

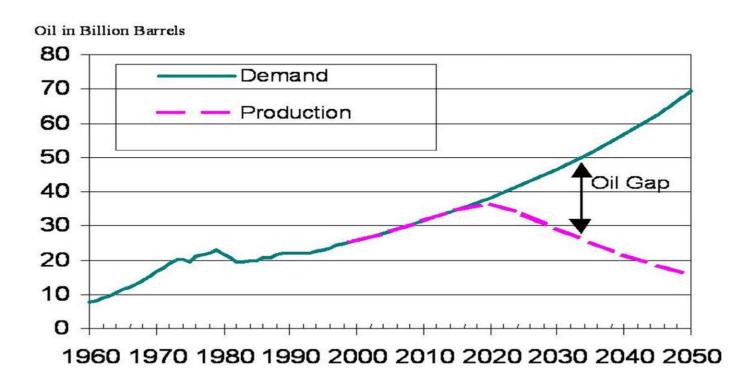
Solar Energy Applications

Eng. Ali elskerbeny

Eng_ali022 Qyahoo, com

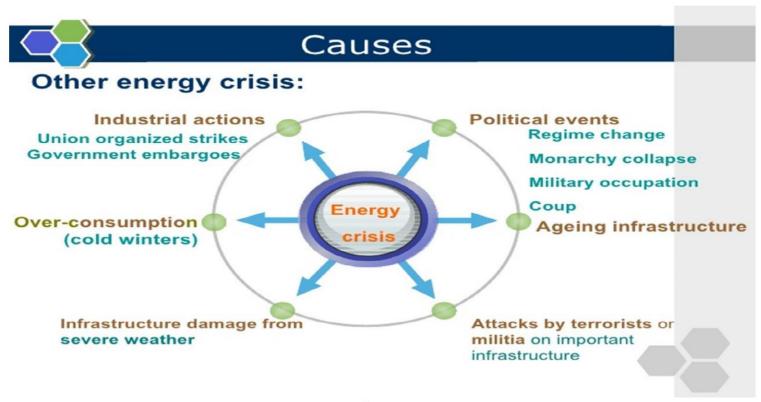
الطاقة عالميا

وهم عشرة مشاكل تواجد العلم حتى عام 2050

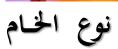

: 6.5 ملياد نسمة

10-8: 2050 مليار نسمة

و الطاقة € المياه والغذاء البيئة و الفقر و الإرهاب والحروب ⊙ الأمراض ⊙ التعليم ⊙ الديمقراطية کثافة السكان


Energy Crisis

Gap between Energy Production & Demand


Energy Crisis

Causes of Energy Crisis

الطاقة عالميا

أسعار الصرف

توترات سياسية

ستكشافات

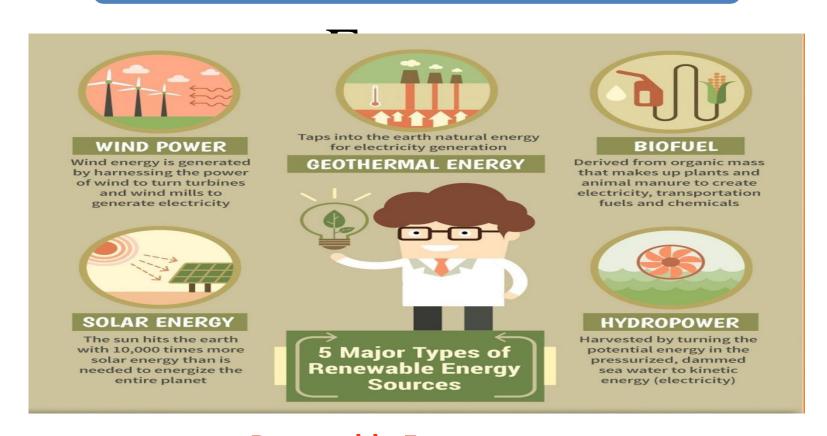
كوارث طبيعية

Energy Crisis

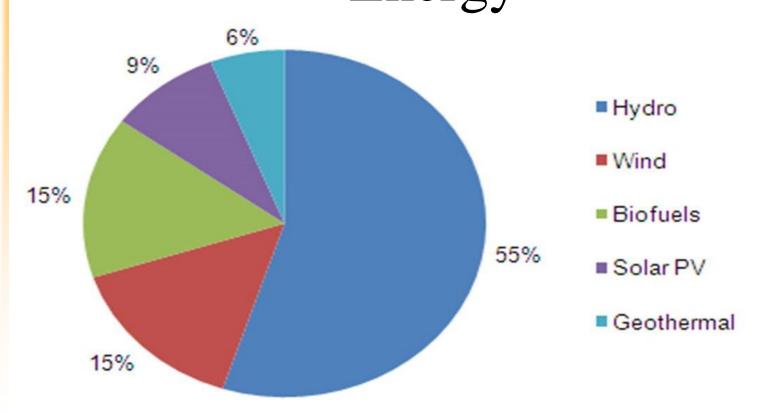
Possible Solutions of the Energy Crisis

- Move Towards Renewable Resources
- Buy Energy Efficient products
- Lighting Controls
- Energy Simulation
- Perform Energy Audit

