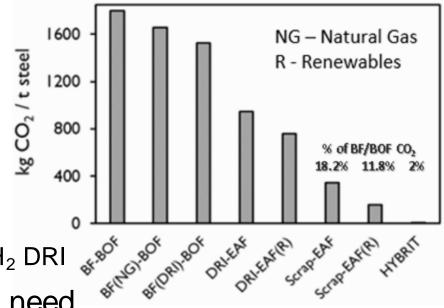

4th Australian & New Zealand Annual Steel Symposium

Handling the Future Dearth of H₂ and DRI Quality Iron Ore

Introduction


- IEA steel decarburization solution H₂ DRI EAF steelmaking BUT issues abound
 - ✤ Availability green energy (GE) & H₂ (whatever color! <0.1% green 2021)</p>
 - ✤ DRI quality iron ore only 3% to 4%
 - Conversion is capital intensive & fraught with "build rate" impossibilities
 - ✤ Willingness to pay clients for pricey clean steel; steel mills for GE & H₂
- Are there less capital-intensive alternatives with reduced techno-socioeconomic impact than BF/BOF conversion &/or closure to consider?
 - ✤ BF Tuyere injection
 - ✤ HBI to the BF & BOF
 - ✤ CCUS
 - Coupling DRPs and low-grade ores to "melters" and BOFs
- > How will non-compliance be handled? Heavy taxes on cheap, "black steel"?

IEA Solution – H₂ DRI EAF Steelmaking

- > Globally, steel uses 8% energy, producing 7%-9% CO_2
 - Coke (6%E in '15) needed to reduce Fe oxides & supply process energy

	MTe Steel	%	MTe CO ₂	%	Te CO ₂ / Te _{Steel}
Total	1,869.0		3,170.2		1.6962
BF/BOF	1,346.0	72	2,961.2	92	2.2000
EAF	523.0	28	209.0	8	0.3996

Direct CO₂ Order of Plant Area (TeCO2/Te) Concern Coke 2 0.794 Sinter 0.200 4 Pellet 0.057 10 BF 1.219 BOS 0.181 5 3 EAF 0.240

Major steel emissions are from the primary end

From the EU Commission – JRC Scientific & Policy Reports "Prospective Scenarios on Energy Efficiency & CO $_2$ Emissions in the EU I&S Industry", 2012 publication

> BF with NG DTI or DRI decreases CO_2 by:

✤ ~9 to 16% (NG) & ~ 21% (DRI) - 2019

> 100% scrap EAF emissions:

✤ 18.2% BF/BOF; 11.8% with Renewable Energy (RE); 2% with H₂ DRI

✤ BUT 2050 H₂ availability is projected to be 4% - 11% of need

Challenges for EAF Green Steelmaking

> In 50y (to 2020) 104.4MTe_{DRI}/y produced; ~2.08MTe_{DRI}/y growth or ~2MTe plant/y

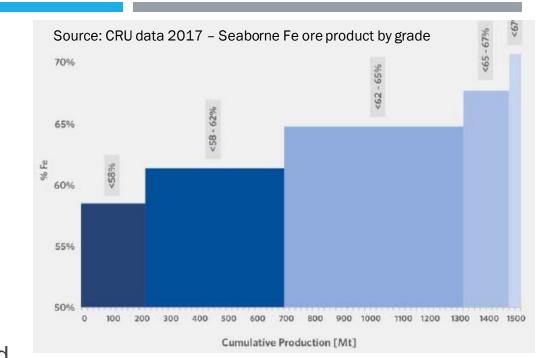
> 120MTe H₂ 2021 world production (<0.1% green). DRPs alone need +9.6% & +21.3%

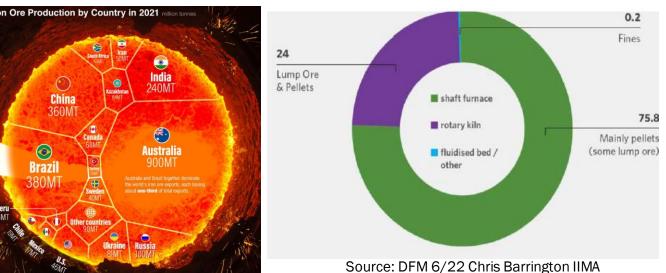
		2		-			0 - 7					ENERGY	14.8	16.1				
Year	MTe/y DRI		# of	Years to	# DRI	МТе	MTe H ₂ /y (56.2kgH ₂	TW for Total H ₂ (57.8M	# of 20MW	# of 400MW	# of EAFs for 2MTe/y	GJ/Te _{steel}						
					plants/ Year to	H ₂ / DRI						CO2 Te/Te _{steel} (GTe/Y)	0.6 (1.2)	1.1 (2.7)				
		plants gro	grow	20XX	plant	/Te _{DRI})	W /TeH ₂)	PEMs	PEMs	Tor Zimrery	SCRAP EAF	38%	36 %					
											100%H ₂	8%						
2050	Total	411	205.5	28	7.34					15% DRI =	DRI w CCUS	2 %						
	DRI	411	200.0		7.54	1.04					1.42BTe _{Steel}	DRI	9 %	11%				
	H₂ DRI	213	106.5		3.8		11.5	691.87		1,730	710 total	EAF STEELMAKING	57.5%	47.4%				
												0.113			(1.24k/y)	(62/y)		SR-BOF w CCUS
2070	Total DRI	638	319			9	6.65						95% DRI = 2.74BTe _{steel}	BF/BOF w CCUS	3%			
		48							L . I U I U steel	BF/BOF	30 %	52 %						
	H ₂ DRI 473	473	236.5		4.97		25.5	1,535.75	76,790	3,840	1,370 total	SCRAP	45.3%	44.7%				
							, i i i i i i i i i i i i i i i i i i i	(1.6k/y)	(192/y)		STEEL - BTe/y	2.0	2.2					

