

Deploying Egypt's shallow geothermal potential for sustainable cooling and air conditioning in real estate developments (Pilot Study)

Supervisors

Prof. Amr Yehia Hussein Elbanhawy

Associate Professor at Mechanical Power Engineering,

Prof. Walid Aboelsoud Abdelhaady
Aboelsoud

Associate Professor at Mechanical Power Engineering,

Special Thanks To

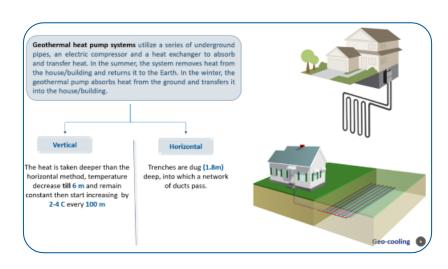
Prof. Mohamed Nabil Sabry

Emeritus Professor at Mechatronics

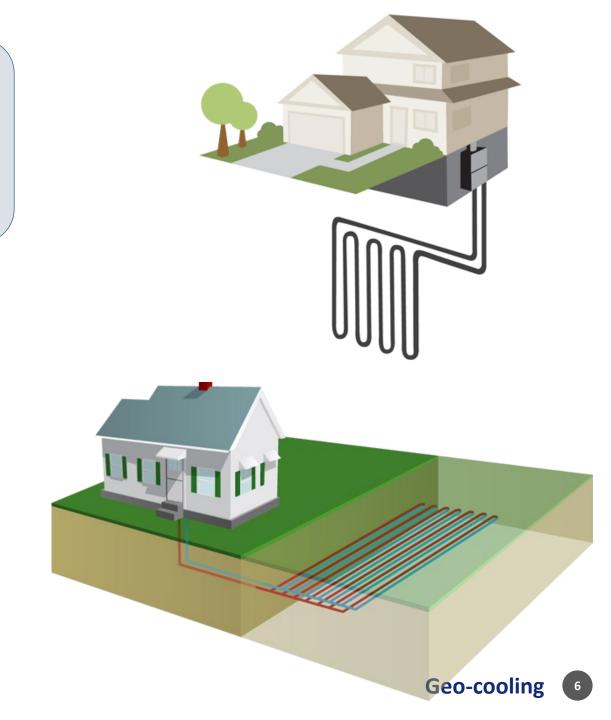
Acknowledgment

Team Members (Alphabetically)

Student Name	Code
Ahmed El-Sayed Hashem	1808308
Khaled Ali Ahmed	1808332
Rogeih Emad Shoukry	1804753
Youssef Mohamed Abdelhamid	1808622
Youssef Tamer Magdy	1806334
Ziad Tarek Mohamed	1803906



INTRODUCTION


Geothermal heat pump systems utilize a series of underground pipes, an electric compressor and a heat exchanger to absorb and transfer heat. In the summer, the system removes heat from the house/building and returns it to the Earth. In the winter, the geothermal pump absorbs heat from the ground and transfers it into the house/building.

The heat is taken deeper than the horizontal method, temperature decrease **till 6 m** and remain constant then start increasing by **2-4 C** every **100 m**

Horizontal

Trenches are dug (1.8m) deep, into which a network of ducts pass.

AIM OF WORK

Project Aspects

Energy consumption

70% of building energy consumption for Air-conditioning

Thermal Comfort

Comes 3rd in Egypt
Priorities according to
regional priority credit
in LEED rating sys

Sustainability

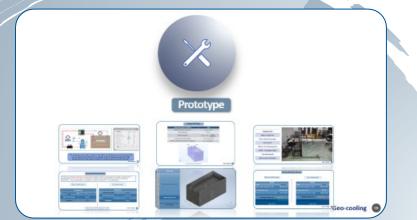
New Green- buildings
For sustainable
developments

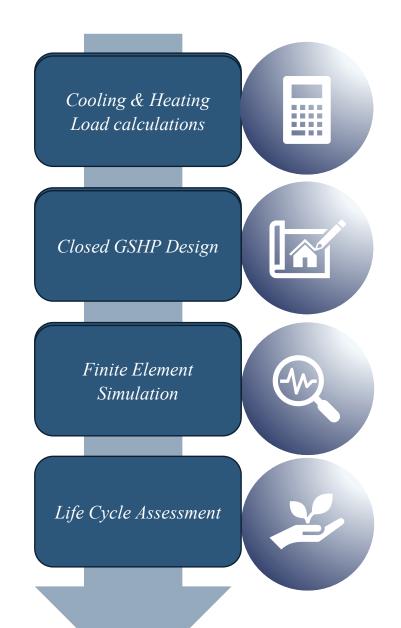
Cost

reduce total cost of energy consumption

Greener Future

Reducing carbon footprint to reduce the Environmental impact





METHODOLOGY

Cooling & Heating Load calculations

□ *Operation Theory:*

Every building needs a specific amount of cooling to be comfortable Defining several factors for calculating the building cooling loads, including:

- Daytime heat gain
- Building Orientation
- Levels of insulation from top to bottom
- Floor plan
- Number and types of windows and doors
- Number of occupants
- Square footage

☐ <u>Analytical Procedure:</u>

Cooling load calculation methodologies consider heat transfer by conduction, convection, and radiation can be found *in ASHRAE* handbooks, ISO Standard 11855, European Standard (EN) 15243, and EN 15255

Design of cooling loads assume steady periodic conditions (i.e., design day's weather, occupancy, and heat gain conditions are identical to those for preceding days such that the loads repeat on <u>an identical 24 h cyclical basis</u>).

□ <u>HAP Software:</u>

Hourly Analysis Program (HAP) is a computer tool produced by Carrier.

The aim of this program is to assist in designing HVAC systems for commercial buildings.

Closed GSHP Design

Factors affecting the orientation of GSHP Design

Economic Evaluation

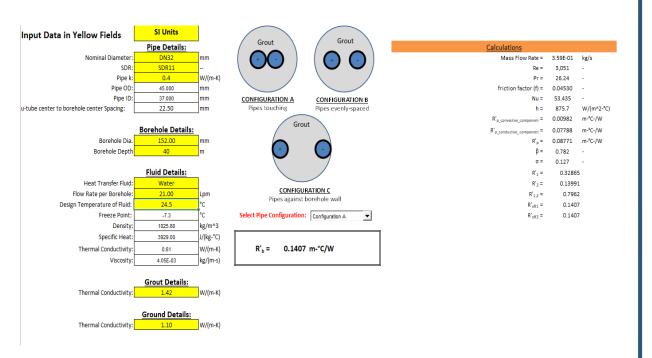
System Performance

Accessed Area for Digging and Implementation

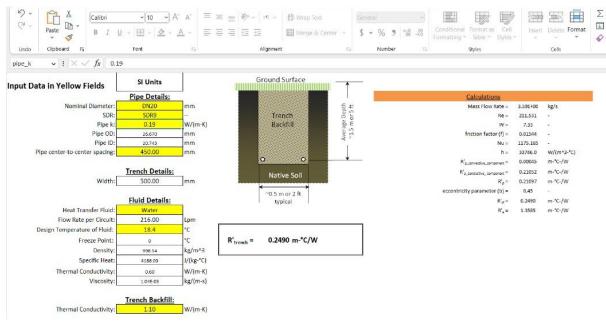
Software used: GHX_Design_Toolbox

First, cooling and heating loads are entered as an input data before defining the closed loop system parameters.

Second, according to the selection of closed loop GSHP, soil parameters as well as other parameters are being defined.


I. For Vertical GSHP

II. For Horizontal GSHP


Closed GSHP Design

I. For Vertical GSHP

II. For Horizontal GSHP

Finite Element Simulation

☐ CFD Methodology:

A 3D model was designed using Autodesk Fusion360 and imported to COMSOL Multiphysics

For Cairo University	For Prototype			
3D symmetrical model to simulate a single U-tube borehole for a Vertical GSHP	Full 3D Model to simulate the prototype (horizontal ground heat exchanger configuration) with soil domain dimensions			
$\begin{array}{c} \textit{soil domain dimensions} \\ & \text{considering model as a cylinder of 5 } m \\ & \text{radius and 45 } m \text{ depth} \end{array}$	soil domain dimensions Considering model as a cuboid of (L x W x H) = (1.2 x 2.4 x 0.75) m			
Study Type: Steady State	Study Type: Steady State/Transient			
Model Physics: Coupling both heat and mass transfer in the soil and fluid flow				

Assumptions:

- Negligible ground water movement was present within the soil domain
- Soil properties are function to change in ground temperature throughout the simulation time

According to **ISO 14040 standards**, LCA is defined as the collection and evaluation of the inputs and outputs for determining possible environmental impacts of a product, process, or system during its life cycle.

The main parts of the LCA are the following:

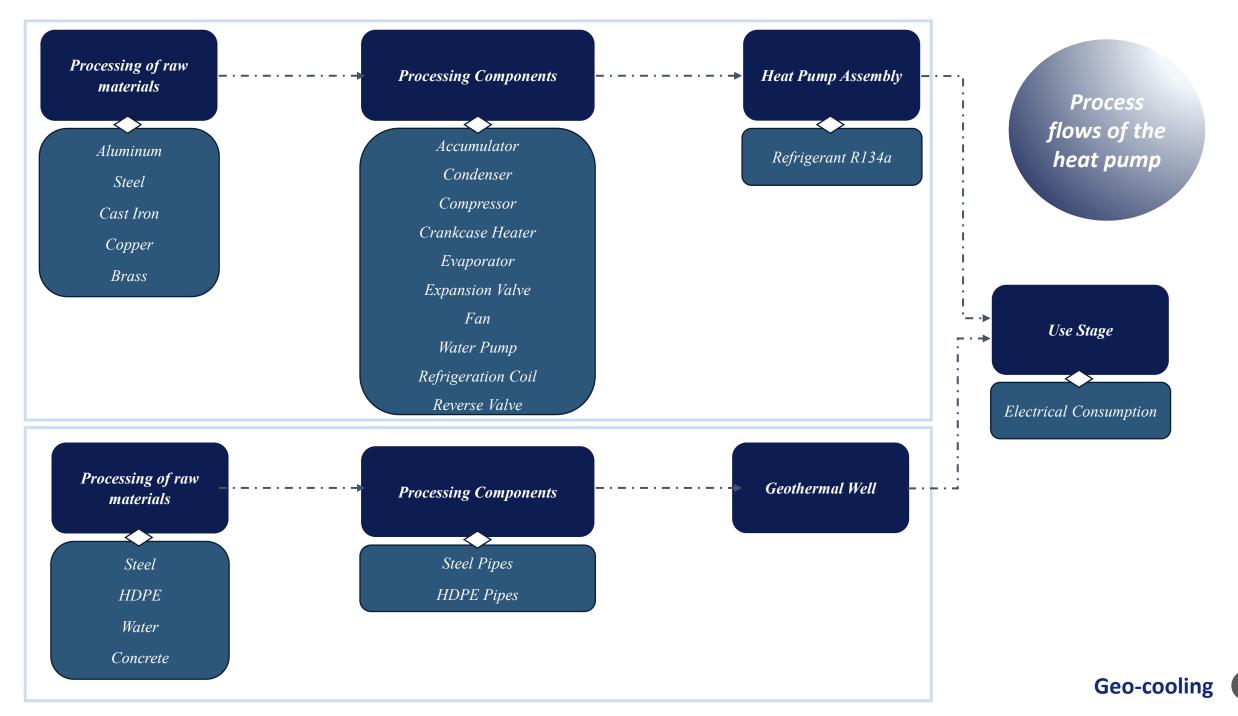
- a) Discuss the purpose and definition of the scope of application of this approach.
- b) Make an inventory of the inputs and outputs of the system.
- c) Assess all types of impacts on the environment.
- d) Interpret the results and evaluate the impacts.

