياس مقاومة العزل:	
	••••••

السؤال الثالث: (١٥ علامة) ضع علامة صح (\checkmark) أمام العبارة الصحيحة وعلامة خطأ (x) أمام العبارة الصحيحة وعلامة خطأ (x)

خطأ	صح	العبارة	
		تستخدم المحركات الكهربائية بشكل عام في تحويل طاقة الحركة إلى طاقة	ı
		كهربائية.	
		يستخدم في المركبات الهجينة محركات كهربائية متزامنة ثلاثية الطور ذات تيار	7
		متناوب ومجال مغناطيسي دائم.	
		لا تتأثر جودة مقاومة العازل لأي نظام كهربائي، بدرجات الحرارة والرطوبة.	٣
		ينتج عن زيادة الحمل على المحرك الكهربائي ارتفاع في درجة حرارته.	٤
		يتكون المحرك الكهربائي البسيط من موصل كهربائي دوار موضوع بين	0
		قطبين شمالي وجنوبي لمغناطيس ثابت.	


السؤال الرابع: (١٥علامة)

توجد المحركات ذات التيار المتناوب في أنواع مختلفة، اذكر هذه الأنواع مستعيناً بالشكل التالي، وبين على الشكل كل من العضو الدوار والعضو الثابت لكل نوع.



السؤال الخامس: (١٥ علامة)

اذكر نوع ومكونات المحرك الكهربائي المبين في الشكل الآتي، نظم الإجابة بشكل جدول من قائمتين تتضمن الأولى الأرقام والثانية أسماء الأجزاء.

السؤال السادس: (٢٥ علامة) مستعيناً بالشكل الآتي، اشرح الوضع الذي تسير به المركبة الهجينة.

٨. اختبــار الأداء

- معايير التقييم تشمل:
- ١- تنفيذ التمرين (٦٠ علامة)
- ٢- تحديد وتطبيق قواعد السلامة والصحة المهنية (٢٠ علامة)
 - ٣- جودة التنفيذ وسرعة الإنجاز (٢٠ علامة)
 - زمن الاختبار : ٣ ساعات
- اسم التمرين: استبدال المولد الكهربائي في المركبة الهجينة.

		العلامة	العلامة				.ختبار	محتوى الا
التسهيلات اللازمة	الممنوحة	المخصصة	معيار الأداء	الخطوات الرئيسة والنقاط الحاكمة	عناصر المناقشة	عناصر الأداء		
- أدوات الوقاية الشخصية.		Г		ارتداء ملابس العمل ومعدات الوقاية الشخصية.		التجهيز لتنفيذ العمل والوقاية الشخصية.		
- مولد جدید.		٢		تأمين وقوف المركبة في موقع العمل.				
- أدوات قياس الأبعاد والأعماق.		٣		نزع قاطع الخدمة من المركبة.				
		Г			لماذا يجب نزع قاطع الخدمة قبل البدء بالعمل؟			
- دليل الصيانة.		٢		فصل سالب البطارية المساعدة ١٢ فولط.				
- مفتاح عزم.		٣		قراءة دليل الإصلاح وتعليمات السلامة الخاصة بالمركبة المعنية بالإصلاح.				
- صندوق عدة.		Г		تعرف موقع تركيب المولد وطريقة فكه.				
- جهاز قياس كهربائي متعدد الأغراض.		7		فصل الوصلات الكهربائية المرتبطة بالمحركات.		نزع محركات القدرة عن المركبة.		
		٢		فك الوصلات الميكانيكية المرتبطة بالمحركات.				
		٦		نزع محركات القدرة من المركبة بعناية كوحدة واحدة.				
		٢		تثبيت المجموعة على طاولة العمل.				
		٤		فصل محرك الاحتراق الداخلي عن مجموعة توليد القدرة.				
		7		فصل المحرك الكهربائي عن المولد مع مراعاة تثبيت جنزير نقل الحركة في مكانه.				
		0		تفقد مجموعة تروس التوزيع (تقسيم القدرة) ومداورها.		تفقد وفحص عناصر النظام.		
		٢		تفقد محامل التروس واستبدال التالف منها.				