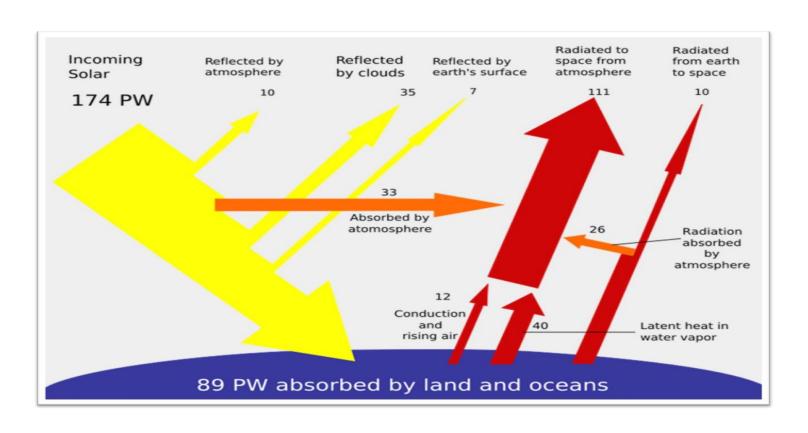
12/22/2015


Energy

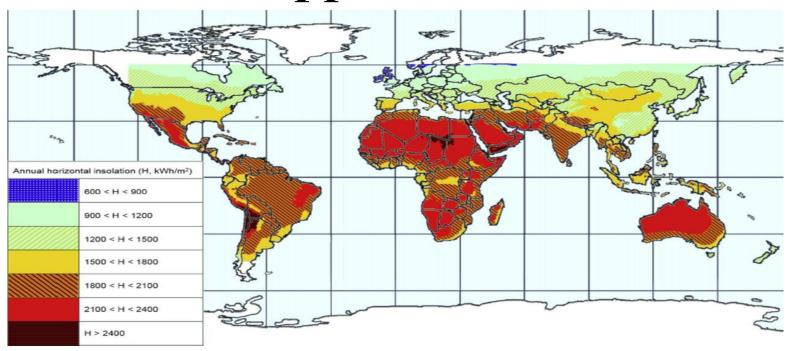
Renewable Energy Vs. Non-renewable Energy