LCA Report Scope Objective

Goal / Scoping:	Evaluate LCA comparing potential environmental impacts of geothermal heat pumps relative to conventional HVAC system			
Application:	Basis for decisions on geothermal heat pumps installation			
Functional Unit:	One unit of a heat pump (e.g., 1 <i>KWhth</i> of the process)			
System Boundaries:	 Geothermal Heat pumps operational energy All manufacturing processes contributing significantly to the life cycle impacts are considered. Scope is based on <i>Cradle-to-gate</i> 			

Life Cycle Inventory Analysis

Inputs:


Raw Material Extraction Energy Performance Manufacturing Process Energy consumption

Outputs:

Emissions to air Emissions to water Emissions to soil

Emissions produced by the processes during extraction of materials, manufacture, operation, and end-of-life stage of the system has been considered

LCA Impact Assessment Method

This process will allow to obtain environmental indicators from the list of emissions and consumed resources caused by the heat pump system during its life cycle so it can become easier to comprehend. For this transformation it has been used one method which is *Environmental Footprint v3.0*

Environmental Footprint v3.0 was performed for those impact categories:

Climate change, ozone depletion, Ionizing radiation, Photochemical ozone formation, Particulate matter, Human toxicity (non-cancer/cancer), Acidification, Ecotoxicity freshwater, land use, water use.

Cairo University

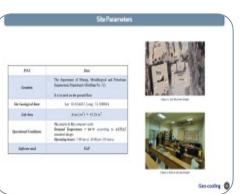
Designing a cooling geothermal plant for computer laboratory

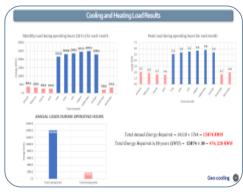
El-Alamein

Designing geothermal cooling plants for El-Alamein Real estates

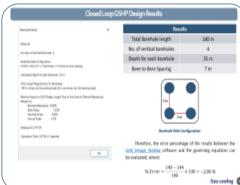
Acoustics

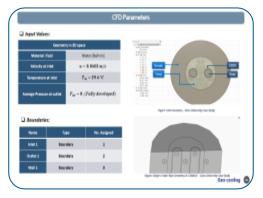
Substitution of One Chiller capacity using geothermal heat pump


Prototype


Enhancing the performance of a cooling water dispenser

Results

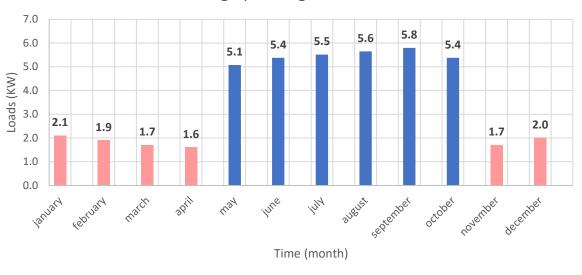



Cairo University

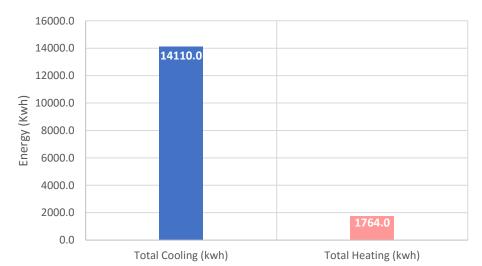
Site Parameters

P.O.C	Data			
Location:	 The department of Mining, Metallurgical and Petroleum Engineering Department (Building No. 32). It is located on the ground floor. 			
Site Geological Data:	Lat.: 30.0244932, Long.: 31.2099024			
Lab Area	$Area~(m^2)~\approx~47.25~m^2$			
Operational Conditions:	 Six people & Six computer units. Demand Temperature = 24 °C according to ASHRA standard design. Operating hours: 7:00 am to 10:00 pm (16 hours) 			
Software used	HAP			


Figure 1: Lab Site from Google


Figure 2: Visit to the lab (Inside)

Cooling and Heating Load Results


Monthly Load during operating hours (16 hr.) for each month

Peak Load during operating hours for each month

ANNUAL LOADS DURING OPERATING HOURS

Total Annual Energy Required = $14110 + 1764 = 15874 \ KWH$ Total Energy Required in 30 years (KWH) = $15874 \times 30 = 476,220 \ KWH$

Closed Loop GSHP Design Parameters

System type:

A closed loop Ground Source Heat pump is used which is a Water-to-Air heat pump.

From Eco- Forest Graphs:

- Heat pump cooling efficiency (EER) = 5.5 Btu/Wh
- Heat pump heating efficiency (COP_h) = 6.3

➤ A thermal property test provided the following information for soil data:

Ground temperature $(t_g) = 23.5^{\circ}C$ Ground conductivity $(k_g) = 2.5 \, W/m \cdot K$ Ground diffusivity $(\alpha_g) = 0.892 \, mm^2/s = 0.077 \, m^2/day$ Borehole fill conductivity $(k_b) = 2.5 \, W/m \cdot K$

From Pipe Selection for ground source heat pumps:

- **Size:** Vertical U-tube = 32 mm, 152 mm (0.152 m) borehole diameter
- **Material:** DR 11, HDPE

> From Pipe Spacing:

 2 × 2 square grid (4 vertical bores) with 7 m borehole separation

Closed Loop GSHP Design Results

Microsoft Excel X

RESULTS:

Number of Vertical Boreholes: 4

Borehole Field Configuration:

Uniform Grid of 2 x 2 boreholes, 7-m bore-to-bore spacing.

Calculated Depth for Each Borehole: 35 m

Total Length Requirement for Boreholes:

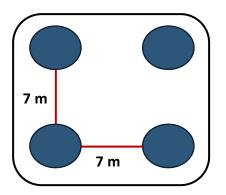
140 m, driven by the cooling loads (8 m are driven by the heating loads)

Relative Impact on GHX Design Length Due to the Ground Thermal Resistances Related to:

Borehole Resistance: 63.8%

Daily Pulse: 13.5%

Monthly Pulse: 16.9%


Annual Pulse: 5.7%

Residual: 8.217E-06

Calculation Time: 2.070E-01 seconds

OK

Results					
Total Borehole length	140 m				
No. of vertical boreholes	4				
Depth for each borehole	35 m				
Bore-to-Bore Spacing	7 m				

Borehole field Configuration

Therefore, the error percentage of the results between the <u>GHX Design Toolbox</u> software and the governing equations can be evaluated, where:

%
$$Error = \frac{140 - 144}{140} \times 100 = -2.86$$
 %

CFD Parameters

☐ Input Values:

Geometry in 3D space				
Material: Fluid Water (Built-In)				
Velocity at inlet $u=0.0683 \ m/s$				
Temperature at inlet $T_{in}=29.6^{\circ}C$				
Average Pressure at outlet	$P_{av} = 0$, (Fully developed)			

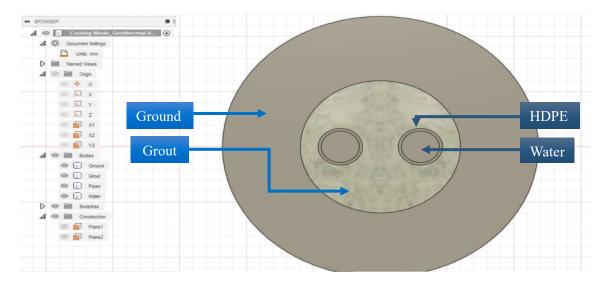


Figure: CAD Geometry - Cairo University Case Study

□ Boundaries:

Name	Туре	No. Assigned
Inlet 1	Boundary	1
Outlet 1	Boundary	2
Wall 1	Boundary	3

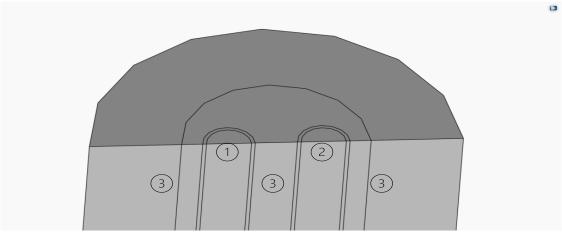
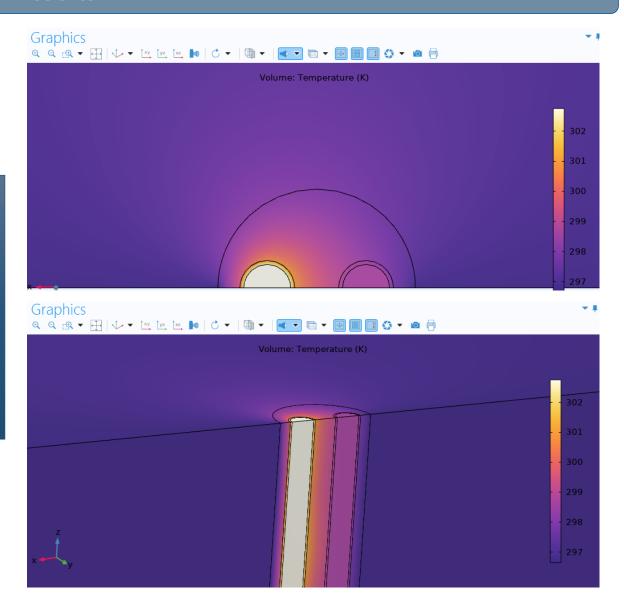


Figure: Single U-tube Pipe Geometry in COMSOL - Cairo University Case Study

CFD Results


From a steady state analysis:

$$T_{out} = 25.53 \, ^{\circ}C$$
 (From simulation)

$$T_{ground} = 23.5^{\circ}C (Input)$$

$$\therefore Effectiveness(\theta) = \frac{T_{in} - T_{out}}{T_{in} - T_{ground}}$$

$$= \frac{29.6 - 25.53}{29.6 - 23.5} \times 100 = 66.72 \%$$

Cost Assessment Results

Geothermal heat pump Cost Evaluation					
Drilling Cost (LE) 182,000					
Unit Cost (LE) 276,308					
Initial Cost = 182,000 + 276,308 = 458,308 LE					
Operation & Maintenance Cost = 6835.3 LE					

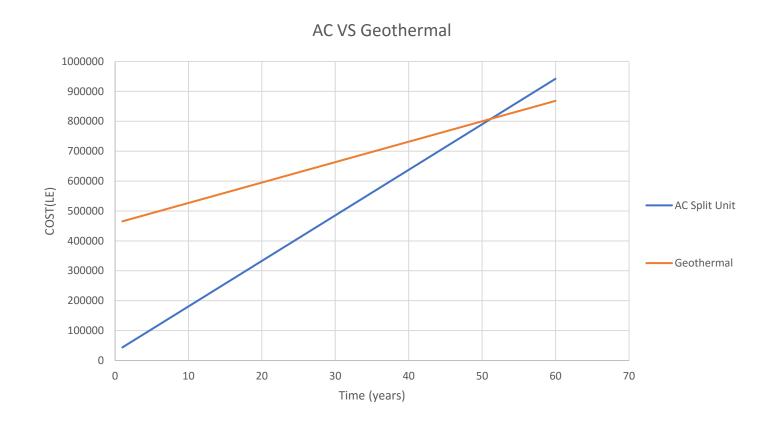
Air-Conditioning Cost Evaluation					
No. of Ac units 1					
SHARP Ac unit selection 3 hp					
Initial Cost = 27,500 + 1000 = 28,500 LE					
Operation & Maintenance Cost = 15,230 LE					

Ecoforest EcoGEO Basic 1-6kW PRO

Figure: GSHP Specifications - Cairo University Case study

SHARP Ac units	Cost
1.5 hp	20,450 EGP
3 hp	27,500 EGP
4 hp	42,610 EGP

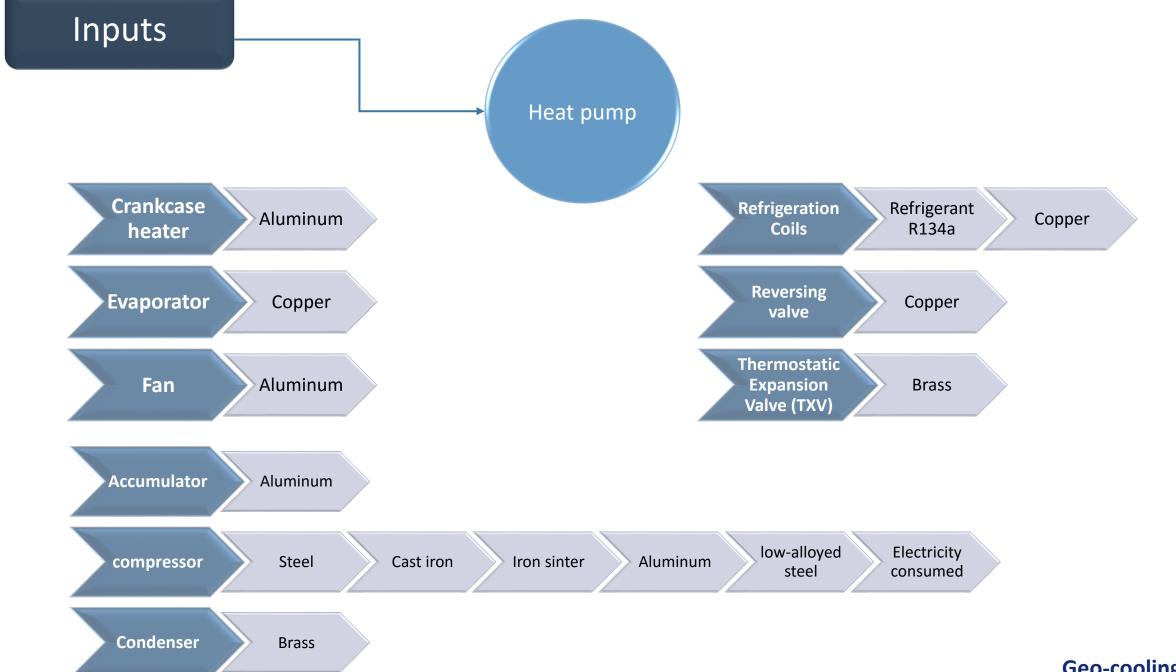
£8,126.71


(£9,752.05 inc. VAT)