Green Energy for 52.45% EAF steelmaking (1.1BTe/y – Table ave.); More kWh for 0%C in-situ

- ✤ 100% scrap: 295 386kWh/Te (340.5kWh/Te_{is}) = +375TW/y -
- ✤ 80% 2.5%C DRI: 480 580kWh/Te (530.0kWh/Te_{Is}) = +583TW/y -
- ✤ 80% 0%C DRI: 650 704kWh/Te (677.0kWh/Te_{ls}) = +745TW/y
- Delta 208TW/y Delta 370TW/y

2050 IEA

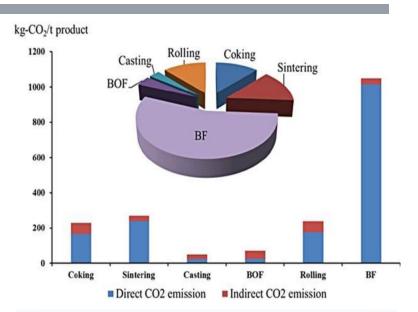

SDS

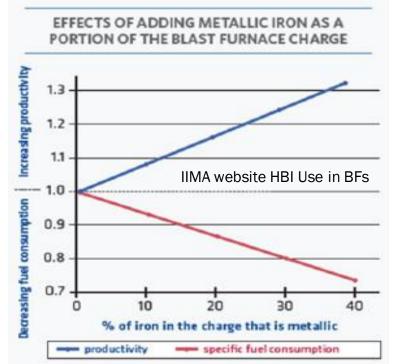

STEPS

RH IEA Table doesn't agree with others (11%-19% DRI? Only 8% H₂DRI; 30% to 52% BF/BOF

Traded Ore Type & Usage

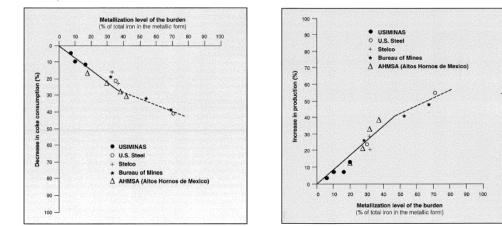
- Producers: Australia, Brazil China
- 1.5BTe ore 2017, 168MTe DRI & deteriorating quality (Poveromo):
 - Sinter feed ores 63.9%Fe 1998 → 61.9%Fe 2019; increasing (SiO₂+Al₂O₃) 5.11% → 7.08% & P 0.048% → 0.067% respectively
 - Seaborne Fe pellet, concentrates & DRI quality pellet remained constant masking beneficiation need
- IIMA sees a significant DR shortfall
 - Announced DRI projects will use current available tonnage by 2030
 - Supply for own markets (Ukraine/Russia)
 - Low availability of suitable lump ore inc.
 - Baffinland Iron Mines (N Canada) IF expansion approved
 - Kumba's Sishin main trade
 - Some ores difficult & costly to upgrade Pilbara (W. Australia)




Ore Projects – Current, Failed & New Mines (IIMA & Direct From Midrex 6/22)

- South America:
 - Samarco increasing Te/y
 - ✤ Anglo American's Minas Rio (Br) Bahrain Steel
 - CMP Chile high grade magnetite pellets
- Canada:
 - Champion Iron (PQ) expanding ore production & DR quality
 - IOC & AM Canada both increasing DRI pellets AM 100% Port Cartier upgrade (10MTe)
 - New Millenium Iron's LabMag & KeMag (E Canada);
- USA Mesabi Metallics (Nashwauk, MN)
- CIS countries have already upgraded beneficiation plants only domestic consumption?
 - Ferrexpo likely to export to EU
 - Black Iron's Shymanivske (Ukraine) 4MTe, increasing to 8MTe 68%Fe -
- Sweden & Norway:
 - LKAB converting from pellet producer to HBI supplier 6 DRPs, 3 each at Malmberget & Kiruna for Lulea & Raahe (-7MTe progressively
 - Kaunis Iron (Sweden 2MTe) expanding concentrate
 - Tacora Resources (Norway)
 - Nordic Iron Ore, Beowulf Mining (Sweden)
- > Mauritania MOU for JV between Emirates Steel & SNIM Mauritania ore supplier
- > Pellet plants next to DRP: Tosyali Algerie & SULB/Bahrain Steel & Tata (Ijmuiden existing pellet plant)
- > Australia's magnetite projects Grange Resources' Southdown, Hawsons Iron, Magnetite Mines