Renewable

Renewable Energy Sources

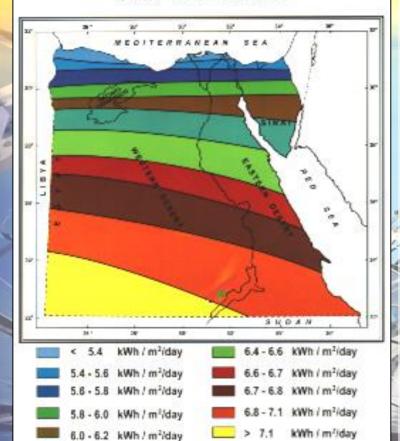

Renewable Energy

Globle Renewable Energy Share



Solar Energy & Application

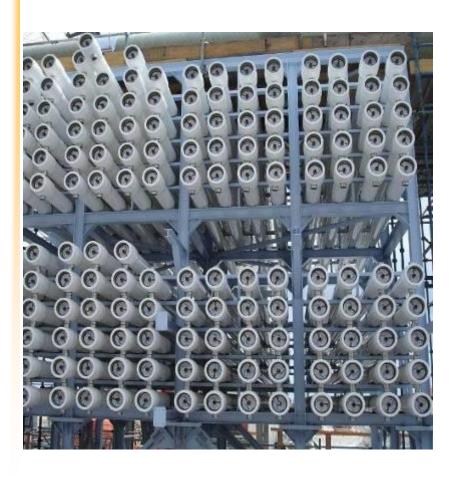
Solar Energy & Application



Annual cumulative global horizontal plane solar insolation

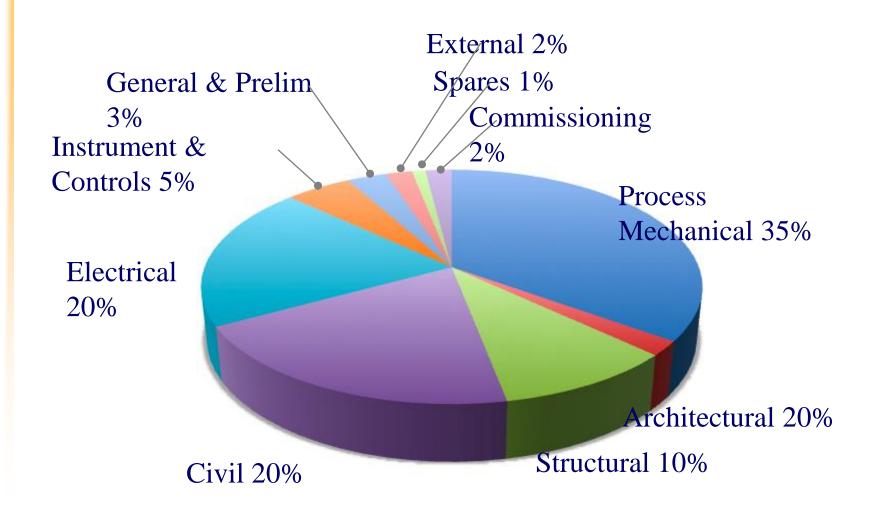
الأطلس الشمسي

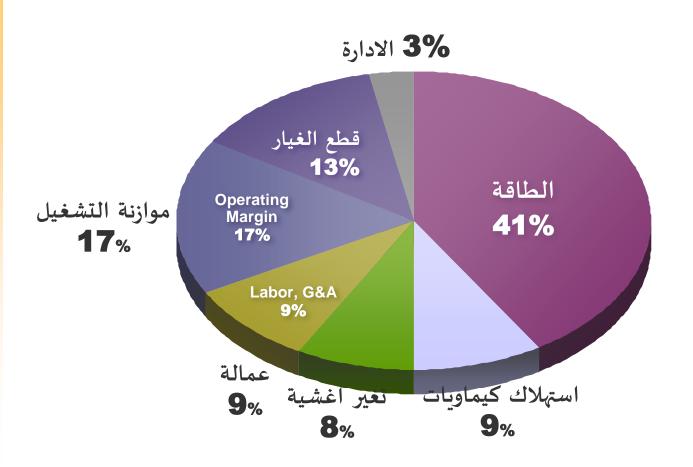
Global Solar Radiation


6.2 - 6.4 kWh / m3/day

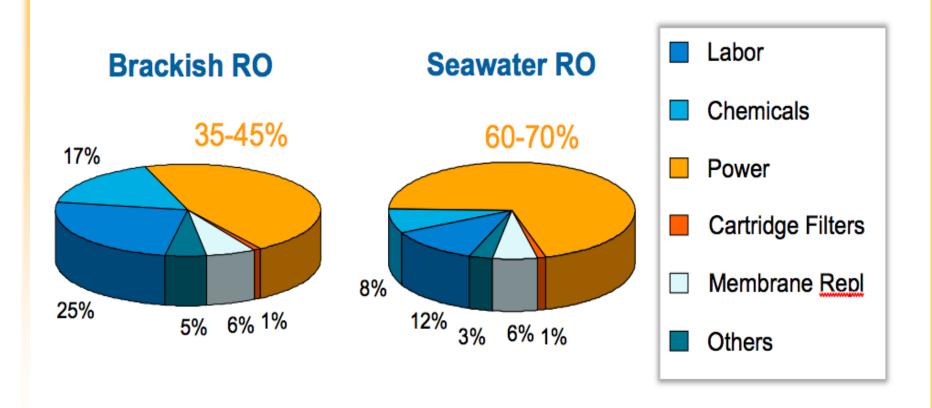
- تم اصدار دطلس شمسى شاملا تسجيلات على مدى سنوات لجميع مناطق المحوية ، متضمنا ديضا عام نمطي يتم فيه تمثيل البيانات المتوقعة لكل أيام العام مثل الاشعاع الشمسي وساعات سطوع الشمس.
- يتراوع متوسط الاشعاع الشمسي الكلي بين 1900 <u>1900</u> ك.و.س/م2/السنة.
 - كثافة الاشعاع الشمسي المباشر بين 2000 _ 3200 ك.و.س/م2/السنة.
 - يترادح معدل سطوع الشمس بين و ____ ساعة/ يوم.

تكاليف إنشاء وتشغيل محطات التحلية بنظام التناضح العكسي

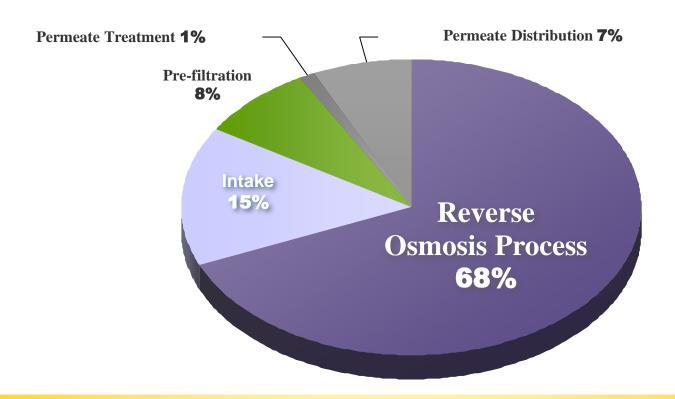




توزيع تكاليف إنشاء محطات التحلية



توزيع تكاليف التشغيل لمحطة تحلية المياه

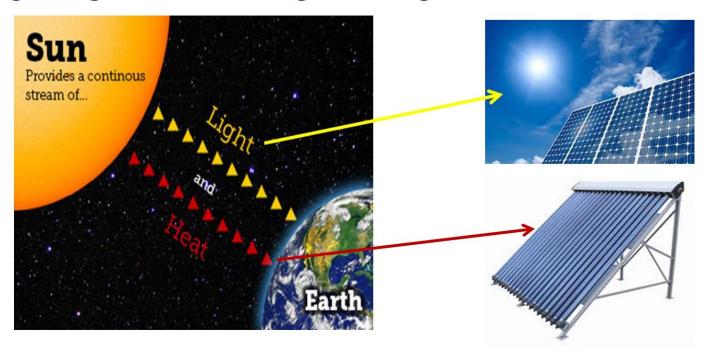


توزيع تكاليف تشغيل محطات التحلية

توزيع إستهلاك الطاقة للمراحل المختلفة بمحطات التحلية

RO power consumption is approximately 20% (up to 45%) of total SWRO cost

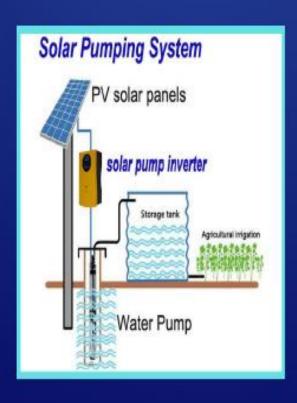
الأساليب الحديثة لتقليل تكاليف التشغيل بمحطات تحلية المياه


الإتجاه الأمثل لتقليل تكاليف الإنشاء والتشغيل

- الإهتمام بالبحوث والتطوير
- الإهتمام بالتدريب وتأهيل العاملين بمجال تحلية المياه
 - تحسين الأداء بالمراحل المختلفة لمحطات التحلية
 - المعالجة الأولية
 - طلمبات الضغط العالى
 - موفرات الطاقة
 - الأغشية

Solar Energy & Application

• Solar energy is radiant light and heat from the sun that is harnessed using a range of ever-evolving technologies.