Г		نزع جنزير نقل الحركة عن مجموعة تروس التقسيم والبكرات الخاصة به.		
٣		فحص بقايا الزيت من حيث وجود رواسب معدنية فيه.		
г			على ماذا يدل وجود رواسب معدنية في الزيت؟	
Г		تفقد المولد الجديد والتأكد من مطابقته للقديم		
٣		تركيب مجموعة تروس النقل والتوزيع بعد تنظيفها		
Г		جمع المولد بالمحرك الكهربائي		
٤	بدسب التعليمات في الدليل.	شد جميع براغي الربط باستخدام مفتاح العزم		
Г			كيف تتعرف مقدار عزم الشد المطلوب ؟	
٤	بحسب الدليل.	قياس المسافة بين السطح العلوي لمجموعة التروس الفلكية وغطاء المولد.		
Г		وضع معجون سيلكون على سطوح التثبيت للحشوات، بعد تنظيفها جيدا والتأكد من القياسات.		تجميع عناصر المجموعة وتركيبها في مكانها داخل
Г		التأكد من شد جميع براغي الربط باستخدام مفتاح العزم كما في الدليل.		المركبة.
Г		تركيب مانعة التسريب الخاصة بمحور الدخل.		
٣		جمع محرك الاحتراق بمجموعة المحركات الكهربائية ومن ثم شد براغي الربط،		
٣		تركيب مجموعة محركات القدرة بعد جمعها في مكانها في المركبة.		
0		تركيب جميع القطع التي تم فكها بعكس خطوات الفك.		
Г		ملء المحرك بزيت التبريد بحسب الدليل.		فحص العمل والتأكد
Г		ملء سوائل التبريد حسب التعليمات في الدليل.		جودة التنفيذ
Г		تشغيل المركبة وتفقد العمل.		
Г		جمع العدة بعد تنظيفها وحفظها بحسب التعليمات وتنظيف موقع العمل.		

	1.	أقل من (۲٫۳۰) ساعة.	سرعة الإنجاز
	o	من (۲٫۳۰-۲٫۶۰).	
	صفر	من (۲٫٤٥- ۳٫۰۰) ساعة.	
	1	العلامة الكلية	

التاريخ:التاريخ	التوقيع:	سم المدرب/الفاحص:
-----------------	----------	-------------------

٩. قائمة المصطلحات

المصطلح الإنجليزي	المصطلح العربي	الرقم
Electrical Circuit	دارة كهربائية	I
Permanent Magnet Motors	محرك بمغناطيس دائم	Γ
Switched Reluctance Motors	محركات ترددية	٣
Selfexited	تهییج ذاتی	٤
Motor	محرك كهربائي	0
Malfunction	عطل	٦
Megohmmeter	جهاز الميغر	V
Induction Motors	محركات حثية	٨
Induction	حثى	٩
Hybrid	هجين	Ι.
Rotor	عضو الدوار	11
Peak Torque	عزم الذروة	7 1
Technical Instructions	تعليمات فنية	۱۳
Magnetic Field	الحث المغناطيسي	1 &
DC-Motors	محركات التيار المباشر	Ιo
AC-Motors	محركات التيار المتناوب	١٦
Scan Tools	جهاز المسح الإلكتروني	١٧
Megger	الميجر	۱۸
Insulation Resistance	مقاومة العزل	19
High Voltage Leak Detected	الفولطية العالية	۲.
Ready	جاهزية	17
HCU	وحدة التحكم	77

- Norm Chapman, Principles of electricity & eloctrinics for automotive technician, Delmar Thmson Learning
- Konrad Reif , Fundamentals of Automotive and Engine Technology:
 Standard Drives, Hybrid Drives, Safety Systems Paperback 10 Jul 2014
- Husain, Electrical and Hybrid Vehicles-Design fundamentals, CRC Press 2003
- http://www.honda.com
- http://www.toyota.com.au/hybrid-synergy-drive/hybrid
- http://www.ucsusa.org/clean-vehicles/electric-vehicles/how-do-hybrids-
- http://www.searchautoparts.com/motorage/electrical/megohm-testing-hybrid-vehicles?page=0,1#sthash.h3friVZI.dpuf
- Toyota Training Manuals