BF Opportunities


- > BF coke dependence \rightarrow high direct CO₂ emissions
 - Minimum coke for structure & shaft permeability replacement)
 - Chemistry dictates CO₂ evolution when converting FeO to Fe
- ➢ Kobe Steel world's lowest coke rate (239kg/Te_{HM} 4/21)
 - Using 20% lump/80% self-fluxing dolomite pellets & increasing PCI to 220kg/Te; maintained slag rate 257kg/Te
 - Previous record held by Tata Steel Ijmuiden (261kg/Te_{HM})
- Charging metallics to BF increase productivity, reduce fuels & C footprint (CO₂/Te_{HM})
 - Typically used scrap but challenged by:
 - Sizing needs (feed system) sticking & hang-ups
 - Residuals' levels &
 - Oil/volatiles (waste recycling to the sinter plant!)
 - ✤ HBI avoids these

HBI in BFs

- > BF turn-down ration isn't good; Metallic charging is used as a "turn-up ratio" &
- > HBI (pre-reduced Fe), requires melting (v. little reduction) & avoids scrap issues;
 - Reductants (energy needs) are greatly reduced
 - Tonnage increased promoting flexibility for multi-BF shops (relines, shuts, market changes, low Opex)
 - Te_{HM}/h increase almost in proportion to metallic burden fraction
 - Cheaper option (usually) than buying external slabs/billets or losing market
- > Early '60's, US Bureau of Mines (USBOM) successfully tested in Bruceton, PA BF
 - ♦ \leq 70% HBI used in small and large diam. BFs!
 - USS successful tests led to HBI plant in Venezuela; other BF shops followed HBI use:
 - Stelco ONT; Yawata Steel & Kawasaki Steel; AHMSA MX; Burnpur, India; USSR; Romania; Czech.
 - Armco Middletown used 500net t/d (DFM 3Q '92)
- Early results from USBOM et al
 - ✤ Generally, per 10% metallization:
 - +7% to 8% productivity; -7% coke rate
 - 300kg HBI/Te_{HM} is maximum due to shifting of thermal equilibrium → low TG T^oC

Results of BF HBI Use

- 1993 AK Steel & Weirton Steel used 385kTe HBI (29% imports 495kTe '94) in 3BFs
 150#/t_{HM} (75kg/Te)
- > AK used continuously since 1980s (AK Steel, Iron & Steelmaker 7/94 & Impact of HBI Use in Integrated Steel Plants DFM 17/09/2022
 - ✤ 30% HBI + scrap
 - ✤ Decreased fuel to 440kg/Te_{HM}
 - Productivity increased to 4Te/d/m3 working volume
- > VAI Linz tested VAI TX HBI 75 to 160kg HBI/Te_{HM}; reported 100kg HBI/Te_{HM} (DFM 3Q 2020)
 - ✤ -25kg/Te_{HM} ECR/reducing agents (21.9 to 27.5kg & 40kg with 150kg/Te_{HM}) of that
 - (coke 10.9-18.1kg/Te_{HM} & PCI had to be adjusted for <coke)
 - \checkmark <S with >C
 - 0.5% to 0.7%S coke so <coke (reductant), so <S in system & $<S_{HM}$ (S α slag rate, recycled material, melt rate (faster rate, <time on coke, <S, C_{%S} (PCI)) & as S blocks HM carburization, $<S_{HM} = >C_{HM}$
 - ✤ +10% productivity (7.3-10.1%);
 - ✤ -0.75% less gas use (0.4% to 1.1%)
 - ✤ +1.5% TG calorific value (17.4kWh/Nm³) & >CO/H₂ available as <reduction; higher CO</p>
- No significant impact on TG T°C; negative influence on BF operation (permeability, cooling capacity, gas flow on walls)

Results of BF HBI Use

- VAI results for the extreme range of HBI volumes used
 - ✤ Reducing agents
 - ✤ O₂ flow rate(3k 8kNm³/h)

. .

١.

11

150

- ✤ Melt rate
- ✤ Gas use

53

52

51.