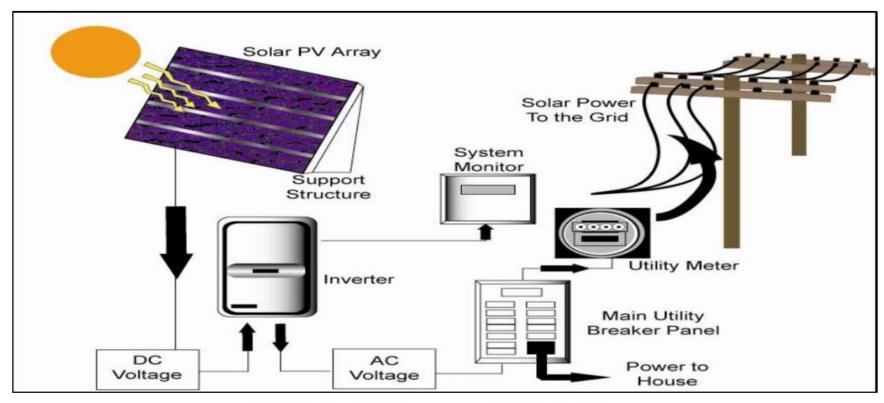


SOLAR ENERGY

Types of solar systems

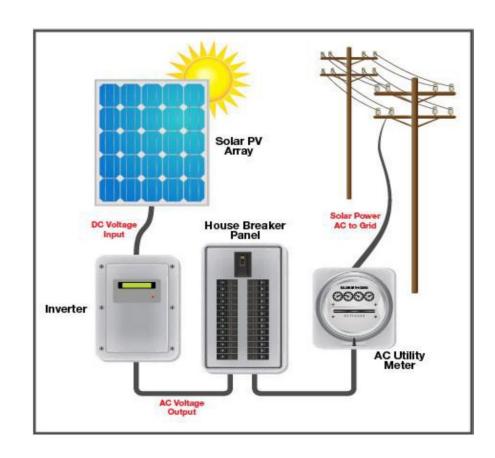
OFF Grid System

ON Grid System



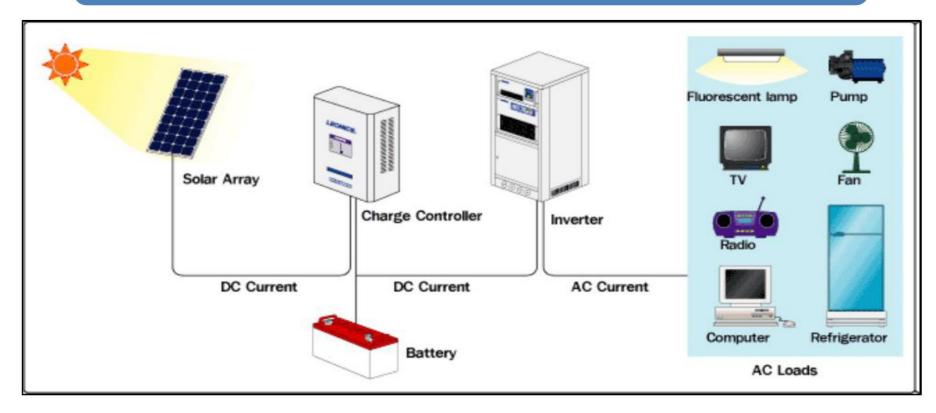
Solar Photovoltaic Systems

Grid-Tied PV System (ON-GRID)



Different Types of Inverter

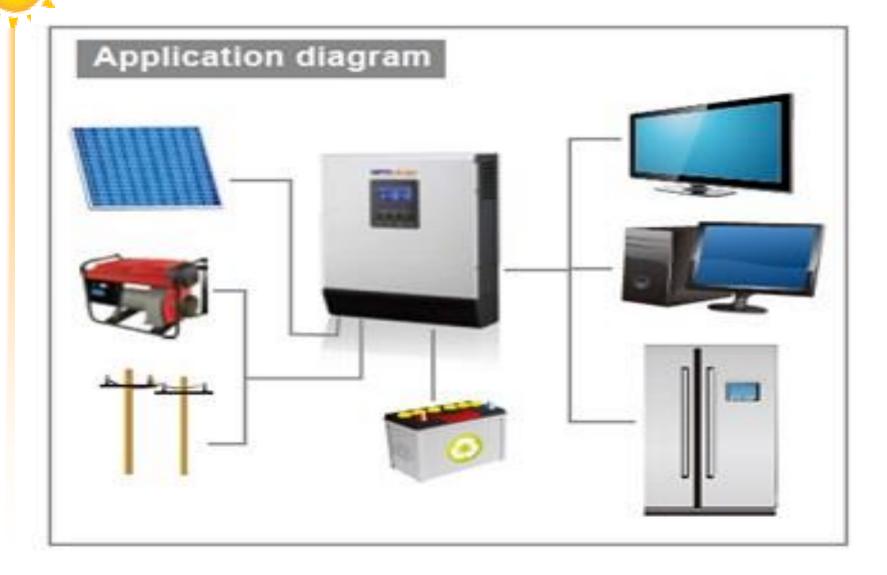
2. Grid Tie Inverter:


A grid-tie inverter has a different function than the off-grid inverter. It not only converts DC current into an alternating current suitable for injecting into an electrical power grid.

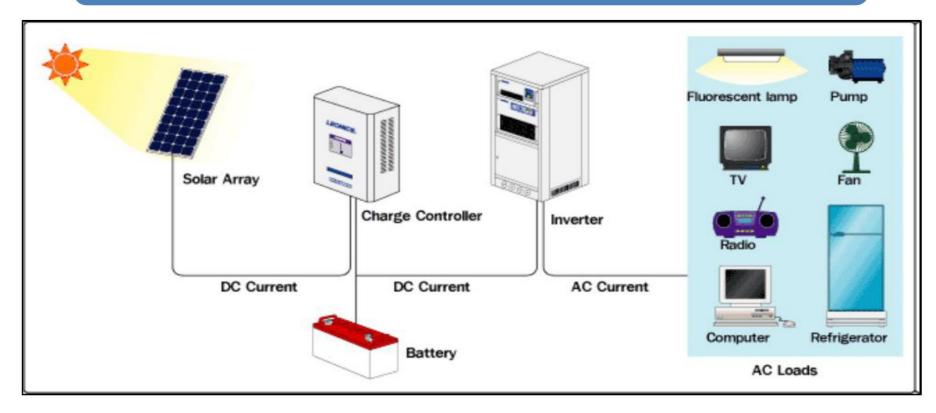
To inject electrical power efficiently and safely into the grid, grid-tie inverters must accurately match the voltage sampling and synchronization and phase of the grid sine wave AC waveform.

Solar Photovoltaic Systems

Stand Alone PV System (OFF-Grid)



Street lighting system



Hybrid solar system

Solar Photovoltaic Systems

Stand Alone PV System (OFF-Grid)

Charge Controller Types

Charge Controller Types

Charge Controller Types

Inverter

- The Solar Inverter is an essential device in any solar power system. Its basic function of the inverter is to change the variable Direct Current output of the solar panels into Alternating Current.
- The converted Alternating Current power is used for running your appliances like the TV, Refrigerator, Microwave, etc.

Off-Grid Inverter

Off-Grid Inverter

Batteries

 A battery is a device that is able to store electrical energy in the form of chemical energy, and convert that energy into electricity.

Advantages:

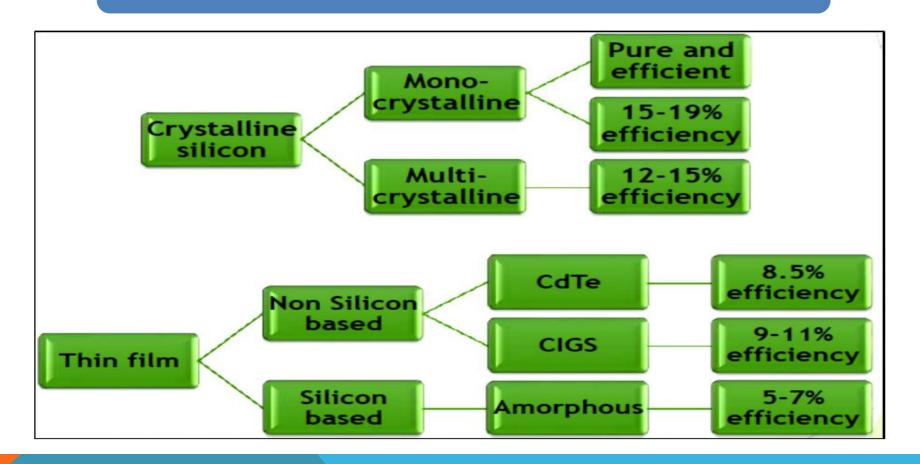
Backup for night and cloudy days.

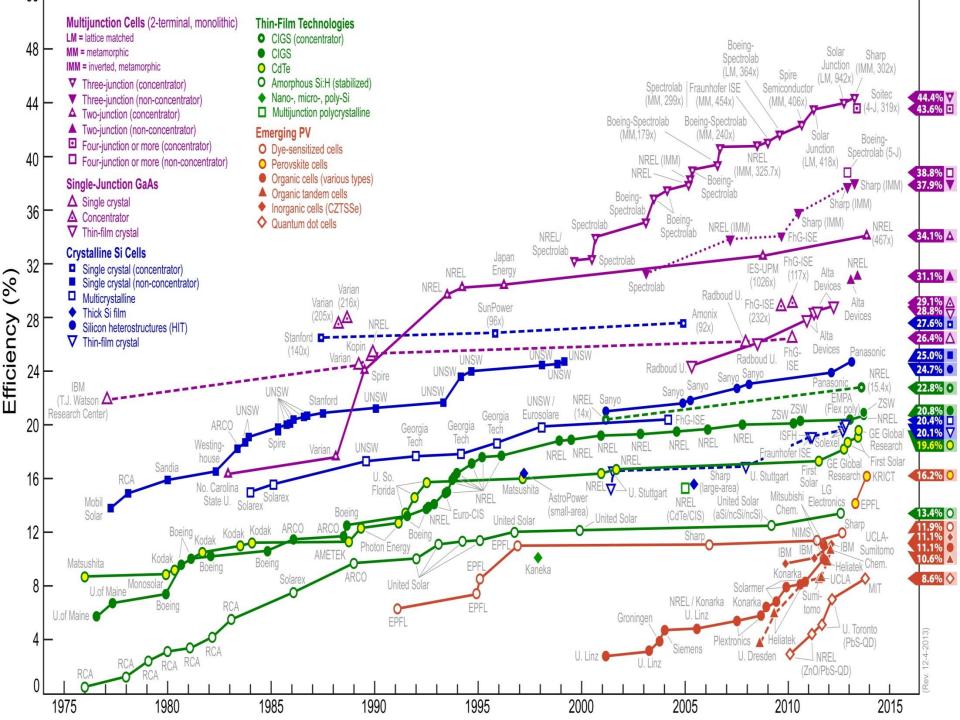
Disadvantages:

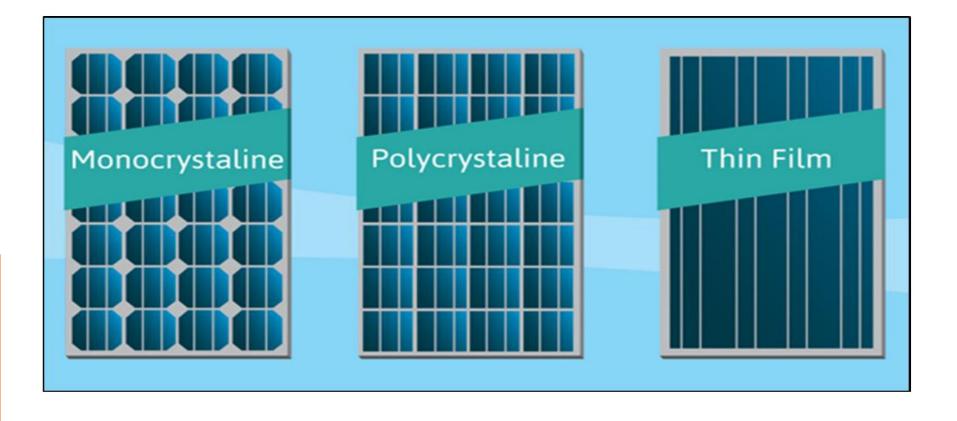
- Decreases the efficiency of PV system.
- Only 80% of energy stored retainable.
- Adds to the expense of the system.
- Finite Lifetime ~ 5 10 years.
- Added floor space, maintenance and safety concerns.

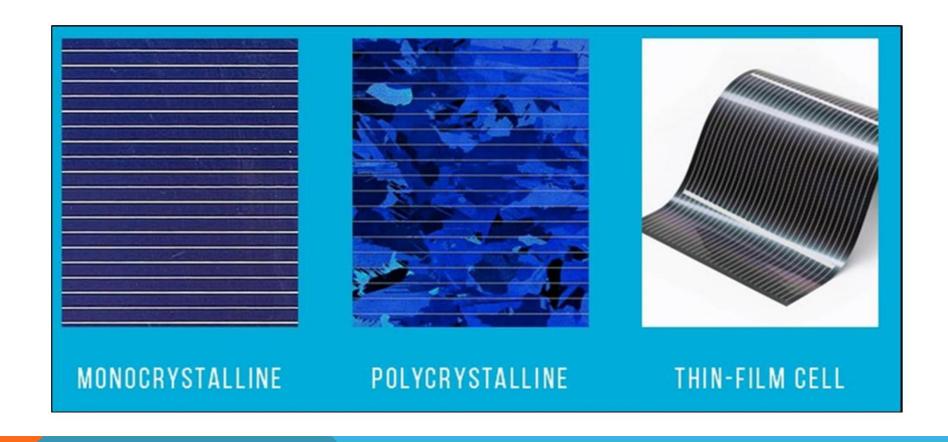
التطبيقات (≤ 80°م):-

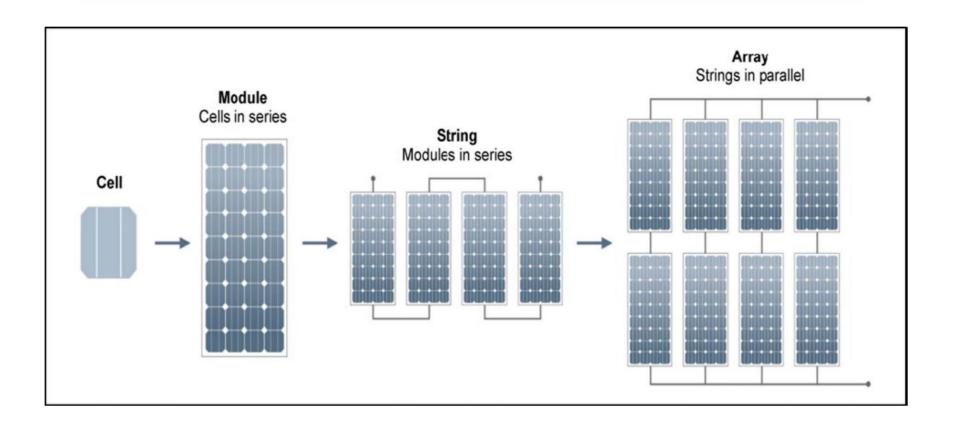
INSTALLATION TYPE



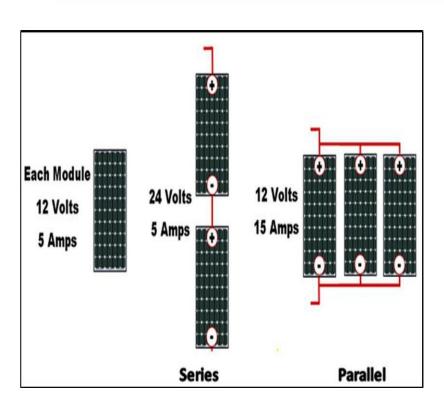


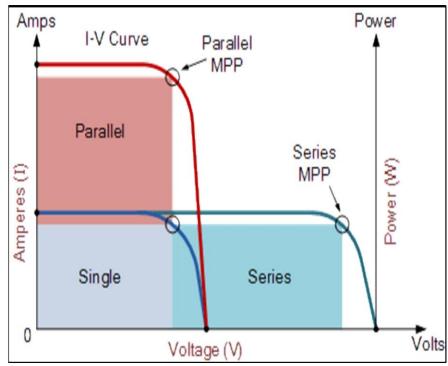






Crystalline	Thin Films
Types of Crystalline panels	Types of Thin Film panels
Single Crystalline (15%) Multi-Crystalline (14%) (% of sunlight converted to electricity)	Amorphous Silicon (5-7%) Copper Indium Diselenide (10%) Cadmium Telluride (7%)
Positive factors	(% of sunlight converted to electricity) Positive factors
Efficient Requires less space Long track record	Less expensive Very versatile More shade tolerant Less temperature sensitive
Negative factors	Negative factors
 Costly Limited applications Shade intolerant Temperature sensitive 	Shorter track record Lower efficiency Requires more space


