DETAILED HEAT RECOVERY SYSTEM CALCULATION PROCEDURE

- The following procedue is extracted from ASHRAE 2008 Handbook - HVAC Systems and Equipment - Chapter 25

(Air-to-Air Energy Recovery Equipment), and it is generic for all energy recovery system types (Liquid coupled, energy wheel, and plate heat exchanger)

Actual transfer of moisture or energy $\varepsilon = \frac{1}{\text{Maximum possible transfer between airstreams}}$

$$\varepsilon_{s} = \frac{q_{s}}{q_{s,max}} = \frac{m_{s}c_{p\,s}(t_{2} - t_{1})}{C_{min}(t_{3} - t_{1})} = \frac{m_{s}c_{p\,e}(t_{3} - t_{4})}{C_{min}(t_{3} - t_{1})}$$
(2a)

where q_s is the actual sensible heat transfer rate given by

where $q_{s,max}$ is the maximum sensible heat transfer rate given by

$$q_{s,max} = 60C_{min} (t_3 - t_1) (2c$$

where

 $\varepsilon_n = sensible effectiveness$

 $t_1 = \text{dry-bulb temperature at location 1 in Figure 1, °F}$

 $m_g = \text{supply dry air mass flow rate, lb/min}$

 m_e = exhaust dry air mass flow rate, lb/min C_{min} = smaller of $c_{ps}m_s$ and $c_{pe}m_e$ c_{ps} = supply moist air specific heat at constant pressure, Btu/lb·°F

 c_{pe} = exhaust moist air specific heat at constant pressure, Btu/lb·°F

Assuming no water vapor condensation in the HRV, the leaving supply air condition is

$$t_2 = t_1 - \varepsilon_s \frac{C_{min}}{m_s c_{ps}} (t_1 - t_3)$$
 (3a)

and the leaving exhaust air condition is

$$t_4 = t_3 + \varepsilon_s \frac{C_{min}}{m_e c_{ne}} (t_1 - t_3)$$
 (3b)

$$\varepsilon_L = \frac{q_L}{q_{L,max}} = \frac{m_s h_{fg}(w_1 - w_2)}{m_{min} h_{fg}(w_1 - w_3)} = \frac{m_e h_{fg}(w_4 - w_3)}{m_{min} h_{fg}(w_1 - w_3)} \quad (4a)$$

where q_L is the actual latent heat transfer rate given by

$$q_L = \varepsilon_L q_{L,max}$$
 (4b)

where $q_{L,max}$ is the maximum heat transfer rate given by

$$q_{L,max} = 60 m_{min} h_{f_R}(w_1 - w_3)$$
 (4c)

where

 ε_L = latent effectiveness

 h_{f_0} = enthalpy of vaporization, Btu/lb w = humidity ratios at locations indicated in Figure 1

 $m_s = \text{supply dry air mass flow rate, lb/min}$

 m_e = exhaust dry air mass flow rate, lb/min m_{min} = smaller of m_s and m_e

Assuming no water vapor condensation in the ERV, the leaving humidity ratios can be given as follows. The supply air leaving humidity ratio is

$$w_2 = w_1 - \varepsilon_L \frac{m_{w,min}}{m_s} (w_1 - w_3)$$
 (5a)

and the leaving exhaust air humidity ratio is

$$w_4 = w_3 + \varepsilon_L \frac{m_{w,min}}{m_s} (w_1 - w_3)$$
 (5b)

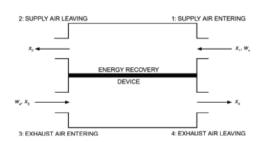


Fig. 1 Airstream Numbering Convention

The total effectiveness ε_t of an energy recovery ventilator is

$$\varepsilon_t = \frac{q_t}{q_{t,max}} = \frac{m_s(h_2 - h_1)}{m_{min}(h_3 - h_1)} = \frac{m_e(h_3 - h_4)}{m_{min}(h_3 - h_1)} \tag{6a}$$

where q_t is the actual total heat transfer rate given by

$$q_t = \varepsilon_t q_{t,max}$$
 (6b)

where $q_{t,max}$ is the maximum total heat transfer rate given by

$$q_{t,max} = 60 m_{min} (h_1 - h_3)$$
 (6c)

where

 e_t = total effectiveness

h = enthalpy at locations indicated in Figure 1, Btu/lb

 m_s = supply dry air mass flow rate, lb/min

 m_e = exhaust dry air mass flow rate, lb/min m_{min} = smaller of m_s and m_e

The leaving supply air condition is

$$h_2 = h_1 - \varepsilon_t \frac{m_{min}}{m_v} (h_1 - h_3) \tag{7a}$$

and the leaving exhaust air condition is

$$h_4 = h_3 + \varepsilon_t \frac{m_{min}}{m_e} (h_1 - h_3)$$
 (7b)