Utilization [%]

J 50

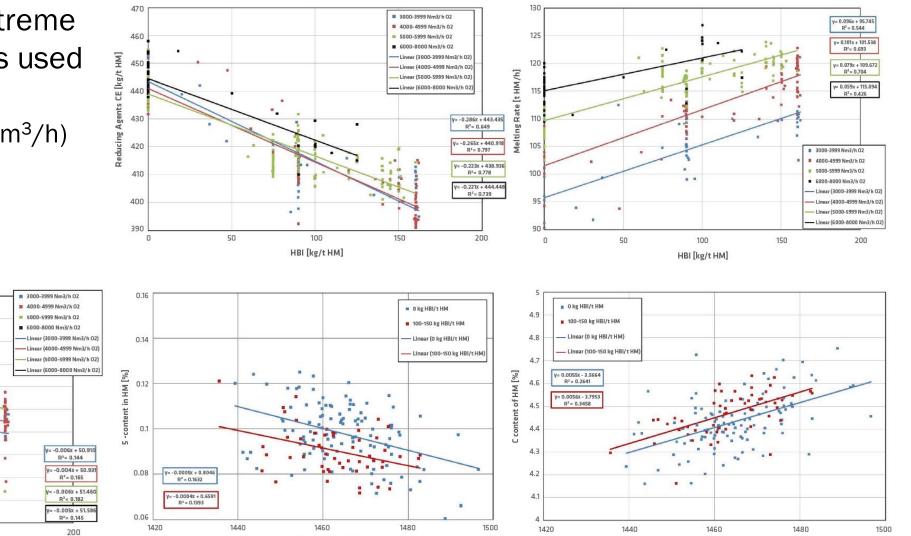
49.5

49

48.5

48

0

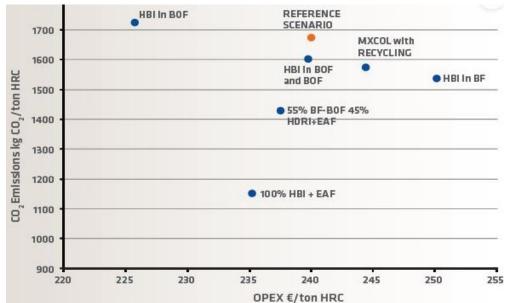

52.5

✤ %S_{HM} & %C_{HM}

50

100

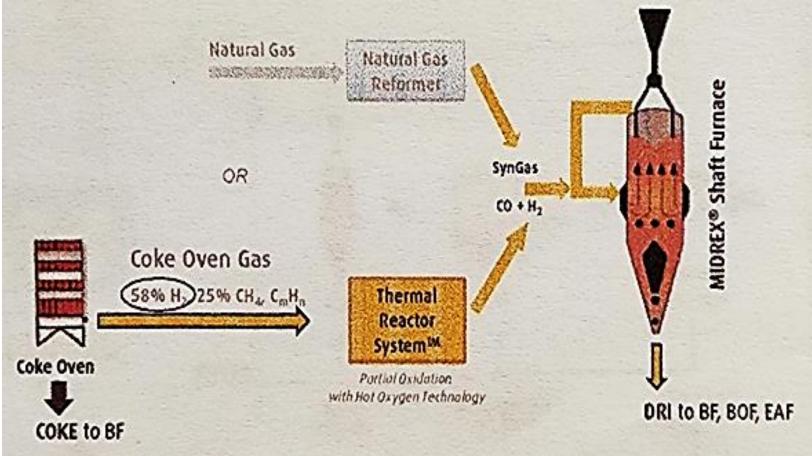
HBI [kg/t HM]


HM Temperature [°C]

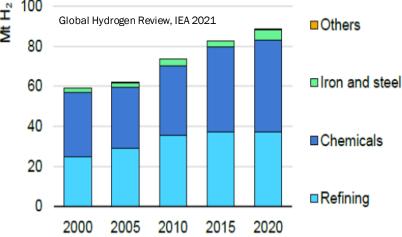
HM Temperature [°C]

HBI in BF

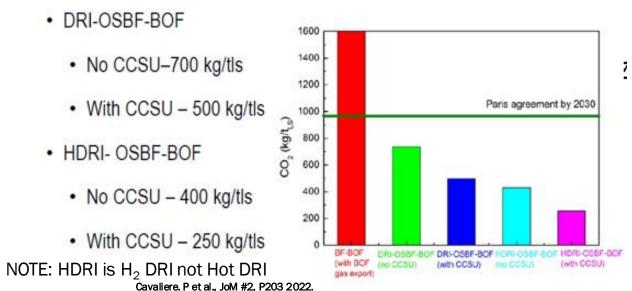
DFM 2Q 1994 conversion costs Additional profit = \$15,000/d; \$5.475M/y \$34,050/d or \$12.428M today 400#/t_{HM} (200kg/Te_{HM}) HBI used Productivity +22.28% HM; +22.37% slab Shipped +725t/d (659Te/d)


- > Opex & CO_2 emissions/Te_{HRC}
 - +\$14, -12% (Impact of HBI Use in Integrated Steel Mills MTI & Paul Wurth, Technical Article 6 2017