PV Panel Technology Summary


Technology	Description	Module Efficiency (Commercial)	Cell Efficiency (Laboratory)	Sample Companies Employing Technologies
Crystalline Silicon	The original approach; grow silicon of total market. Appearance dark blu reflective coatings.			
Single Crystal	Grown in Cylinders and wire- or laser-sliced into circular wafers as thin as 200 microns. Cells are circular and modules are inherently flat black or charcoal.	14 - 15%	25%	BP Solar GE/Astro Power Sanyo Sharp SunWorld
Multi-Crystalline	Cast in blocks or drawn through a die to create a "ribbon" and wire- sliced or cut into rectangular wafers. Cells are typically vibrant blue.	12 - 14%	19%	BP Solar Evergreen Solar Kyocera Solar Schott Solar Sharp SunWorld
Thin-Film Materials	Ne ar single-atom vapor or electro-de plastic). Modules can be flexible. Ap transparent.		Total Control	
Amorphous Silicon (a-Si)	Cell and module production part of same process. Widely used in consumer products and on flexible substrates.	5 - 7%	13%	BP Solar Kaneka Solar TerraSolar United Solar Ovonic
Copper Indium Diselenide (CIS)	Alternative semiconductor material under commercialization.	8 - 10%	19%	Global Solar Shell Solar
Cadmium Telluride (CdTe)	Alternative semiconductor material under commercialization.	7 - 9%	17%	BP Solar First Solar

Solar Cells Connections

Solar Cells Connections

Standard Test Conditions (STC) against Nominal Operating Cell Temperature (NOCT):

Standard Test Conditions are the laboratory conditions under which all PV modules are tested. STC means:

- 1- An irradiance of 1000 watts per square meter (W/m2), which simulates peak sunshine on a surface.
- 2- Temperature of the cell 25°C.

However, these are idealized conditions which don't reflect the real site conditions under which a PV module will operate.

Standard Test Conditions (STC) against Nominal Operating Cell Temperature (NOCT):

The conditions at Nominal Operating Cell Temperature aim to simulate reality more closely:

- 1- The irradiance is 800 watts per square meter (W/m2), which takes into account the fact that PV modules don't always face the sun.
- 2- Solar panels heat up considerably during operation, so the temperature considered is 45 (+/-3) °C.
- 3-Temperature of ambient air of 20°C is considered.

This means that solar panels will always have higher ratings at STC compared with NOTC.

MECHANICAL DATA	
Solar cells	Multicrystalline 156 × 156 mm (6 inches)
Cell orientation	60 cells (6 × 10)
Module dimensions	1650 × 992 × 35 mm(65.0 x 39.1 x 1.4 inches)
Weight	18.6 kg (41 lb)
Glass	3.2 mm(0.13 inches), High Transmission, AR Coated Tempered Glass
Backsheet	White(PD05.08); Black(PD05.05)
Frame	Black Anodized Aluminium Alloy
J-Box	IP 65 or IP 67 rated
Cables	Photovoltaic Technology cable 4.0mm² (0.006 inches²), 1000mm(39.4inches)
Connector	UTX Amphenol
Fire Type	Type 1 or 2

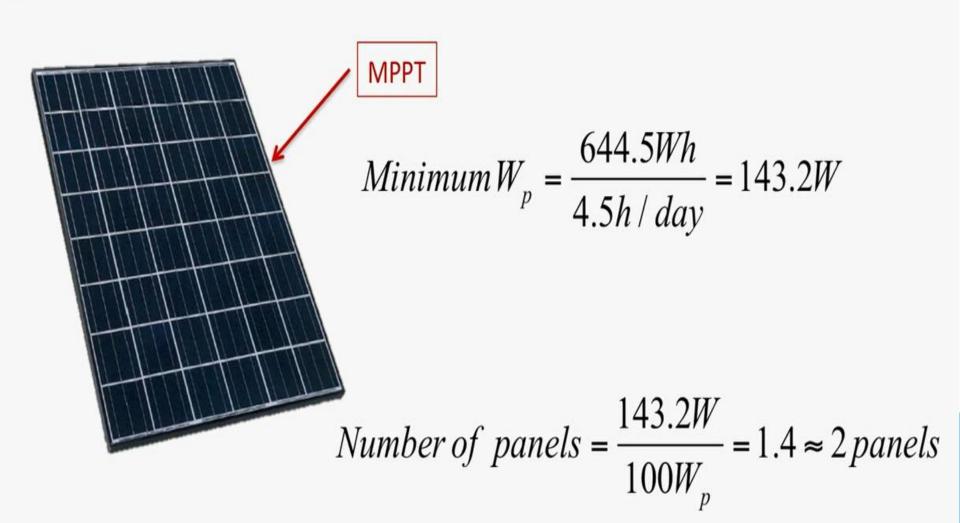

ELECTRICAL DATA (STC)					
Peak Power Watts-P _{MAX} (Wp)	250	255	260	265	
Power Output Tolerance-PMAX (W)	0~+5				
Maximum Power Voltage-V _{MPP} (V)	30.3	30.5	30.6	30.8	
Maximum Power Current-Impp (A)	8.27	8.37	8.50	8.61	
Open Circuit Voltage-Voc (V)	38.0	38.1	38.2	38.3	
Short Circuit Current-Isc (A)	8.79	8.88	9.00	9.10	
Module Efficiency η _m (%)	15.3	15.6	15.9	16.2	
STC: Irradiance 1000 W/m², Cell Temperature 25°C, Air Mass AM1.5.					