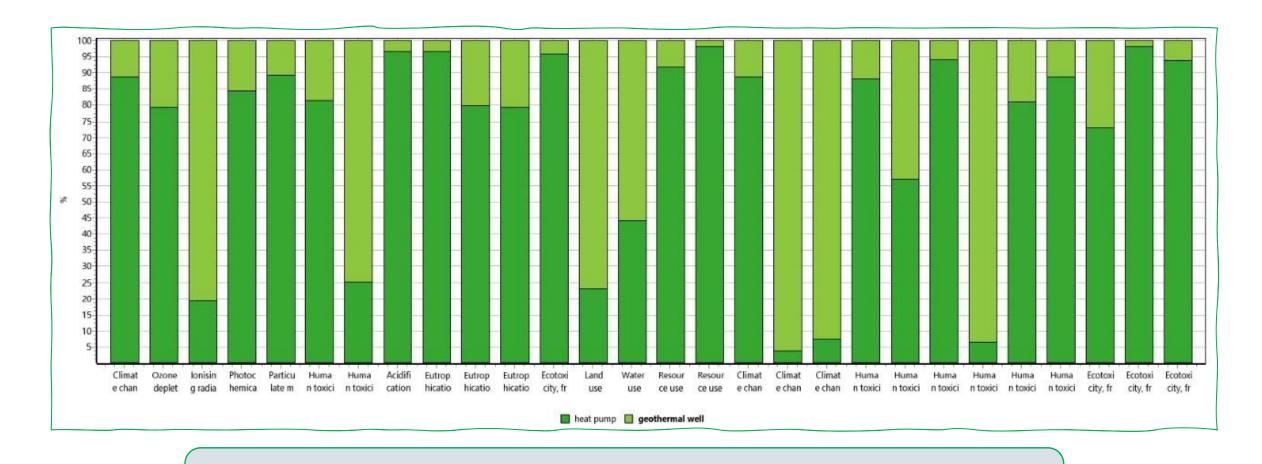
Additional Options

Please select

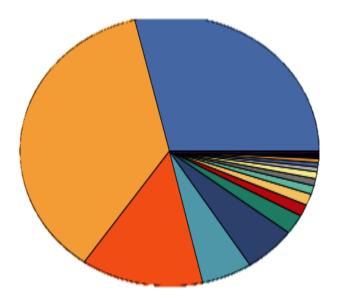
For specific delivery times please contact us

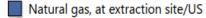

Cost Assessment Results

The payback period is 51 years if installing Geothermal heat pumps instead of conventional air conditioning. (Not feasible)


LIFE CYCLE ASSESSMENT

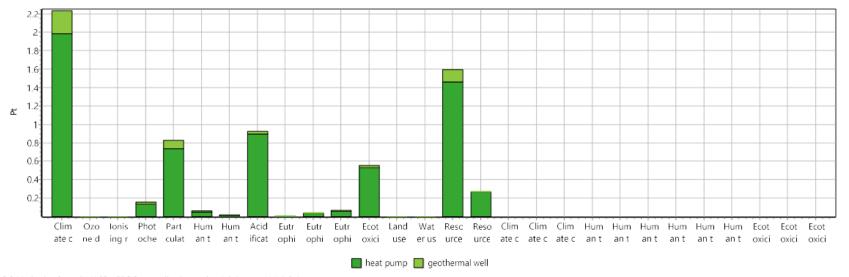
CAIRO UNIVERSITY




Inputs Geothermal Well Steel pipe Steel welded pipe Water Tap water HDPE pipe HDPE pipes E Grout Concrete block

LCA Results

Heat pump vs geothermal well contribution for each category (characterization)



- Natural gas, processed, at plant/US
- Copper, anode (GLO)| market for copper, anode | APOS, S
- Concrete block {BR}| market for concrete block | APOS, S
- HDPE pipes E
- Crude oil, at production/RNA
- Brass (CH)| market for brass | APOS, S
- Gasoline, combusted in equipment/US
- Residual fuel oil, combusted in industrial boiler/US
- Transport, ocean freighter, residual fuel oil powered/US

- Electricity, natural gas, at power plant/US
- Steel welded pipe/EU
- Natural gas, combusted in industrial boiler/US
- Electricity, bituminous coal, at power plant/US
- Transport, combination truck, diesel powered/US
- Water pump, 22kW {GLO}| market for water pump, 22kW | APOS, S
- Bituminous coal, at mine/US
- Diesel, combusted in industrial boiler/US
- Electricity, lignite coal, at power plant/US
- Transport, train, diesel powered/US

About 75% of the emissions is produced by the electrical consumption of the compressor. This electrical consumption is consumed by the natural gas power plants as most of the power plants in Egypt are Natural gas.

Comparative between two processes to EF 3.0 Method (adapted) V1.03/EF 3.0 normalization & weighting set /Weighting

EF 3.0 Method (adapted) V1.03 / EF 3.0 normalization and weighting set / Weighting ${\tt j}$ 1 p 'the process';

d: EF 3.0 Method (adapted) V1.03 / EF 3.0 normalization and weighting set / Single score ing 1 p 'the process';

Top 5 processes contributing for each category

No	Process	Project	Unit	Total	heat pump	geothermal well
	Total of all processes		kg CO2 eq	8.59E4	7.63E4	9.61E3
1	Electricity, natural gas, at power plant/US	USLCI	kg CO2 eq	5.91E4	5.91E4	x
2	Natural gas, at extraction site/US	USLCI	kg CO2 eq	1.05E4	1.05E4	x
3	Steel welded pipe/EU	Industry data	kg CO2 eq	8.95E3	x	8.95E3
4	Natural gas, combusted in industrial boiler/US	USLCI	kg CO2 eq	3.13E3	3.13E3	x
5	Natural gas, processed, at plant/US	USLCI	kg CO2 eq	1.68E3	1.68E3	x

1:	_ 1	1	
limate	C	nan	ge

No	Process	Project	Unit	Total $ abla$	heat pump	geothermal well
	Total of all processes		kg CFC11 eq	0.000157	0.000125	3.24E-5
1	Refrigerant R134a {GLO} market for APOS, S	Ecoinvent 3 -	kg CFC11 eq	0.000118	0.000118	x
2	Concrete block (BR) market for concrete block APOS, S	Ecoinvent 3 -	kg CFC11 eq	3.24E-5	x	3.24E-5
3	Copper, anode {GLO} market for copper, anode APOS, S	Ecoinvent 3 -	kg CFC11 eq	3.29E-6	3.29E-6	x
4	Water pump, 22kW {GLO} market for water pump, 22kW APOS, S	Ecoinvent 3 -	kg CFC11 eq	2E-6	2E-6	x
5	Brass {CH} market for brass APOS, S	Ecoinvent 3 -	kg CFC11 eq	1.04E-6	1.04E-6	x

Ozone depletion

No	Process	Project	Unit	Total	heat pump	geothermal well
	Total of all processes		kBq U-235 eq	57.7	11.2	46.5
1	Steel welded pipe/EU	Industry data	kBq U-235 eq	31.9	x	31.9
2	Concrete block {BR} market for concrete block APOS, S	Ecoinvent 3 -	kBq U-235 eq	14.6	x	14.6
3	Copper, anode {GLO} market for copper, anode APOS, S	Ecoinvent 3 -	kBq U-235 eq	6.01	6.01	х
4	Water pump, 22kW {GLO} market for water pump, 22kW APOS, S	Ecoinvent 3 -	kBq U-235 eq	2.67	2.67	х
5	Brass {CH} market for brass APOS, S	Ecoinvent 3 -	kBq U-235 eq	1.68	1.68	х

Ionizing radiation

No	Process	Project	Unit	Total $ abla$	heat pump	geothermal well
	Total of all processes		kg NMVOC eq	136	115	21.5
1	Natural gas, processed, at plant/US	USLCI	kg NMVOC eq	50.4	50.4	x
2	Electricity, natural gas, at power plant/US	USLCI	kg NMVOC eq	50.4	50.4	x
3	Steel welded pipe/EU	Industry data	kg NMVOC eq	18.7	x	18.7
4	Transport, combination truck, diesel powered/US	USLCI	kg NMVOC eq	3.41	3.41	x
5	Natural gas, combusted in industrial boiler/US	USLCI	kg NMVOC eq	2.75	2.75	x

Photochemical ozone formation

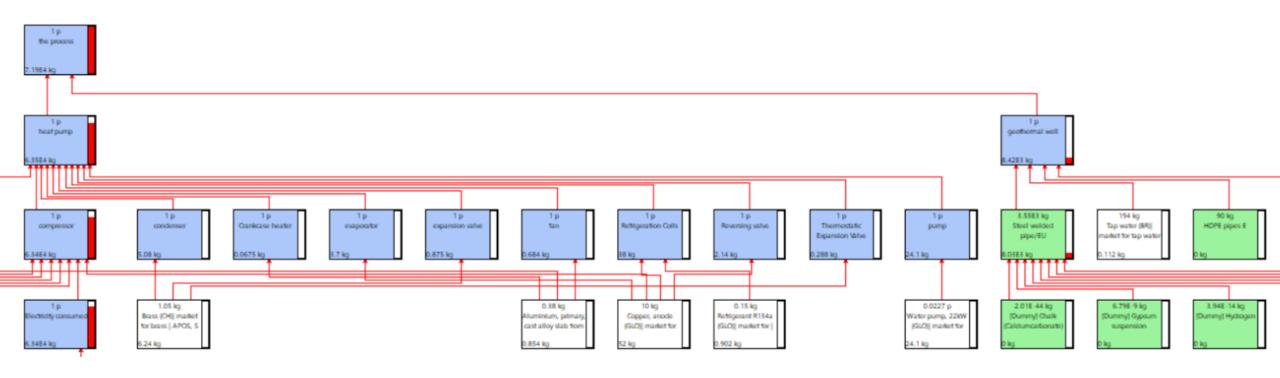
Top 5 processes contributing for each category

No	Process	Project	Unit	Total \(\nabla \)	heat pump	geothermal well
	Total of all processes		disease inc.	0.00549	0.00489	0.000593
1	Natural gas, processed, at plant/US	USLCI	disease inc.	0.00452	0.00452	x
2	Steel welded pipe/EU	Industry data	disease inc.	0.000554	x	0.000554
3	Electricity, natural gas, at power plant/US	USLCI	disease inc.	0.000275	0.000275	x
4	Electricity, bituminous coal, at power plant/US	USLCI	disease inc.	4.93E-5	4.93E-5	x
5	Concrete block {BR} market for concrete block APOS, S	Ecoinvent 3 -	disease inc.	2.97E-5	x	2.97E-5

Particulate matter

No	Process	Project	Unit	Total	heat pump	geothermal well
	Total of all processes		mol H+ eq	827	799	27.9
1	Natural gas, processed, at plant/US	USLCI	mol H+ eq	740	740	x
2	Electricity, natural gas, at power plant/US	USLCI	mol H+ eq	35.4	35.4	x
3	Steel welded pipe/EU	Industry data	mol H+ eq	24.3	x	24.3
4	Electricity, bituminous coal, at power plant/US	USLCI	mol H+ eq	8.83	8.83	x
5	Copper, anode {GLO} market for copper, anode APOS, S	Ecoinvent 3 -	mol H+ eq	7.56	7.56	x