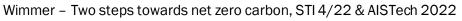
	Unit Cost		Burden without Prereduced Metallics		n with d Metallics	
	\$/NT	#/NTHM	Cost	#/NTHM	Cost	
Coke	100	960	\$48.00	830	\$41.50	
Sinter	30	1100	16.50	1100	16.50	
BOF Pit Scrap	50	50	1.25	50	1.25	
HBI	120	0	0	400	24.00	
Pellets	35	1980	34.65	1410	24.68	
MATERIAL COST/NTHM			\$100.40		\$107.93	
HM Production - NT/Day		3500		4280		
Slab Production - NT/Day (at 77% HM and 89% Slab	Yield)	4045		4950		
Ship NT/Day (80% Yield)		3235		3960		
Added Tons Shipped/Day			725			
Added Daily Gross Sales at 350 \$/NT Selling Price				\$253,750		
Less Added Costs - HM 7.5 x 4280 ≈ 32,10 - Conversion Cost for 725 NT x 285 \$/NT ≈ 20				\$238,725		
ADDED DAILY PROFIT	0,020			\$=15,000		

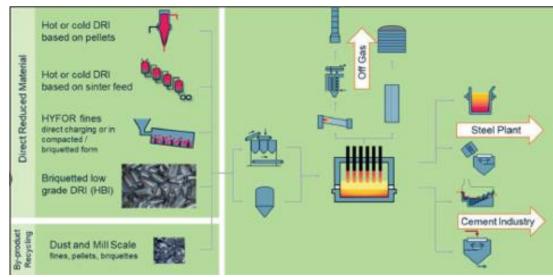

Coke Oven Gas (COG) for DRI Reduction

- Developed by Linde & Midrex
 - ♦ 1Te coke → 500Nm³COG
 → 1Te DRI;
 - ~30% more Fe units with same C footprint
 - ◆ ~0.3TeCO₂/Te steel reduction (-15%) for an IM
- NG & COG fueling of DRP optimizes & maximizes DRP/BF synergies
 - Using COG & other plant gases lowers Opex & CO₂
 - 20GJ COG/Te_{DRI} any more energy the system would be a Midrex MXCOL DRP

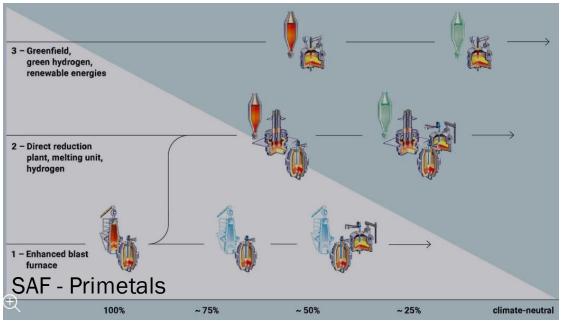

Other Brownfield BF Opportunities

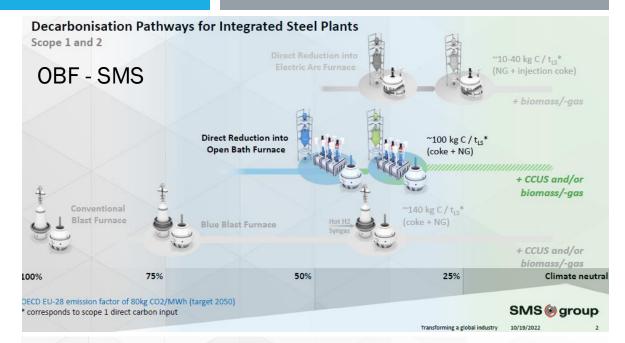
- \succ Partial replacement of process gas & C with H₂ in BFs & DRPs (when available)
- Cleveland Cliffs using NG (4"H"s!) predicts 25%CO₂ reduction by 2030
 - HBI use in BF; Pellets (-85% CO₂ vs sinter); 115kg/Te_{HM} NG tuyere injection (-9% CO₂ vs coke alone); 750kt coke battery closed
 - * Scope 1, 2, 3 = $1.63TeCO_2/Te_{steel}$ (<FR 1.8TeCO₂/Te_{steel}, assuming 50% PI @1.1TeCO₂/Te_{steel}
 - FR only use 25% PI (50% prime, 25% obsolete) so about same Scopes
 - ✤ HBI in the BOF/EAF reduces CO₂ 70% versus importing PI or DRI/HBI
- ➤ Hatch predicts PCI with 35kg of 900°C H₂/T_{HM} tuyere injection will produce
 - ✤ -20%CO₂, +1.8GJ (+35%) energy to steelworks; -100kg coke/T_{HM} for a +\$45-\$110/T_{HM}
 - Top gas recycle (TGR) & CCUS = 80% less CO₂ for ~0.4TeCO₂/T_{Is} (almost the same as expected from H₂ DRI EAF steelmaking!)
 - Blue or green H_2
- High H₂ injection compromises BF thermal characteristics
 - Can this be overcome? What is the sustainable maximum?
 - Credible sources quote 14 to $32 \text{kgH}_2/\text{Te}_{\text{HM}}$ will reduce CO₂ by 8% to 30%
 - ✤ ULCOS top gas recycling trials in 2007 saw
 - 24% CO₂ reduction &
 - 120kg/Te_{HM} reduction in (PCI+Coke)