DETAILED HEAT RECOVERY CALCULATION

LIQUID COUPLED HEAT RECOVERY SYSTEM

FOR: AHU-P-1 Arrangement 2 , and EX.FAN-P-1 Arrangement 2

A: Input Data

ITEM	OUTSIDE AIR STREAM INLET CONDITIONS (1)			EXHAUST AIR STREAM INLET CONDITIONS (3)				
Air flow rate	V_s	=	24000	CFM	V _e	=	24000	CFM
Dry Bulb Temp.	$T_{db,1}$	=	113	F	$T_{db,3}$	=	78.8	F
Wet Bulb Temp	$Tw_{b,1}$	=	68.99	F	$Tw_{b,3}$	=	66.66	F
Relative Humidity	RH ₁ %	=	8.62		RH ₂ %	Ш	50	
Density	ρ_1	=	0.0686	lb/ft ³	ρ_3	Ш	0.0722	lb/ft ³
Humidity Ratio	\mathbf{x}_1	=	0.00512	lb/lb	x ₃	=	0.01094	lb/lb
Enthalpy	h_1	=	32.81	BTU/lb	h3	Ш	31.19	BTU/lb
Specific Heat	$C_{p,s}$	=	0.24	BTU/lb.F	$C_{p,e}$	=	0.24	BTU/lb.F

B: Calculation

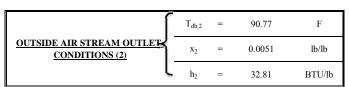
- Refer to the introduction page for calculation procedure and equations.

Effectiveness of sensible heat $\xi_s = 0.65$

 m_s . $C_{p,s} = 395.14$ BTU/min.F

 m_e . $C_{p,e}$ = 415.58 BTU/min.F

 $Smaller \ of \ m_s. Cp_s, \ and \ m_e. Cp_e \qquad \qquad C_{min} \quad = \qquad 395.14 \qquad BTU/min.F$


 $\mbox{Max heat transfer} \qquad \qquad q_{s,\,\mbox{max}} \quad = \quad \ \mbox{810,819.07} \qquad \ \mbox{BTU/hr}$

Actual heat treansfer $q_s = 527,032.40$ BTU/hr

SUPPLY AIR COIL EXHAUST AIR ENTERING A: EXHAUST AIR LEAVING EXHAUST AIR COIL OUTSIDE EXHAUST AIR EXHAUST AIR EXHAUST AIR OUTSIDE OUTSIDE OUTSIDE EXHAUST AIR OUTSIDE OUTSIDE OUTSIDE EXHAUST AIR OUTSIDE OUTSIDE

Fig. 8 Coil Energy Recovery Loop

C: Output Data

ſ	$T_{db,4}$	=	99.94	F
EXHAUST AIR STREAM OUTLE CONDITIONS (4)	X ₄	=	0.0109	lb/lb
	- h ₄	=	31.19	BTU/lb

Heat recovery coil:Water inlet Temp.	$T_{\rm wi}$	=	89.37	F
Heat recovery coil:Water outlet Temp.	$T_{\rm wo}$	=	101.89	F
Heat recovery coil:Water Temp. dff.	$\Delta T_{\rm w}$	=	13	F
Heat recovery coil: Water Flow Rate	$Q_{\rm w}$	=	84.21	US GPM
Heat Recovery Pump Absorbed Power	P	=	0.71	HP
Heat Recovery Pump Motor Power	P	=	1	HP