A	•	1.0	• , , ,	•
Δ	C1/	11t	icat	10n
	\mathbf{U}	411.	ivai.	$\mathbf{I}\mathbf{U}\mathbf{I}\mathbf{I}$


No	Process	Project	Unit	Total	heat pump	geothermal well
	Total of all processes		Pt	1.25E4	2.89E3	9.64E3
1	Concrete block {BR} market for concrete block APOS, S	Ecoinvent 3 -	Pt	6.88E3	x	6.88E3
2	Steel welded pipe/EU	Industry data	Pt	2.77E3	x	2.77E3
3	Copper, anode {GLO} market for copper, anode APOS, S	Ecoinvent 3 -	Pt	2.42E3	2.42E3	x
4	Water pump, 22kW {GLO} market for water pump, 22kW APOS, S	Ecoinvent 3 -	Pt	231	231	x
5	Brass {CH} market for brass APOS, S	Ecoinvent 3 -	Pt	173	173	x

-		4		
-	an	d	11	se

No	Process	Project	Unit	Total	heat pump	geothermal well
	Total of all processes		m3 depriv.	378	167	211
1	HDPE pipes E	Industry data	m3 depriv.	180	x	180
2	Copper, anode {GLO} market for copper, anode APOS, S	Ecoinvent 3 -	m3 depriv.	120	120	х
3	Concrete block {BR} market for concrete block APOS, S	Ecoinvent 3 -	m3 depriv.	24.4	x	24.4
4	Aluminum, secondary, ingot, at plant/RNA	USLCI	m3 depriv.	20.3	20.3	x
5	Water pump, 22kW {GLO} market for water pump, 22kW APOS, S	Ecoinvent 3 -	m3 depriv.	13.1	13.1	x

LCA Detailed Flowchart

LCA Conclusion

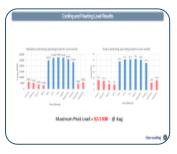
Effect on Climate Change:

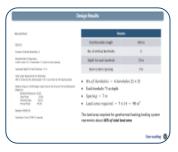
- Total CO_2 produced = 71,900 kg CO_2 ,While the rest of emissions in (kg CO_2 eq.) = 14,000 kg
- Total heating load injected / produced from the ground= 565,920 kWhth

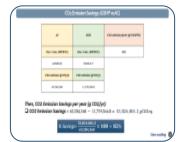
GHG produced =
$$\frac{71,900 + 14,000}{565920}$$
 = **0.1517** *kgCO2eq./kWhth*

From references, Heat pump system designed and implemented in Cairo university rock laboratory has GHG production = **0.1517** kgCO2eq./kWhth which is below average for India, Singapore and China references and is in range for Europe standards. This shows how this heat pump system is environmental-friendly.

El-Alamein







Gate Towers Site Parameters

Gate Towers Site Specifications				
Location	El-Alamein city, North coast, Egypt DMS: 30° 51′ 26″ N, 28° 51′ 19″ E			
Area, m ²	594.8 m² / Floor			
Current use	Hotel (Residential Use)			

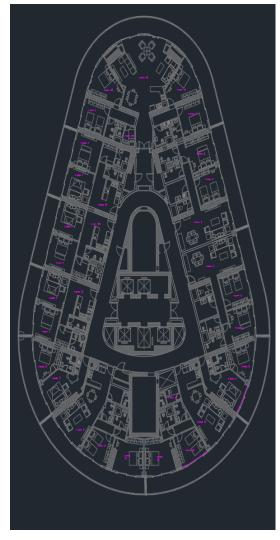
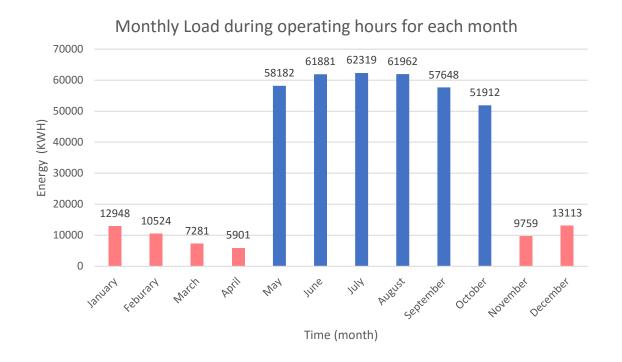
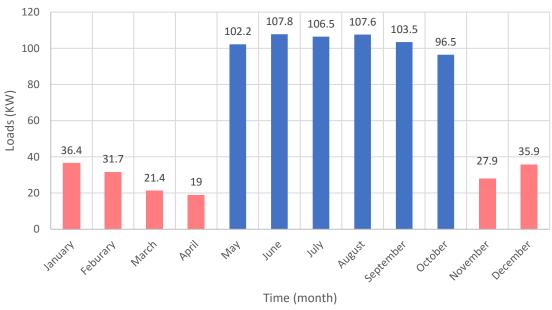




Figure : Plan view of one floor

Cooling and Heating Load Results

Peak Load during operating hours for each month

Maximum Peak Load = 107.8 KW @ June

Design Results

El-Alamein Gate Towers Results No. of heat pumps selected **Maximum capacity of one** 70 kWheat pump

eco**GEO HP 15-70**

- flow rate control of both brine and production circuits (20-100%).
- Inverter technology and scroll compressor.
- Integrated management of up to 5 different emission temperatures, 2 buffer tanks Integrated active cooling in models 3. (heating and cooling), 1 DHW tank, 1 pool and hourly control of DHW recirculation.

 Three-phase version available.
- hybrid configurations by means of the ecoSMART e-source. ■ Integrated management of external On/Off or modulating auxiliary systems, such cooling thermal power, the COP and the monthly and annual SPF.
- as electrical heaters, On/Off boilers or modulating boilers. ■ Management of cascade systems up to 6 units by means of the ecoSMART
- Modulating thermal power control within a wide range (25-100%) and modulating Integrated management of simultaneous cooling/heating systems according to
 - Free cooling (Passive cooling) management.
- Management of aerothermal collection modulating units, in case of air source or
 Compatible with ecoSMART e-manager and ecoSMART e-system.

SPECIFICATIONS eco	GEO HP 15-70	UNITS	HP1	HP3	
	Place of installation	-	In	doors	
	Type of brine system 1	-	Ground source / Air	source / Hybrid source	
	DHW with external tank	-	✓	✓	
APPLICATION	Heating and Pool	-	✓	✓	
	External Passive cooling management	-	✓	✓	
	Integrated Active cooling	-	-	✓	
	Modulation range of the compressor	%	25	to 100	
	Heating power output 1, BOW35	kW	17,1	to 59,6	
	COP 1, B0W35	-		4,5	
_	Active cooling power output 1, B35W7	kW	-	15,1 to 61,5	
PERFORMANCE	EER 1, B35W7	-	-	4,5	
	Max. DHW temperature without / with support	°C	60	0 / 70	
	Noise power emission level ³	db	53 to 71		
	Energy label / ŋs / SCOP W35 average climate control	-	A+++ / 180% / 4,71		
	Energy label / ns / SCOP W55 average climate control	-	A++ / 139% / 3,67		
	Distribution / Set heating outlet temperature range ²	°C	10 to 60 / 20 to 60		
	Distribution / Set cooling outlet temperature range ²	°C	5 to 35 / 7 to 25		
OPERATION	Brine inlet temperature range in heating applications 2	°C	-20 to 35		
OPERATION	Brine inlet temperature range in cooling applications 2	°C	10 to 60		
LIMITS	Minimum / Maximum refrigerant circuit pressure	bar	2 / 45		
	Production / Pre-load circuit pressure	bar	0,5 to 5,0		
	Brine / Pre-load circuit pressure	bar	0.5 to 5.0		
_	R410A Refrigerant load	kg	4,7	5,5	
WORKING FLUIDS	Compressor oil type / load	kg	PO	E / 3,6	
WORKING FLUIDS	Nominal primary flow rate, B0W35 1 (ΔT = 3 °C)	I/h	3230 to 13195		
	Nominal secondary flow rate, B0W35 1 (ΔT = 5 °C)	I/h	2465	to 10265	
	1/N/PE 230 V / 50-60 Hz 5	-		✓	
CONTROL	Maximum recommended external protection 7	-		C1A	
ELECTRICAL DATA	Transformer primary circuit fuse	A	(0,63	
	Transformer secondary circuit fuse	Α		4,0	
	3/N/PE 400 V / 50-60Hz 5	-		√	
	Maximum recommended external protection 7	-	(50A	
ELECTRICAL DATA:	Maximum consumption 2, BOW35	kW / A	14,3	3 / 23,2	
THREE-PHASE	Maximum consumption 2, BOW55	kW / A	20,4	4 / 32,3	
	Minimum / Maximum starting current ⁴	A	7,5	/ 11,8	
	Correction of cosine Ø	-	0	,96-1	
DIMENSIONS AMERICATE	Height x width x depth	mm	1063	x870x785	
DIMENSIONS/WEIGHT	Empty weight (without assembly)	kg	320	325	

- consumption of the circulation pumps and the compressor driver.

 the heat pump is ±10%.

 the heat pump is ±10%.

 other equipme compressor driver.

 other equipments.

- 1. In compliance with EN 14511, this includes the 5. The admissible voltage range for proper operation of controller single-phase electrical supply to wire Note: primary circuit and secondary circui
- compressor driver.

 2. With variable speed circulating pumps, managed by according to working conditions, or if the 8. In case of air source or hybrid source configuration, or if the 8. In case of air source or hybrid source configuration, according to working conditions, or if the 8. In case of air source or hybrid source configuration, according to working conditions, or if the 8. In case of air source or hybrid source configuration, according to working conditions, or if the 8. the ecoGEO HP heat pump. compressor's range of operation is restricted. it is required to combine the end. According to EN 12102. 7. External protection exclusively regarding the ecoGEO with the ecoSMART e-source. 4. Starting current depends on working condition of the heat pump controller electrical consumption. This protection should be updated in case of using the
- other equipments depending on the features of such pumps not included.
 - it is required to combine the ecoGEO HP heat pump

Design Results

RESULTS:

Number of Vertical Boreholes: 16

Borehole Field Configuration:

Uniform Grid of 4 x 4 boreholes, 7-m bore-to-bore spacing.

Calculated Depth for Each Borehole: 99 m

Total Length Requirement for Boreholes:

1584 m, driven by the cooling loads (240 m are driven by the heating loads)

Relative Impact on GHX Design Length Due to the Ground Thermal Resistances Related to:

Borehole Resistance: 63.6%
Daily Pulse: 12.7%
Monthly Pulse: 16.6%
Annual Pulse: 7.1%

Residual: 5.384E-06

Calculation Time: 2.578E-01 seconds

Vertical GSHP Results:

Results					
Total Borehole length	1584 m				
No. of vertical boreholes	16				
Depth for each borehole	99 m				
Bore-to-Bore Spacing	7 m				

RESULTS:

Trench Configuration: 20 @ 3.0 m spacing Calculated Length for Each Trench: 78.9 m

Total Length Requirement for Trenches:

1579 m, driven by the cooling loads (-80 m are driven by the heating loads)

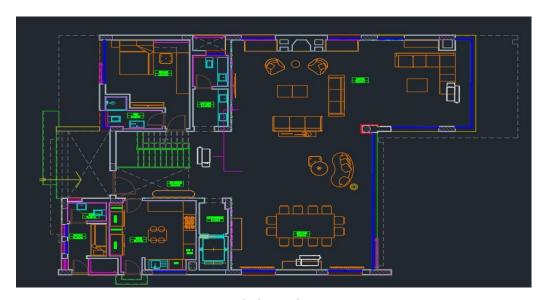
Relative Impact on GHX Design Length Due to the Ground Thermal Resistances Related to:

Trench Resistance: 67.3%

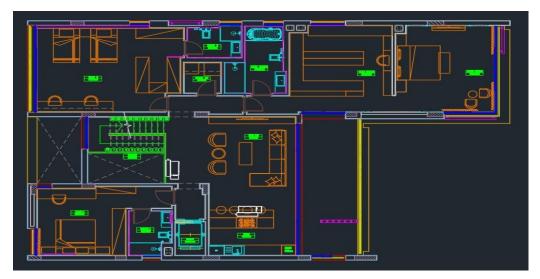
Daily Pulse: .5%

Monthly Pulse: 3.4%

Annual Pulse: 28.9%


Residual: 8.429E-06

Calculation Time: 6.797E-01 seconds


Horizontal GSHP Results:

Results					
Total Trench length	1579 m				
Trench Configuration	20 @ 3m spacing				
Each Trench Length	78.9 m				
Bore-to-Bore Spacing	7 m				

Gate Towers Site Parameters


Ground Floor Plan View

The Villa is a **two-floor building** that is allocated overlooks the <u>north coast at Palm Hills.</u>

Cooling and Heating Load Results

Maximum Peak Load = 52.1 KW @ Aug

Design Results

Microsoft Excel

RESULTS:

Number of Vertical Boreholes: 6

Borehole Field Configuration:

Uniform Grid of 2 x 3 boreholes, 7-m bore-to-bore spacing.

