

Hydrocarbons

Molecules which contain the elements HYDROGEN and CARBON ONLY

Obtained from crude oil by FRACTIONAL DISTILLATION:

Hydrocarbon Families

Hydrocarbons are divided up into families

Alkanes

A family of hydrocarbons which all fit the SAME GENERAL FORMULA and which all have SIMILAR CHEMICAL PROPERTIES is called a **HOMOLOGOUS SERIES**

Cycloalkanes

Alkanes

All members are in STRAIGHT CHAINS and have only SINGLE carbon-to-carbon bonds

All members of the family have an individual name

<u>**I**</u>st <u>**part**</u> of name tells you how many carbon atoms are in the hydrocarbon:

Meth = 1	But $= 4$	Hept = 7
Eth = 2	Pent = 5	Oct = 8
Prop = 3	Hex = 6	

 2^{nd} part of name tells you which family the hydrocarbon belongs to: -ANE = Alkanes

Molecular

General Formula

 $C_{n}H_{2n+2}$

E.g. If there are 5 carbon atoms, the number of hydrogen atoms is $2 \ge 5 + 2 = 12$

Each family member differs by a CH_2 unit:

Properties

This REGULAR INCREASE in a CH_2 unit means that as you move through the family, there is a gradual change in PHYSICAL PROPERTIES *e.g.* boiling point

The CHEMICAL PROPERTIES in each member of the family are all very SIMILAR *e.g. flammability*, *solubility*

Cycloalkanes

Are another HOMOLOGOUS SERIES of hydrocarbons

This time, each member forms a RING shape

Alkenes

Are another HOMOLOGOUS SERIES of hydrocarbons

Each member is in a straight chain

Each member contains a carbon-to-carbon DOUBLE BOND

- The first member of this family

Isomers

Hydrocarbons with the SAME NUMBER of atoms but DIFFERENT structures are called ISOMERS

Isomers can be of hydrocarbons in the SAME FAMILY:

Or in DIFFERENT FAMILIES:

Saturated vs Unsaturated

Only carbon-to-carbon SINGLE bonds

No other atoms will join on to the molecule

Contains at least one carbon-to-carbon DOUBLE bond

Other atoms can join on to the molecule

Addition Reactions

Hydrocarbons with a C=C can react with other atoms to let them ADD ON.

This is called an ADDITION REACTION

The new atoms join on to EITHER SIDE of the DOUBLE BOND

Test for Unsaturation

Bromine solution can be used to distinguish between alkanes and alkenes, or cycloalkanes and alkenes

Hydrocarbon	Saturated / unsaturated	Test with bromine solution
Alkane	Saturated	Stays brown / red
Cycloalkane	Saturated	Stays brown / red
Alkene	Unsaturated	Changes from brown / red to colourless
$Br_2(aq)$		

Combustion of Hydrocarbons

Ref: http://www.methyl.demon.co.uk/dl/sgrade/5.pdf

Supply vs Demand

• Is used to make smaller, more useful molecules from larger molecules

Cracking in the Lab

• Can be done in the laboratory:

