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     On-Off Controllers

•  Simple
•  Cheap
•  Used In residential heating and domestic refrigerators
•  Limited use in process control due to continuous 
     cycling of controlled variable  excessive wear 
     on control valve.C
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On-Off Controllers (continued)

Synonyms:
“two-position” or “bang-bang” controllers.

Controller output has two possible values.
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Practical case (dead band)
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Figure 8.1 Schematic diagram for a stirred-tank blending 
system.

Feedback Controllers
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PID CONTROLLER



PID Control Algorithm
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Definition of Terms

• e(t)-  the error from setpoint [e(t)=ysp-ys].

• Kc- the controller gain is a tuning parameter and 
largely determines the controller aggressiveness.

•  I- the reset time is a tuning parameter and 
determines the amount of integral action.

•  D- the derivative time is a tuning parameter and 
determines the amount of derivative action.



Transfer Function for a PID 
Controller
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Basic Control Modes
Next we consider the three basic control modes starting with the 
simplest mode, proportional control.

Proportional Control

In feedback control, the objective is to reduce the error signal to 
zero where

      (8-1)sp me t y t y t 
and
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Although Eq. 8-1 indicates that the set point can be time-varying, 
in many process control problems it is kept constant for long 
periods of time.

For proportional control, the controller output is proportional to 
the error signal,

    (8-2)cp t p K e t 

where:

  controller output

bias (steady-state) value

controller gain (usually dimensionless)c
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The key concepts behind proportional control are the following:

1. The controller gain can be adjusted to make the controller 
output changes as sensitive as desired to deviations between 
set point and controlled variable;

2. the sign of Kc can be chosed to make the controller output 
increase (or decrease) as the error signal increases.

For proportional controllers, bias      can be adjusted, a procedure 
referred to as manual reset.

Some controllers have a proportional band setting instead of a 
controller gain. The proportional band PB (in %) is defined as

p

100%
(8-3)

c

PB
K
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In order to derive the transfer function for an ideal proportional 
controller (without saturation limits), define a deviation variable    

as p t
    (8-4)p t p t p 

Then Eq. 8-2 can be written as

    (8-5)cp t K e t 

The transfer function for proportional-only control: 

 
 

(8-6)c
P s

K
E s




An inherent disadvantage of proportional-only control is that a 
steady-state error occurs after a set-point change or a sustained 
disturbance.



Offset Resulting from P-only 
Control
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Integral Control

For integral control action, the controller output depends on the 
integral of the error signal over time,

   
0

1
* * (8-7)

τ

t

I

p t p e t dt  

where     , an adjustable parameter referred to as the integral time 
or reset time, has units of time.

τI

Integral control action is widely used because it provides an 
important practical advantage, the elimination of offset. 
Consequently, integral control action is normally used in 
conjunction with proportional control as the proportional-integral 
(PI) controller:
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The corresponding transfer function for the PI controller in 
Eq. 8-8 is given by

 
 

τ 11
1 (8-9)

τ τ
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Some commercial controllers are calibrated in terms of        
(repeats per minute) rather than      (minutes, or minutes per 
repeat).

1/ τI
τI

Reset Windup

• An inherent disadvantage of integral control action is a 
phenomenon known as reset windup or integral windup.

• Recall that the integral mode causes the controller output to 
change as long as e(t*) ≠ 0 in Eq. 8-8.
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• When a sustained error occurs, the integral term becomes 
quite large and the controller output eventually saturates.

• Further buildup of the integral term while the controller is 
saturated is referred to as reset windup or integral windup.

Time

ys

ysp

cprop



Effect of Variations in Kc

Time Time Time

Effect of Variations in tI

Time Time Time
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Derivative Control

The function of derivative control action is to anticipate the 
future behavior of the error signal by considering its rate of 
change.

• The anticipatory strategy used by the experienced operator can 
be incorporated in automatic controllers by making the 
controller output proportional to the rate of change of the error 
signal or the controlled variable.
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• Thus, for ideal derivative action,

   
τ (8-10)D

de t
p t p

dt
 

where      , the derivative time, has units of time.

For example, an ideal PD controller has the transfer function:

τD

 
   1 τ (8-11)c D

P s
K s

E s


 

• By providing anticipatory control action, the derivative mode 
tends to stabilize the controlled process.

• Unfortunately, the ideal proportional-derivative control 
algorithm in Eq. 8-10 is physically unrealizable because it 
cannot be implemented exactly.
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Proportional-Integral-Derivative (PID) Control

Now we consider the combination of the proportional, integral, 
and derivative control modes as a PID controller.

• Many variations of PID control are used in practice.

• Next, we consider the three most common forms.

Parallel Form of PID Control

The parallel form of the PID control algorithm (without a 
derivative filter) is given by

       
0

1
* * τ (8-13)
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The corresponding transfer function is:

 
 

1
1 τ (8-14)
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Series Form of PID Control

Historically, it was convenient to construct early analog 
controllers (both electronic and pneumatic) so that a PI element 
and a PD element operated in series.

Commercial versions of the series-form controller have a 
derivative filter that is applied to either the derivative term, as in 
Eq. 8-12, or to the PD term, as in Eq. 8-15:

 
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Expanded Form of PID Control

In addition to the well-known series and parallel forms, the 
expanded form of PID control in Eq. 8-16 is sometimes used:

       
0

* * (8-16)
t

c I D
de t

p t p K e t K e t dt K
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   

Time
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PID -    Most complicated to tune (Kc, I, D) .
-    Better performance than PI
-    No offset
-    Derivative action may be affected by noise

PI -    More complicated to tune (Kc, I)  .
-    Better performance than P
-    No offset
-    Most popular FB controller

P -   Simplest controller to tune  (Kc).
-   Offset with sustained disturbance or setpoint
     change.

Controller Comparison

C
h

ap
te

r 
8



29

Typical Response of Feedback Control Systems
Consider response of a controlled system after a 
sustained disturbance occurs (e.g., step change in 
the disturbance variable)
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Figure 8.12. Typical process responses with feedback control.
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Figure 8.13. 
Proportional control: 
effect of controller 
gain.

Figure 8.15. PID 
control: effect of 
derivative time.
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Figure 8.14. PI control: (a) effect of reset time  (b) effect of 
controller gain.
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Fig. 12.1. Unit-step disturbance responses for the candidate controllers 
(FOPTD Model: K = 1, θ 4, τ 20). 

Controller Tuning:  A Motivational Example
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