Calculated Depth for Each Borehole: 75 m

Total Length Requirement for Boreholes:

450 m, driven by the cooling loads (114 m are driven by the heating loads)

Relative Impact on GHX Design Length Due to the Ground Thermal Resistances Related to:

Borehole Resistance: 48.2%

Daily Pulse: 33.6%

Monthly Pulse: -26.1%

Annual Pulse: 44.3%

Residual: 4.698E-06

Calculation Time: 2.578E-01 seconds

Results					
Total Borehole length	450 m				
No. of vertical boreholes	6				
Depth for each borehole	75 m				
Bore-to-Bore Spacing	7 m				

- No. of boreholes = 6 boreholes (2×3)
- Each borehole 75 m depth
- Spacing = 7 m
- Land area required = $7 \times 14 = 98 \, m^2$

The land area required for geothermal heating/cooling system represents about **46% of total land area**.

Geothermal heat pump Cost Evaluation					
Drilling Cost (LE)	585,000				
Unit Cost (LE)	773,600				
Initial Cost = 585,000+ 773,600 = 1,358,600 LE					
Operation & Maintenance Cost = 62,628 LE					

Geothermal heat pump + PV Cost Evaluation		
PV Initial Cost (LE)	665,215.2	
Unit Cost (LE)	184,782	
Initial Cost = 1,358,600 + 665,215.2 + 184,782= 2,208,596 LE		
Operation & Maintenance Cost = 45,585 LE		

Figure: GSHP Specifications - El=-Alamein

Floor	No.	Space	Floor area (m^2)	TR	Hp (electric)	Split needed	Cost (EGP)	KWE installed
	1	Reception	93.309	5	9.5	2*4hp + 1*1.5hp	105,670	6.98
	2	Dining room	27.946	1.5	3	1*3hp	30,830	2.2
Ground	3	Kitchen	12.139	0.65	1.5	1*1.5hp	20,450	1.1
	4	Main entrance	6.02	0.322	1.5	1*1.5hp	20,450	1.1
	5	Nany room	5.841	0.31	1.5	1*1.5hp	20,450	1.1
	6	Bedroom 1	16.272	0.87	1.5	1*1.5hp	20,450	1.1
	7	Bedroom 2	32.2792	1.73	3	1*3hp	30,830	2.2
First	8	Master bedroom & dressing	46.2397	2.5	3	2*1.5hp	40,900	2.2
	9	living and kitchen	40	2.15	4	1*4hp	42,610	2.94
	10	bedroom1	18.1	0.97	1.5	1*1.5hp	20,450	1.1
				Σ	30	SUM	353,090	22.02

Air-Conditioning Cost Evaluation		
No. of Ac units 10		
Initial Cost = 353,090 LE		
Operation & Maintenance Cost = 252,743.334 LE		

SHARP Ac units	Cost
1.5 hp	20,450 EGP
3 hp	30,830 EGP
4 hp	42,610 EGP

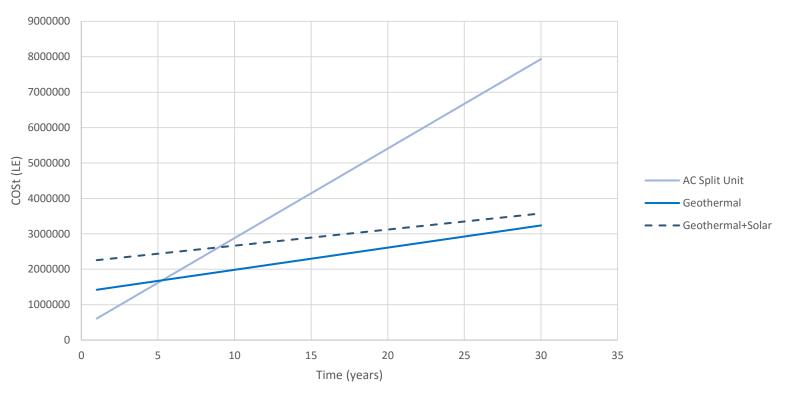


Figure: Payback period (Ac vs GSHP vs GSHP+PV) – El-Alamein Villa

Geothermal heat pumps Vs Ac Split unit	GSHP + PV vs Ac Split unit
Payback period is 5.6 years	Payback period is 9.17 years

CO₂ Emission Savings: (GSHP vs AC)

AC	GEO	CO2 emission factor (gCO2/kWh)
Elec. Cons. (KWH/Yr)	Elec. Cons. (KWH/Yr)	400
163960.92	29398.917	
CO2 emission (gCO2/yr)	CO2 emission (gCO2/yr)	
65,584,368	11,759,566.8	

Then, CO2 Emission Savings per year (g CO2/yr):

 \Box CO2 Emission Savings = 65,584,368 - 11,759,566.8 = 53,824,801.2 gCO2eq.

% Savings=
$$\frac{53,824,801.2}{65,584,368} \times 100 = 82\%$$

Acoustics

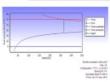
P.O.C	Data
Location:	The Acoustics building is located at Faculty of engineering. Ain Shams University
Floor Area	542 m ²
Goals	Our goal is to calculate the cost of replacing one chilter (38.5 TR) with a Goothermal heat pump to cover the acoustics building's cooling/heating loads to reduce electric consumption & carbon footprint.
Building use	Educational Purpose

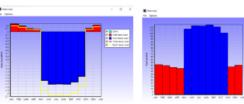
Geo-cooling

Ground Prope	erties
Thermal conductivity	2.1 W/m.k
Volumetric heat capacity	$2.5 MJ/m^3.k$
Ground surface temperature	24°C
Geothermal heat flux	0.08 W/m²
Borehole Specif	lications
Type	Single U-tube
Depth of one barehale	100 m
Spacing between boreholes	7 m
Borehole Diemeter	152 mm
Thermal resistance for pipe/grout	0.074 m. k/W
Grout thermal conductivity	0.6 W/m.k
How rate for one borehole	16.2 L/m/n
Pipe Specifica	rtiona
Outer diameter	32 mm
Thickness	3 mags

Thermal conductivity 0.42 W/xx.k

	Fluid (Winter)
Thermal conductivity	0.608 W/m.k
Specific heat capacity	4180 f/kg.k
Density	997.2 kg/m ²
Viscosity	0.000891 Kg/m.s
Freezing point	o*c
Earth Energy	Designer 4.2
	25 Years
Simulation period	



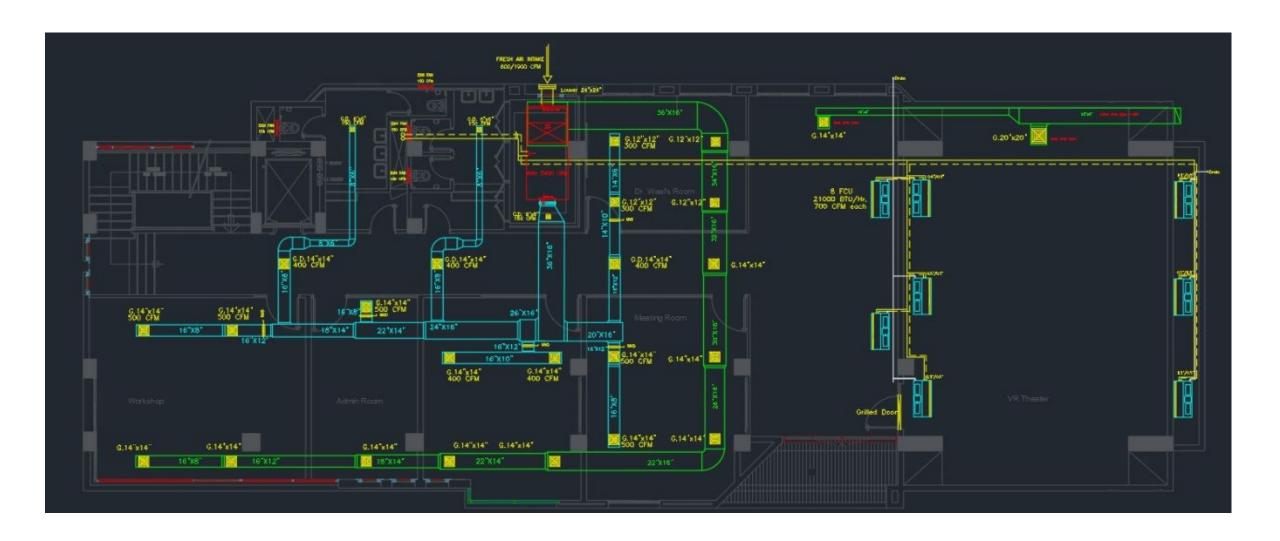

Geo-cooling

Geo-cooling

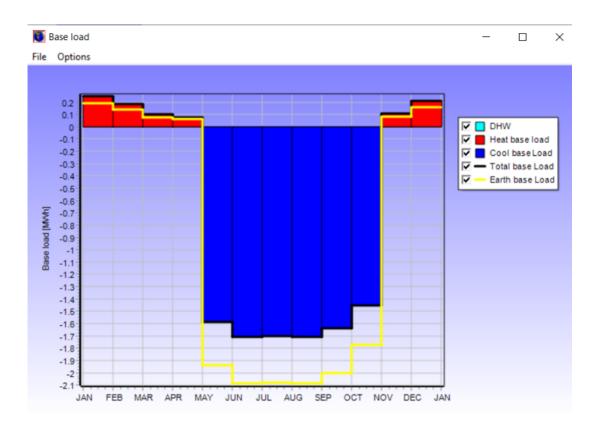
Rect Case Results		
No. of boreholes	18 boreholes	
Boreholes configuration	3 * 8 configuration	
Specing between boreholes	7 70	
Depth of one borehole	98 rs	
Total length	1759 m	
Land area	686 m ²	
Surface area dimensions: L × W	49 m × 14 m	

Acoustics Building Peak loads annually.

Geo-cooling



Site Parameters


P.O.C	Data
Location:	The Acoustics building is located at Faculty of engineering Ain Shams University
Floor Area	$542 m^2$
Goals	Our goal is to calculate the cost of replacing one chiller (38.5 TR) with a Geothermal heat pump to cover the acoustics building's cooling/heating loads to reduce electric consumption & carbon footprint.
Building use	Educational Purpose

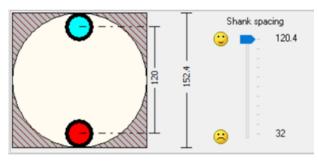
Site Parameters

Cooling and Heating Load Results

Peak load \times File Options ✓ ■ Heat peak load Cool peak Load 55 50 45 40 35 · 30 · 25 -20 -15 10 FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN

Acoustics Building Base load annually.

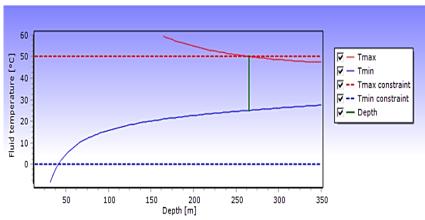
Acoustics Building Peak loads annually.


Closed Loop GSHP Design Parameters

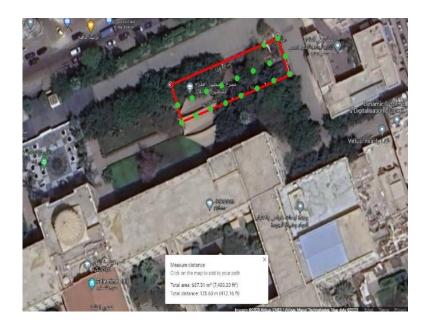
Ground Properties		
Thermal conductivity	2.1 W/m. k	
Volumetric heat capacity	$2.5 MJ/m^3.k$	
Ground surface temperature	24° <i>C</i>	
Geothermal heat flux	$0.08W/m^2$	
Borehole Sp	ecifications	
Туре	Single U-tube	
Depth of one borehole	100~m	
Spacing between boreholes	7 <i>m</i>	
Borehole Diameter	152 <i>mm</i>	
Thermal resistance for pipe/grout	0.074~m.k/W	
Grout thermal conductivity	0.6W/m.k	
Flow rate for one borehole	16.2 <i>L/min</i>	
Pipe Spec	ifications	
Outer diameter	32 <i>mm</i>	
Thickness	3 <i>mm</i>	
Thermal conductivity	$0.42 \ W/m.k$	
Shank spacing	120 mm	

Acoustics Building Input Data

Heat carrier Fluid (Water)		
Thermal conductivity	0.608 W/m. k	
Specific heat capacity	4180 J/kg.k	
Density	$997.2 \ kg/m^3$	
Viscosity	0.000891 Kg/m.s	
Freezing point	0° <i>C</i>	


Earth Energy Designer 4.2		
Simulation period	25 Years	
First month of operation	September	

Borehole Shank spacing.

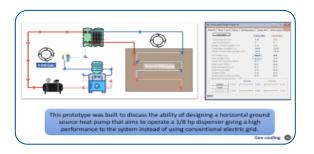

Closed Loop GSHP Design Results

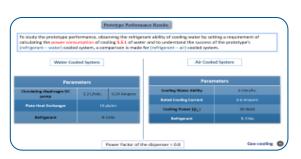
Best Case Results		
No. of boreholes	18 boreholes	
Boreholes configuration	3 * 8 configuration	
Spacing between boreholes	7 <i>m</i>	
Depth of one borehole	98 m	
Total length	1759 m	
Land area	$686 m^2$	
Surface area dimensions: L × W	$49 m \times 14 m$	

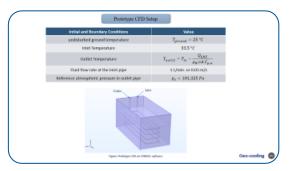
Monthly simulation: ASU1.DAT Configuration: 7 ("8:1 x 8 line") Spacing B: 7 m Calculated depth D: 265 m Tf min: 25.1°C max: 50°C

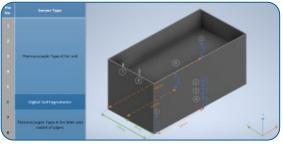
Fluid Temperature vs depth [For Acoustics Building]

Borehole field configuration [For Acoustics Building]

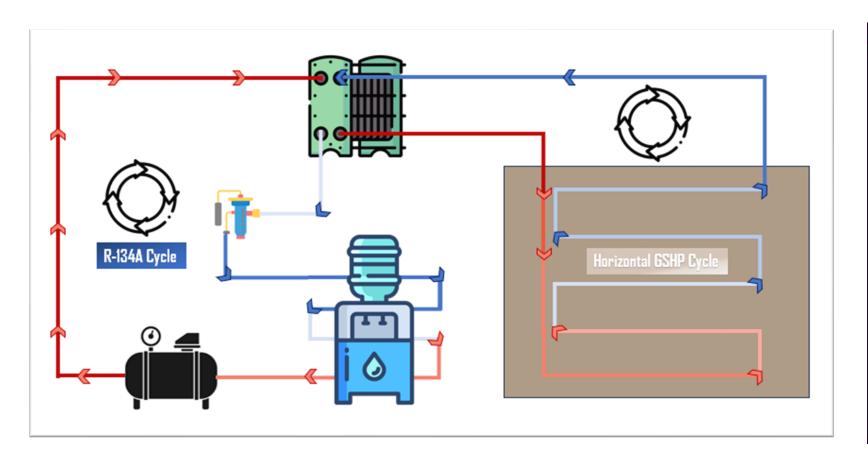

Cost		
Excavation & instruments	1300 LE for 1 m	
Total cost per 1759 m = 2,286,700 LE		
Two heat pump units used	Ecoforest (100 kw- 40 kw)	
Total cost of two heat pump respectively (957,372 + 17946) = 975,318 LE		
Total system cost = 3,262,018 LE = 108,733 USD \$		

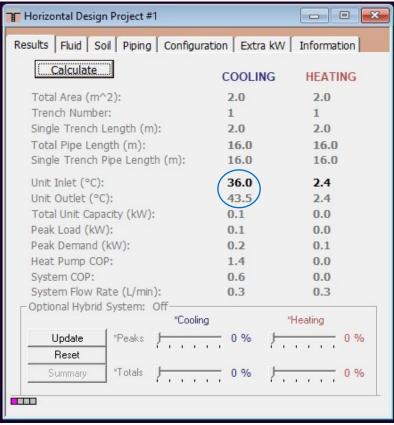



Figure: Acoustic Building Heat pump specifications



Prototype





This prototype was built to discuss the ability of designing a horizontal ground source heat pump that aims to operate a 1/8 hp dispenser giving a high performance to the system instead of using conventional electric grid.

Prototype CFD Setup

Initial and Boundary Conditions	Value
undisturbed ground temperature	$T_{ground} = 25 ^{\circ}C$
Inlet Temperature	33.5 ° <i>C</i>
Outlet Temperature	$T_{out(t)} = T_{in} - \frac{Q_{GHE}}{\rho_W vA C_{p,w}}$
Fluid flow rate at the inlet pipe	1 L/min. or 0.03 m/s
Reference atmospheric pressure in outlet pipe	$p_o = 101,325 Pa$

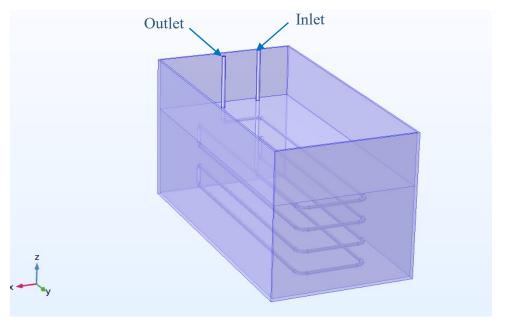


Figure: Prototype CAD on COMSOL software

Prototype Meshing

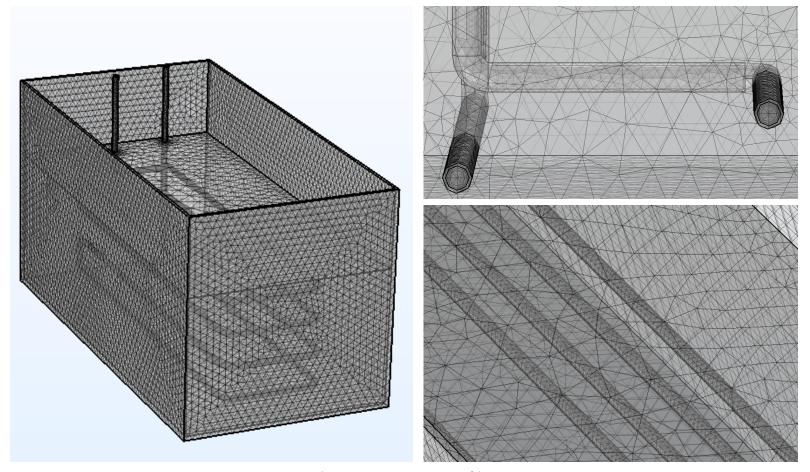


Figure: ASU Prototype Meshing

Prototype Steady state solution

To be able to make a study of stationary solution, adding another boundary condition should be considered as in this case, the soil domain will be given a constant soil temperature along the simulation. So, a Steady state is created between the inlet water temperature to the soil and the soil temperature

Thus, considering the soil in the box as an infinite heat sink similar to the ground behaviour as the soil temperature theoretically shouldn't change.

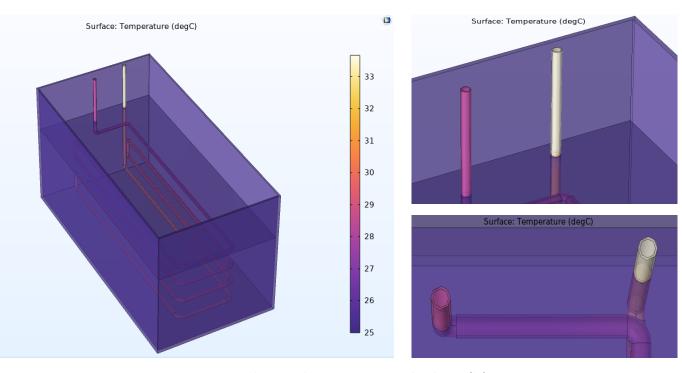


Figure: Steady state solution - Temperature distribution (°C)

Prototype Steady state solution

Results have shown that the outlet water temperature from the soil:

$$T_{out} = 28.896 \, ^{\circ}C$$

And since the inlet fluid temperature is $33.5 \,^{\circ}C$ and the undistributed ground temperature is $25 \,^{\circ}C$, then the simulated effectiveness will be:

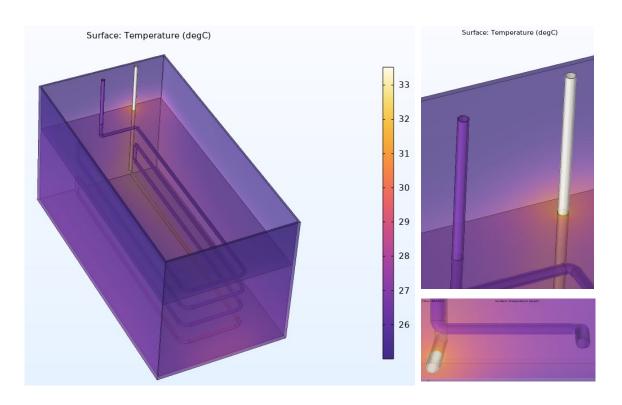
$$\theta$$
 (%) = $\frac{33.5 - 28.896}{33.5 - 25} \times 100 = 54.16\%$

And the temperature difference is:

$$\Delta T = 33.5 - 28.896 = 4.604 \,^{\circ}C$$

Prototype Transient solution

On the contrast of the previous study, the study of the soil thermal behaviour is being simulated by assuming certain operation conditions which are:


- Supplying constant inlet fluid temperature which is equal to $33.5~^{\circ}C$
- Soil as a heat sink will have its wall insulated which means the soil will store heat with respect to time.

The study will be done twice but with different time intervals

24-hour Time Interval Results

24-hour time interval Results

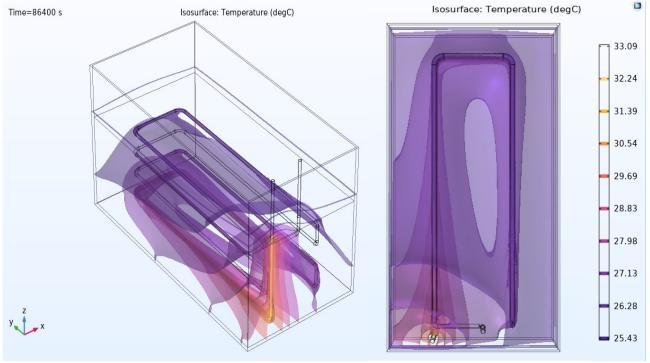


Figure: Transient solution after passing 24 hours- Temperature distribution (°C)

Figure: Isothermal Contours of prototype after 24 hours

24-hour time interval Results

Results have shown that the rate of heat energy (power) that has been stored in the ground — which can be used if considering the soil as thermal storage - can be described from the following curve:

Figure: Rate of heat transfer Exchange Vs Time - 24 hr. simulation

By using surface integration for power per unit area has a function of: (T-306.65)*spf.U*spf.rho*comp1.mat1.def.Cp(T) as unit is in Watts (W)

Outlet temperature in 24 hours - COMSOL

Figure: Temperature vs Time - 24 hr. simulation

30-day time interval Results

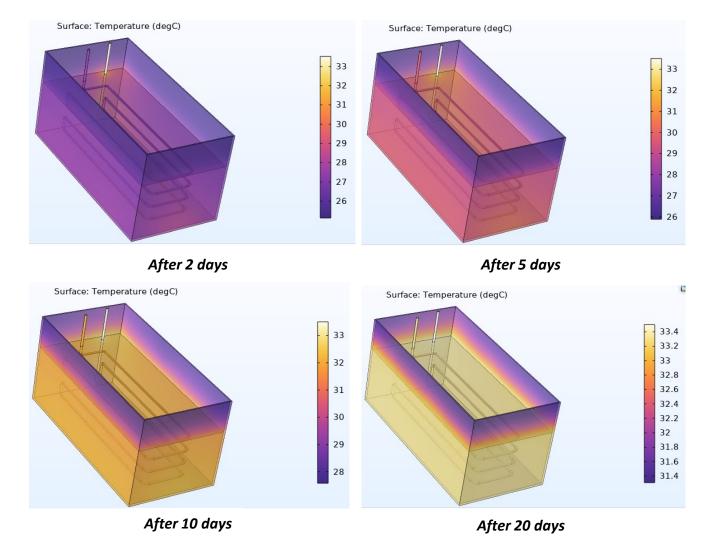


Figure: Transient solution at different times - Temperature distribution (°C)

30-day time interval Results

Results have shown that the rate of heat energy (power) that has been stored in the ground – which can be used if considering the soil as thermal storage - can be described from the following curve:

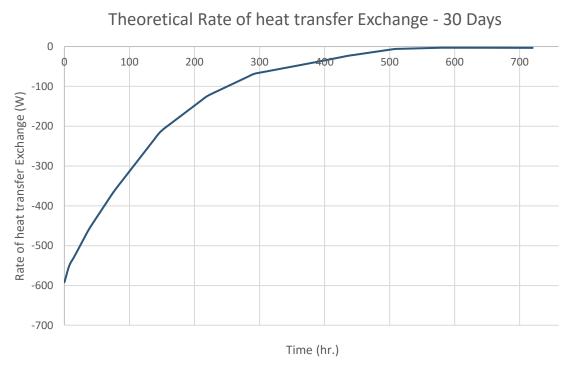
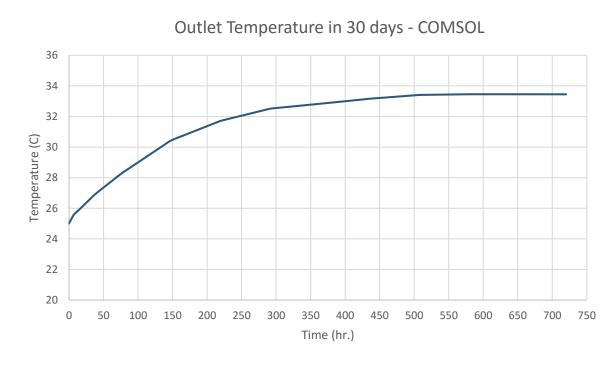
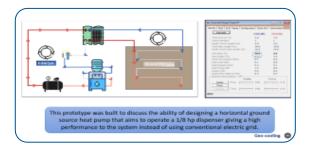
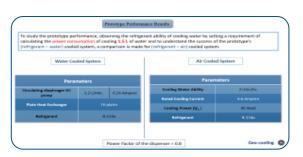
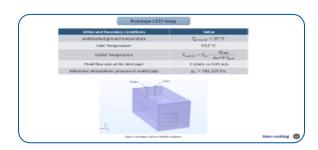
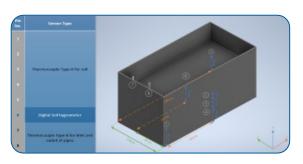


Figure: Rate of heat transfer Exchange Vs Time - 30 days' simulation

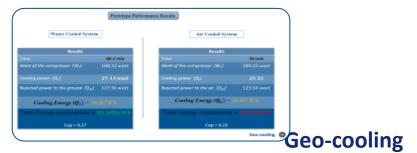
By using surface integration for power per unit area has a function of: (T-306.65)*spf.U*spf.rho*comp1.mat1.def.Cp(T) as unit is in Watts (W)


Figure: Temperature vs time - 30 days' simulation



Prototype



Components

Water Dispenser

Plate Heat Exchanger

Soil trench

Water circulating pump

UPVC U-shaped loops

Thermocouples

Glass wool insulation

Components

Water Dispenser

Plate Heat Exchanger

Soil trench

Water circulating pump

UPVC U-shaped loops

Thermocouples

Glass wool insulation

Components

Water Dispenser

Plate Heat Exchanger

Soil trench

Water circulating pump

UPVC U-shaped loops

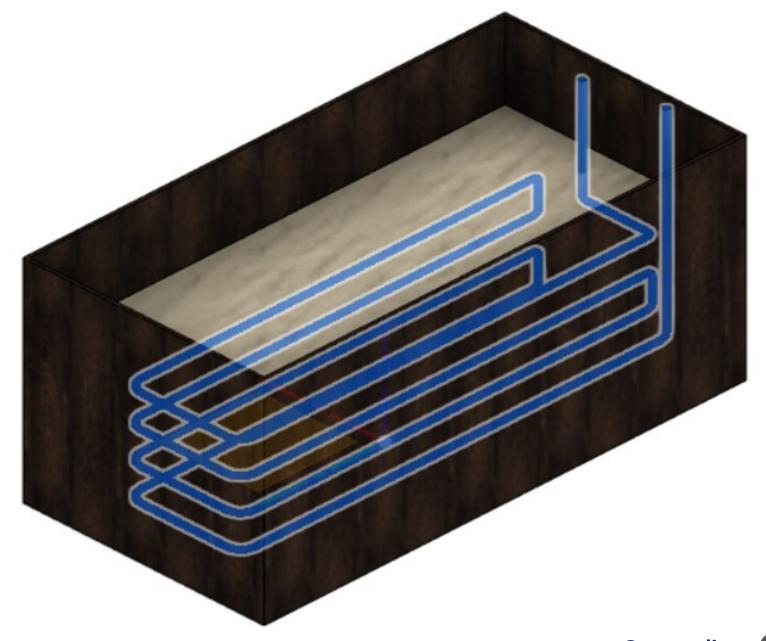
Thermocouples

Glass wool insulation

Components

Water Dispenser

Plate Heat Exchanger


Soil trench

Water circulating pump

UPVC U-shaped loops

Thermocouples

Glass wool insulation

Components

Water Dispenser

Plate Heat Exchanger

Soil trench

Water circulating pump

UPVC U-shaped loops

Thermocouples

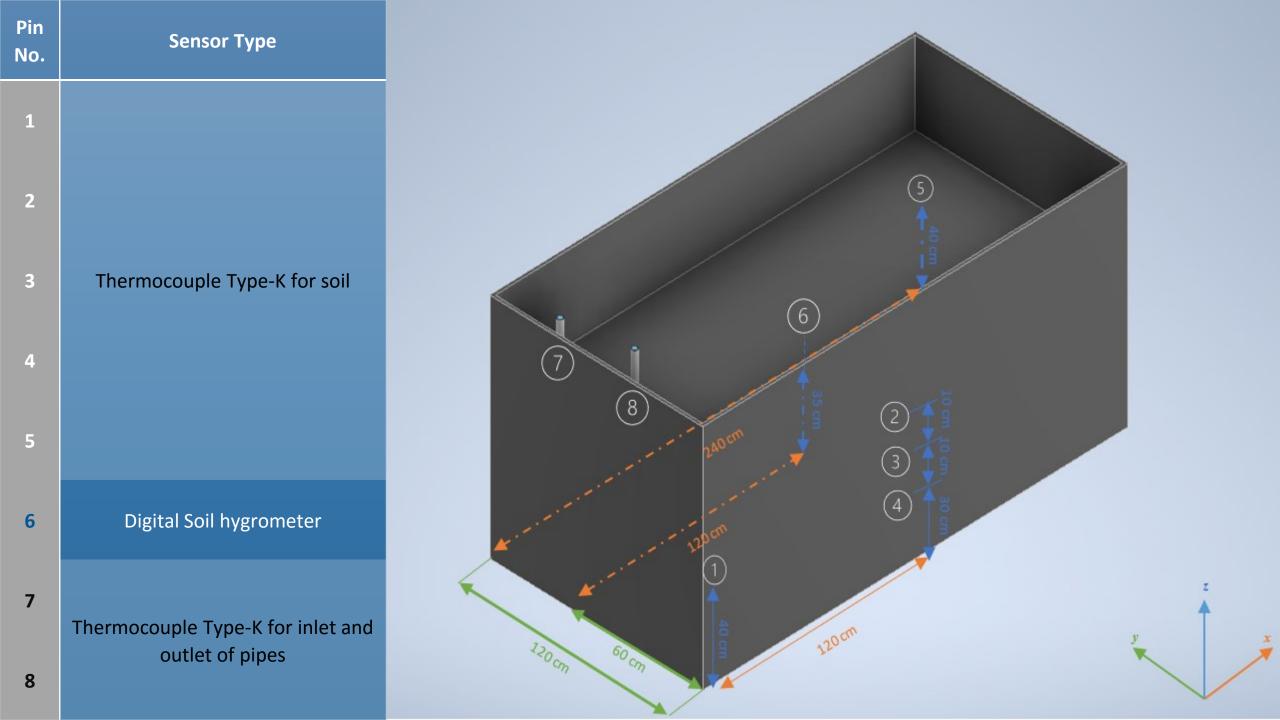
Glass wool insulation

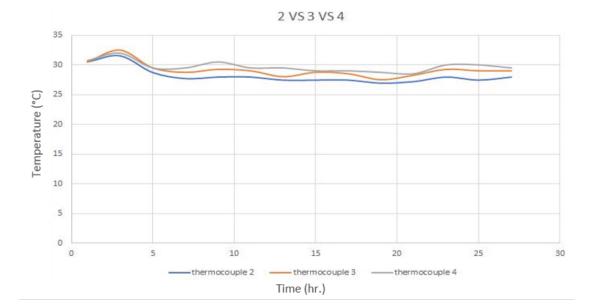
Multi-meter (Avometer)

Thermocouple type K

Soil Hygrometer

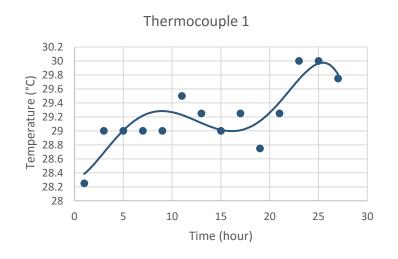
Prototype Performance Results

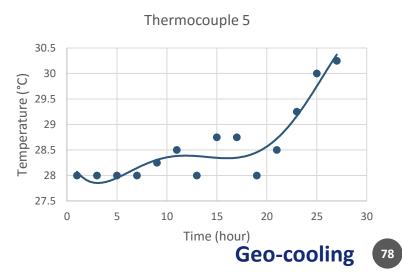

To study the prototype performance, observing the refrigerant ability of cooling water by setting a requirement of calculating the power consumption of cooling 1.5 L of water and to understand the success of the prototype's (refrigerant – water) cooled system, a comparison is made for (refrigerant – air) cooled system.