HVAC WORKS - HEAT RECOVERY EFFECT LIQUID COUPLED TYPE

		COOLING LOAD	COOLING LOAD AFTER APLYING	AMOUNT OF COOLING LOAD REDUCTION				
AHU	FAN	RECOVERY, MBH	HEAT RECOVERY, MBH	МВН	TR	kW		
AHU-1	EX.FAN-1	1,503.4	927.2	576.2	48.0	168.9		
AHU-2	EX.FAN-2	563.8	347.7	216.1	18.0	63.3		
AHU-3	EX.FAN-3	1,046.1	645.1	400.9	33.4	117.5		
AHU-4	EX.FAN-4	814.3	502.2	312.1	26.0	91.5		
AHU-G-1	EX.FAN-G-1	1,127.5	695.4	432.2	36.0	126.7		
AHU-1-4	EX.FAN-1-1	3,132.0	1,931.6	1,200.4	100.0	351.8		
AHU-1-5	EX.FAN-1-2	1,378.1	849.9	528.2	44.0	154.8		
AHU-2-4	EX.FAN-2- 4	375.8	231.8	144.1	12.0	42.2		
AHU-2-5	EX.FAN-2-5	3,132.0	1,931.6	1,200.4	100.0	351.8		
AHU-2-6	EX.FAN-2-6	1,879.2	1,158.9	720.3	60.0	211.1		
AHU-2-7	EX.FAN-2-7	1,879.2	1,158.9	720.3	60.0	211.1		
AHU-2-8	EX.FAN-2-8	877.0	540.8	336.1	28.0	98.5		
AHU-5-1	EX.FAN-5-1	2,944.1	1,815.7	1,128.4	94.0	330.7		
AHU-5-2	EX.FAN-5-2	2,630.9	1,622.5	1,008.4	84.0	295.5		
AHU-5-3	EX.FAN-5-3	375.8	231.8	144.1	12.0	42.2		
	<u>Total</u>	32,303.4	19,922.3	12,381.1	1,031.8	3,628.7		

DETAILED ENERGY RECOVERY CALCULATION

ROTARY WHEEL (ENTHALPY WHEEL) ENERGY RECOVERY SYSTEM

FOR: AHU-GR-2 Arrangement 3 , and EX.FAN-GR-1 Arrangement 3

A: Input Data

ITEM	SUPPLY AIR STREAM INLET CONDITIONS (1)			EXHAUST AIR STREAM INLET CONDITIONS (3)				
Air flow rate	V_s	=	40000	CFM	V_{e}	=	40000	CFM
Dry Bulb Temp.	$T_{db,1}$	=	113	F	$T_{db,3}$	Ш	80	F
Wet Bulb Temp	$T_{wb,1}$	=	68.99	F	$T_{wb,3}$	Ш	66.66	F
Relative Humidity	RH_1	=	8.62	%	RH_2	II	50	%
Density	ρ_1	=	0.0686	lb/ft ³	ρ_3	II	0.0722	lb/ft ³
Humidity Ratio	X1	=	0.00512	lb/lb	Х3	11	0.01094	lb/lb
Enthalpy	h_1	=	32.81	BTU/lb	h ₃	=	31.19	BTU/lb
Specific Heat	$C_{p,s}$	=	0.24	BTU/lb.F	$C_{p,e}$	=	0.24	BTU/lb.F

B: Calculation

- Refer to the introduction page for calculation procedure and equations.

Effectiveness of sensible heat transfer	$\xi_{\rm s}$	=	0.65	
	\boldsymbol{m}_{s} . $\boldsymbol{C}_{p,s}$	=	658.56	BTU/min.F
	m_e . $C_{p,e}$	=	692.64	BTU/min.F
Smaller of m _s .Cp _s , and m _e .Cp _e	C_{\min}	=	658.56	BTU/min.F
Max heat transfer	$q_{s,\;max}$	=	1,303,948.80	BTU/hr
Actual heat treansfer	q_s	=	847,567	BTU/hr
Effectiveness of latent heat	$\xi_{\rm L}$	=	0.65	
	$q_{\rm L}$	=	-685,116	BTU/hr
Effectiveness of total heat	٤	_	0.65	
Effectiveness of total fleat	ξ_{T}	_	0.65	
SAVING IN TOTAL LOAD	q_{T}	=	847,567	BTU/hr