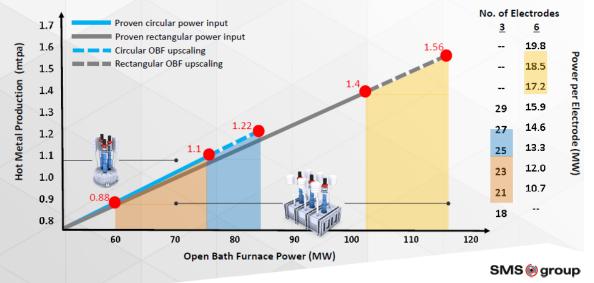

SAFs & OSBFs

- Smelters can process a wide range of low-grade input materials including recycled materials but:
 - ✤ >67.5% Fe cheaper to process through DRI/EAF
- ➤ High power requirement for DRI:
 - ✤ 800 to 900 kWh/Te_{HM}, 400kg slag/Te_{HM} SL/RN process 80% met.*
 - * 780kWh & 190kg slag/Te_{HM} projected for Pilbara ore 80% met.* * Honeyhands - CIMR, Newcastle U
- \succ CO₂ emission significantly reduced:



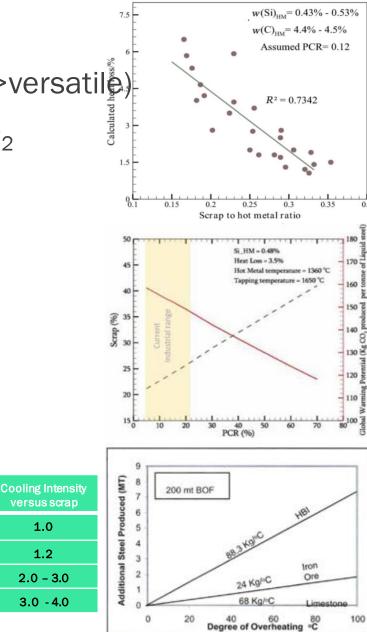

Intermediate "Melters" for Low-Grade Iron Ore or HBI

- > Inmetco, RedSmelt, Iron Dynamics Fastmet, Sidcomer to name a few
- > USA's infamous steel SAF, SDI's IDI operation modified from various industries
 - Allows SDI to circumvent scrap price volatility & prime availability penetrate auto & OEM markets
 - ✤ 500kTe liquid iron/y smelted in an SAF (using coal based DRI reduced in a NG fired RHF)
 - Typical ore 66%Fe, 4.9%SiO₂, 0.33%Al₂O₃, 0.015%P, 3%H₂O; 85% sized 0.01.mm to 1.00mm
 - Magnetic beneficiation to reduce SiO₂
 - System off gases (OGs) preheat combustion air & heat ore, coal & pellets (charged to RHF at 150°C)
 - DRI chemistry 15% FeO, 70% metallic Fe, 1%Al₂O₃, 5%SiO₂, 5%C, 0.2%S, 85% metallization @ 1000°C put in charge bottles with flux, coke, SiO₂ or other materials to charge to EAF
 - HM chemistry 95.8%Fe, 3.2%C, 0.025%S, 0.5%Si @ 1500°C
 - \clubsuit 400 to 500kWh/Te_{\rm HM}
 - Refractory lined, non-tilting, vessel with 3 electrodes (1400mm, 16MVa each), 3 tap-holes 2 iron & 1 slag.
 - Iron is desulfurized prior to EAFs
 - ✤ 1999 \$100M Capex and full cost of \$150/Te (HM) at capacity (\$178M & \$267/Te_{HM} in 2022)
 - Achieved significant reduction in energy, POT, injected C & residuals
 - Issues: Refractory wear led to higher costs; infrequently operated


Impact on CO₂ & Scaling

- Both positively impact C footprint
- Potential scaling issues
 - OSBF rectangular higher productivity
 - 1.4MTe/y, 6 electrodes @ 17.2MW ea.
 - Maybe 1.56MTe/y @ 117MW
 - Productivity & power affected by
 - DRI/HBI temp; %C_{DRI & HM}; %revert added (mill scale, BOF sludge, slags_{LF & BOF}; deS fines; dusts)