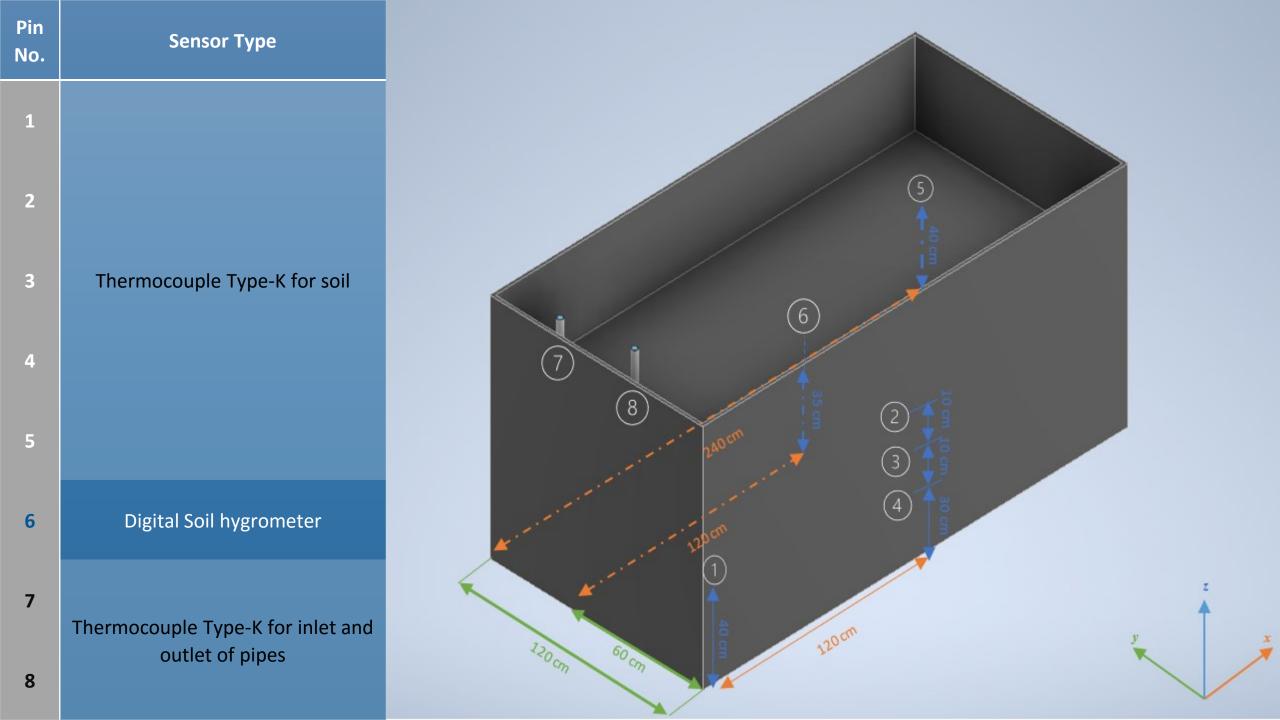

Water Cooled System

Parameters		
Circulating diaphragm DC pump	1.2 L/min.	0.24 Ampere
Plate Heat Exchanger	10 plates	
Refrigerant	R-134a	

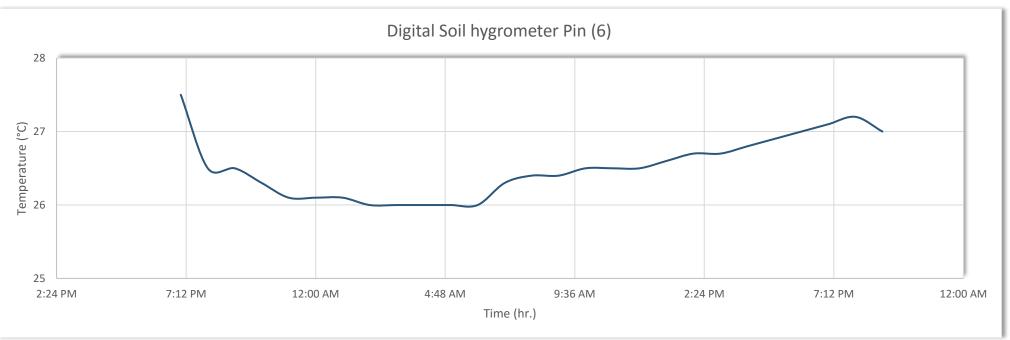
Air Cooled System


Parameters		
Cooling Water Ability	2 Liter/hr.	
Rated Cooling Current	0.6 Ampere	
Cooling Power ($oldsymbol{Q}_L$)	90 Watt	
Refrigerant	R-134a	



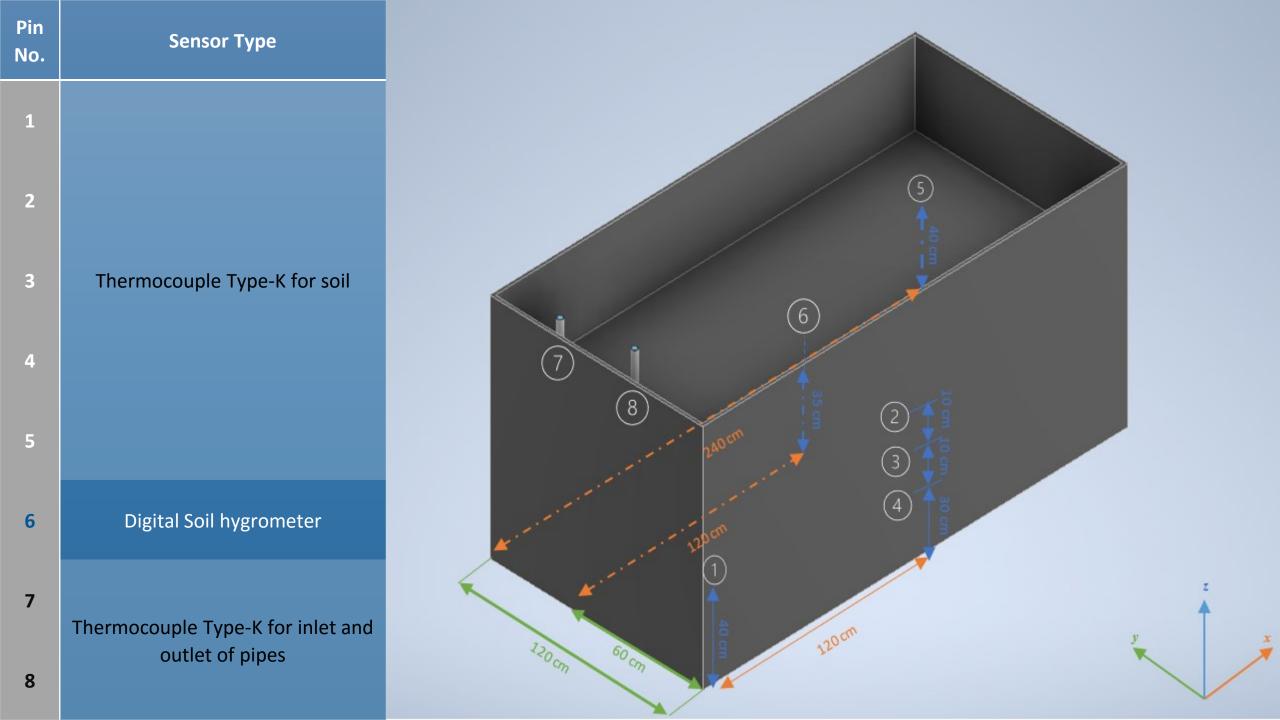


For every $10 \, cm$ in the vertical direction, there is a temperature difference of about $[0.5 - 1.5] \, ^{\circ}C$

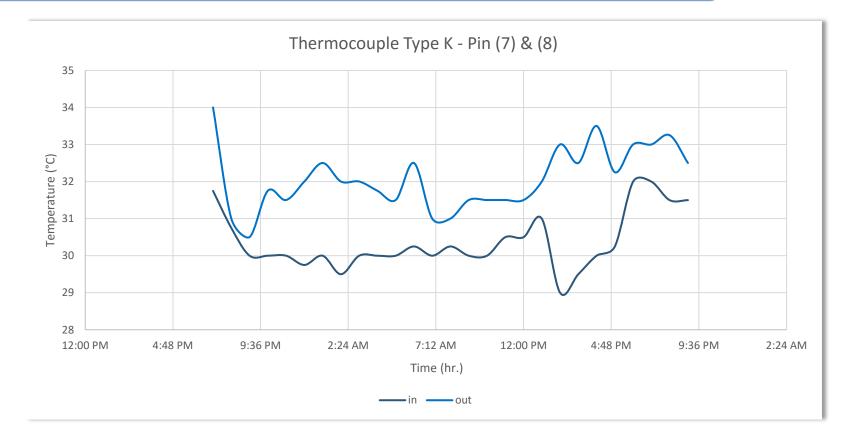

Pin (1) and (5) was put at depth 35 cm from soil's surface & are located at the box corners.

From Pin (6), the soil temperature range between [26 – 27] °C at the soil's surface throughout the experiment.

To understand the diffusion time made by experiment,


Diffusion time started at **6:00 am** and changed temperature from **26°C to 27°C** after **12 hours**, which shows that:

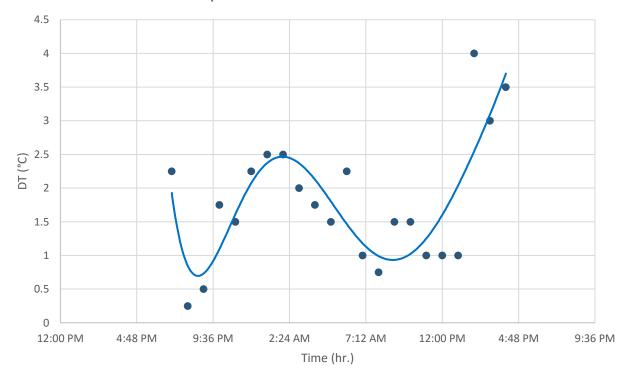
Experimental diffusion time=0.5 day


For knowing thermal diffusivity = 0.058 m²/day

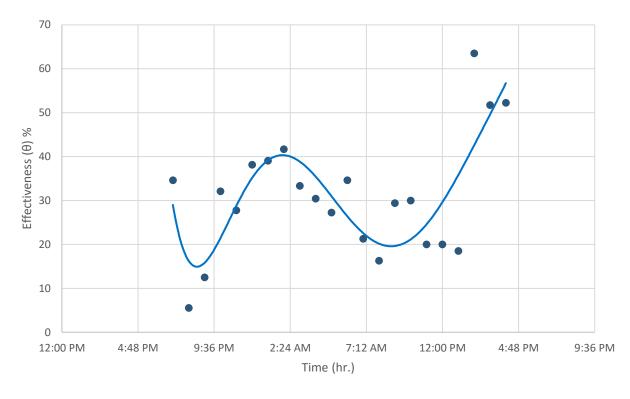
Theoretical Diffusion time=(Characteristic Length)^2/(Thermal Diffusivity)=(0.18)^2/0.058=0.558 day

% Error=(0.5 -0.558)/0.5×100= -11.6%

Pin (7) and Pin (8) represents the inlet and outlet water temperature entering and exiting from the heat pump, where results have shown that:

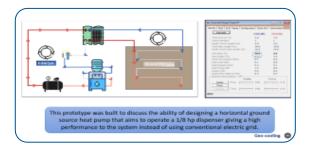


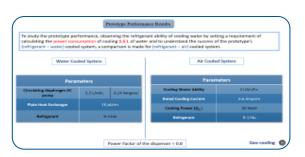
To explain the value of the temperature readings, the effectiveness of the ground heat exchanger should be measured

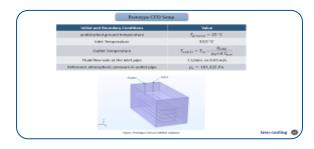

$$\theta \text{ (\%)} = \frac{T_{in} - T_{out}}{T_{in} - T_{ground}} \times 100$$

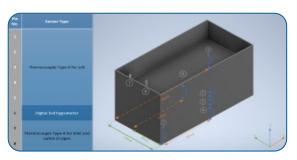
By considering T_{ground} is a function of pin (6), then from the following graph, valuable data can be analysed to understand the performance of the prototype system:

Temperature difference vs time

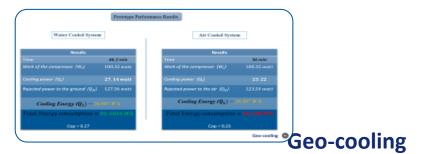



Effectivness vs time





Prototype



Water Cooled System

Results			
Time	46.2 min		
Work of the compressor (W_c)	100.32 watt		
Cooling power (Q _L)	27.14 watt		
Rejected power to the ground (Q_H)	127.56 watt		
Cooling Energy $(Q_L) = 20.897 W h$			
Total Energy consumption = $81.6816 Wh$			
Cop = 0.27			

Air Cooled System

Results			
Time	56 min		
Work of the compressor (W _C)	100.32 watt		
Cooling power (Q _L)	23.22		
Rejected power to the air (Q_H)	123.54 watt		
Cooling Energy $(Q_L) = 20.897 W h$			
Total Energy consumption = $90.288 Wh$			
Cop = 0.23			

GEOTHERMAL ENERGY USAGE IN HVAC APPLICATIONS IS:

Conclusion

REDUCE CARBON
EMISSIONS (COULD BE
MORE REDUCED BY
INTEGRATING HYBRID
SYSTEMS)

ECONOMICALLY FEASIBLE (DEPENDS ON LOCATION, GROUND PROPERTIES & THERMAL LOADS).

Recommendations

- ✓ choosing suitable sites with suitable ground properties
- ✓ Further research on borehole separation distances and hybridization
- ✓ Explore varying borehole lengths in system configurations
- ✓ Conduct thermal response test prior to implementation.
- ✓ Expand studies to explore other applications of geothermal technology
- ✓ Integration of photovoltaic systems with ground source heat pump cooling systems
- ✓ implementing of feasibility studies

Thank You