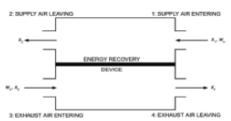
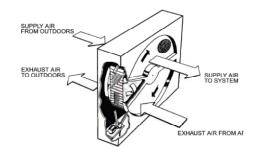



Fig. 1 Airstream Numbering Convention

C: Output Data

1	$T_{db,2}$	=	91.55	F
OUTSIDE AIR STREAM OUTLED CONDITIONS (2)	x ₂	=	0.0089	lb/lb
	h ₂	=	31.76	BTU/lb

1	$T_{db,4}$	=	100.39	F
EXHAUST AIR STREAM OUTLET CONDITIONS (4)	X_4	=	0.0072	lb/lb
	h ₄	=	32.24	BTU/lb

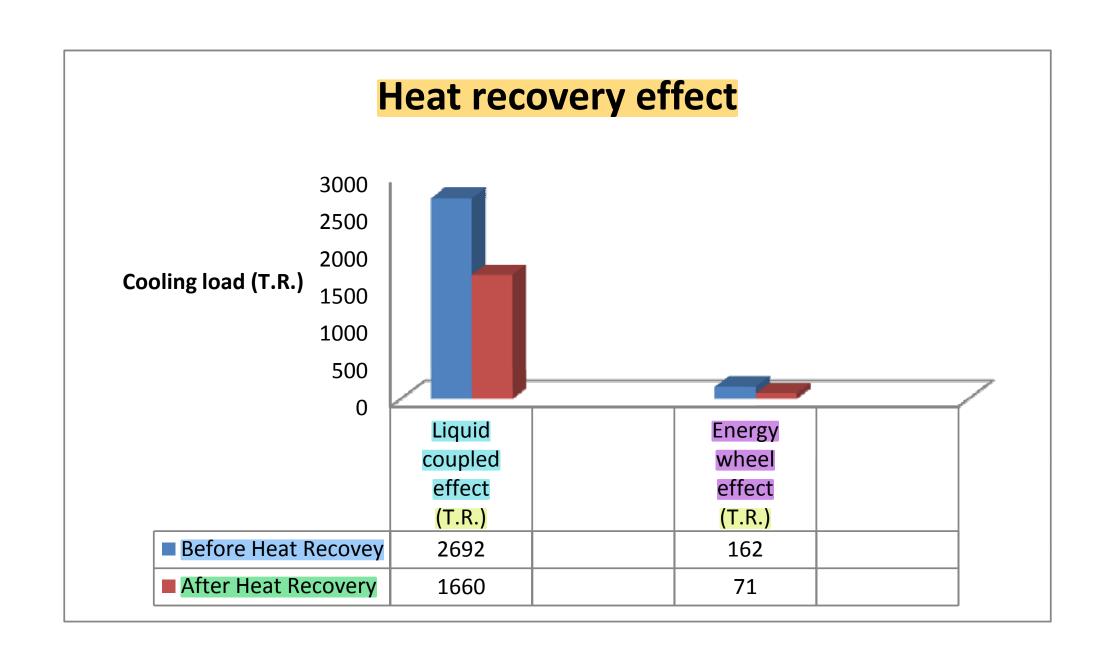

SENSIBLE HEAT REDUTION	q _s	=	847,566.72	BTU/hr
LATENT HEAT REDUCTION	$q_{\rm L}$	=	-685,116.43	BTU/hr
TOTAL LOAD REDUCTION	\Rightarrow q _T	=	847,566.72	BTU/hr

Fig. 6 Rotary Air-to-Air Energy Exchanger

HVAC WORKS - HEAT RECOVERY EFFECT

ROTARY ENERGY WHEEL TYPE

AHU	FAN	COOLING LOAD BEFORE HEAT	COOLING LOAD AFTER APLYING	AMOUNT OF COOLING LOAD REDUCTION				
Ano	FAN	RECOVERY, MBH	HEAT RECOVERY, MBH	МВН	TR	kW		
AHU-P-6	EX.FAN-P-6	307.8	134	173.8	14.5	50.9		
AHU-G-2	EX.FAN-G-1	1641.36	714.96	926.4	77.2	271.5		
To	<u>otal</u>	1,949.2	<u>849.0</u>	1,100.2	<u>91.7</u>	<u>322.5</u>		