Risk Analysis of OBF Power and Configuration

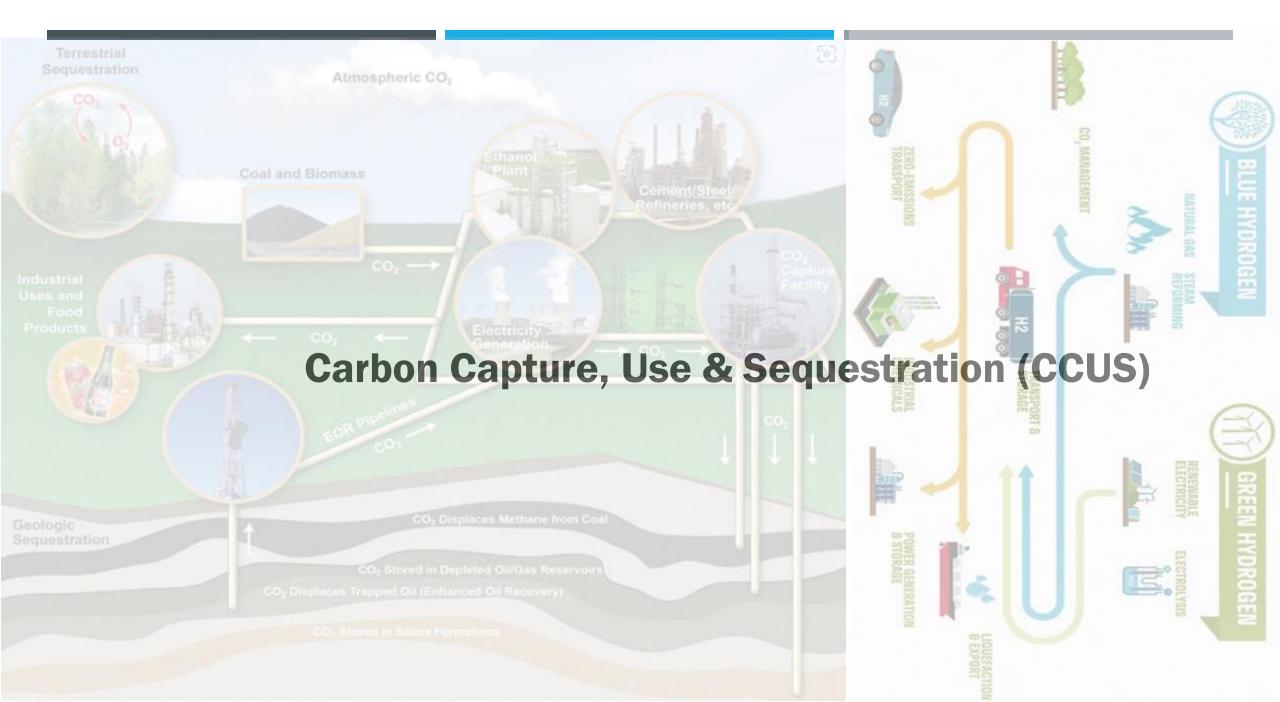

Brownfield BOF Opportunities

- BOF high productivity, tolerates a wide range of inputs (EAF >versatile)
- > Using scrap as a coolant increases productivity, reduces CO_2
 - ✤ Current world ave. ~17%; USA 20% 25%; 40%-45% tested in past
 - Cliffs & Brooks et al advocating higher use
 - Plant data derived program shows increasing scrap reduces heat loss
 - At a 35% scrap charge, heat loss is 0.9%; 10% scrap, heat loss is ~6.75%
 - ✤ Also showed increasing PCR from 10% to 30%
 - Increases scrap from 22% to 28% (dotted line, L axis)
 - Decreases GWP by 10% (red line, R axis)
 - Assumes PC heat can be transferred efficiently

> HBI can replace scrap in BOF – 95kg/Te_{ls} (slopping)

- Higher cooling intensity & productivity vs scrap
- Quality & density benefits
- > predictable heat & mass balances

K. Pastucha et al, Steel quality improvement with HBI briquette use at new greenfield LD steelmaking plant Alchevsk Ukraine AlStech 09

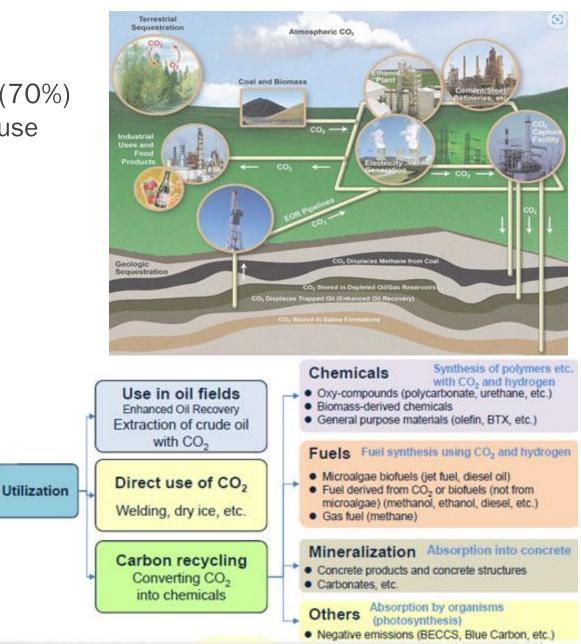


Scrap

Iron ore

Limestone

HBI


CCUS Options

Industry, transport, agriculture – hard to abate CO₂ (70%)
 CCUS can address 54% of this; >economical than H₂ use

CO₂

Capture

- Rejection of CCUS is some EU promoted CCUs
- Relatively high conversion cost for chemically stable CO₂ (Need volumes of C free H₂)
- Except for mineralization, storage is temporary
 CO₂ released by combustion or decomposition
- > Amount of chemicals & CO_2 fixation is limited
 - Capture and reuse in mills?
- ✤ Globally, 35 commercial facilities (IEA 2022)
 - ✤ 45MTeCO₂ capacity (0.12% global 36.3GTe)
 - Enhanced oil recovery CO₂ most profitable
 - CCU is cheaper for richer CO₂ sources
- >200 new CC facilities to operate by 2030 220MTeCO₂/y (0.6%)
 - Substantially under Net-Zero needs

Carbon Capture, Use & Sequestration (CCUS)

≻ Projects:

- Lanzatech with AM Ghent will produce 65.4kTe Bio-Ethanol & remove 350kTe CO2/y
- Carbon2Chem (TK) NH₃ from steel mill gases
 - With RE will be C neutral (44%N₂, 23%CO, 21%CO₂, 10%H₂, 2%CH₄)
- Carbon4Pr (AM + Dechema et al) polyurethane foam & coatings
- STEELANOL (AM Belgium + Lanzatech) transforming BOF gas using bacterial fermentation
- C⁴U EU project to use Ca as solid to separate CO₂ from BF, BOF, COG, elevate solid based capture technologies to TRL7 & design for optimal integration into IMs (<u>https://c4u-project.eu/</u>)
- ♦ Columbus CO₂ from innovative CaO kiln = green H_2 → synthetic fuels
 - CO₂ use technology also sourcing of CaO/dolo, H₂, O₂, e-CH₄. Energy integration/optimization

Summary

- \succ No argument: RE & H₂ DRI EAF steelmaking should produce the greenest steel but
 - ✤ Unrealistic challenges & "build rates" (H₂, GE and DRPs) to meet climate goals
 - Exorbitant socio-economic conversion cost for 70.8% BF/BOF steel production
 - The steel industry challenged to garner H₂ supply vs richer industries
- > Need more R&D activities to fully determine limits for green BF/BOF operations:
 - Lowest coke rate/replacement potentials?
 - Optimum NG & H₂ injection rates
 - ✤ HBI & scrap limits in BF & BOF
 - Maximizing PCR and heat transfer
 - Commercializing larger, cost efficient, productive
 - CCUS and
 - ✤ "Melters"

Potential Action to Reduce BF/BOF GHG Emissions

(BF/BOF Roadmap)

		Potential Decarbonization Pathways	Overall CO ₂ Reduction Potential	
ID Current GHG Emissions	1. Process Efficiency	Optimize BF input-pellets, scrap, HBI, PCI, H ₂ , NG, coke; stove O ₂ enrichment		Implement Identified Projects & Renewable Energy for All Areas
		Top pressure recovery turbine for BF	5-10%	
		Optimize the BOF charge mix		
	2. Fuel Engineering	Replacement of in-plant fuels		
		COG/BFG/BOFG use		
		H ₂ production from COG	10-15%	
		Use of hot O ₂ for blast		
		H ₂ injection, PCI, NG injection		
	3. Carbon Capture, Use & Storage	Capture top gases from BF, BOF, boilers, other sources		
		CO2 to building materials, EOR, food, chemicals, greenhouses. H2 back to the process	60-70%	
		CO ₂ to storage		
	4. Green Steel	H ₂ injection in the BF Hot O ₂ injection	(100%)	
		Fossil free steel, green H₂ based DRP + green kWh based EAF		
		Renewable energy is imperative throughout		

4th Australia & New Zealand Annual Steel Symposium

Thank you for your attention!

Questions?

Keynote for promised subject matter? drhornby62@gmail.com

Use of HBI in BFs

- > Additional References:
 - ✤ BF operations with pre-reduced burdens J. of Metals 2/66
 - Recent developments in N. American Ironmaking F. Rorick & J. Poveromo, 5th EU coke & ironmaking congress 2005
 - 20papers at AIMEs1965 Ironmaking Conference, 7 dedicated to use of metallized burdens & metallized burden preparation with no commercial DRI available in USA!
 - Use of pre-reduced iron in the BF; Metallurgical, ecological & economical aspects, P. Schmöle, H. Lüngren, Stahl Und Eisen 2007, vol 4 P47-54