ELECTRICAL DATA (NOCT)					
Maximum Power-PMAX (Wp)	186	189	193	197	
Maximum Power Voltage-V _{MPP} (V)	28.1	28.2	28.4	28.6	
Maximum Power Current-Impp (A)	6.63	6.71	6.81	6.89	
Open Circuit Voltage-Voc (V)	35.3	35.3	35.4	35.5	
Short Circuit Current-Isc (A) 7.10 7.17 7.27 7.35					
NOCT: Irradiance at 800 W/m², Ambient Temperature 20°C, Wind Speed 1 m/s.					

TEMPERATURE RATINGS	
Nominal Operating Cell Temperature (NOCT)	44°C (±2°C)
Temperature Coefficient of PMAX	- 0.41%/°C
Temperature Coefficient of Voc	- 0.32%/°C
Temperature Coefficient of Isc	0.05%/°C

MAXIMUM RATINGS	
Operational Temperature	-40~+85°C
Maximum System Voltage	1000V DC(IEC) 1000V DC (UL)
Max Series Fuse Rating	15A

Solar Cell I-V Characteristic Curves


Design example – PV array

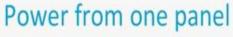
Panel specifications(example)			
Power output (Wp)	100		
V _{MPP} (V)	16		
I _{MPP} (A)	6.25		
V _{OC} (V)	20		
I _{SC} (A)	7		

Design example – 4 PV array

Design example – 4 PV configuration

Parallel

Maximum current $I_{\text{max}} = 7A \times 2 = 14A$

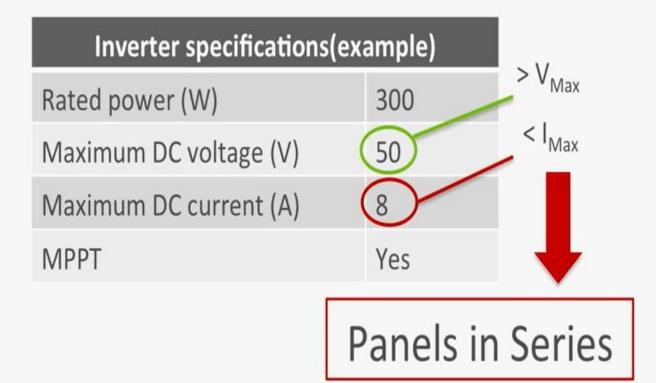

Series

$$Maximum \, voltage \, V_{max} = 20V \times 2 = 40V$$

Open circuit voltage

Design example – 5 Inverter

Minimum Nominal Power Rating = $2 \times 100W = 200W$



Number of panels

Design example – 5 Inverter

Minimum Nominal Power Rating = $2 \times 100W = 200W$

Wiring System:

Solar cables and wires are seen as the arteries and veins of any solar PV system. Mostly, the electricity generated by PV solar panels is used at another place. Solar cables and wires are required to transport this electricity.

Wire size selection based on two criteria:

- ✓ Ampacity
- √ Voltage drop

Ampacity: current carrying ability of a wire without degrading

The larger the wire, the greater its capacity to carry current

Wire size given in terms of American Wire Gauge (AWG)

The higher the gauge number, the smaller the wire

 Voltage drop: the loss of voltage due to a wire's resistance and length

Function of wire gauge, length of wire, and current flow in the wire.

- Must comply with National Electrical Code NEC
- Ampacity:
 - √ NEC Table 310.15(B)(16)
 - ✓ Isc X 1.25 (over irradiance) X 1.25 (3 hours continuous use)
- Physical Size:
 - ✓ Will it fit in the breaker
 - ✓ Conduit fill consideration
- Temperature:
 - √ NEC Table 310.15(B)(2)(b)
 - √ Within acceptable operating temperatures of terminals to which it's connected
- Voltage Drop:
 - ✓ Long distance runs requires larger cable to reduce losing voltage.

Wiring Types

Wire Types Used in PV

USE-2:

- √ UV (sunlight) resistant; used in wet or dry location.
- ✓ Can not be used in conduit UNLESS also marked RHW-2 and/or XHHW-2.
- √ Typically used from modules to combiner box in grounded systems.

PV Wire:

- ✓ Similar to USE-2, but with thicker insulation; available up to 2KV.
- ✓ Required for ungrounded systems.

THWN-2 or XHHW-2:

- ✓ Used in wet or dry locations; Not sunlight resistant, must be in conduit.
- ✓ Typically used from combiner box to DC load center or disconnect.

THW:

- ✓ Dry location only.
- ✓ Typically used for battery cables.

Maximum Allowable Ampacity

Copper

Table 310.15(B)(16) (formerly Table 310.16) Allowable Ampacities of Insulated Conductors Rated Up to and Including 2000 Volts, 60°C through 90°C (140°F through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)

f 30°C (86°F)			
Conductor Size	60°C/140°F	75°C/167°F	90°C/194°F
(AWG or KCMIL)	TW & UF	RHW, THHW, THW, THWN, XHHW, USE, ZW	TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW- THWN-2, XHH, XHHW, XHHW-2, USE-2 & ZW
18	-		14
16		_	18
14*	15	20	25
12*	20	25	30
10*	30	35	40
8	40	50	55
6	55	65	75
4	70	85	95
3	85	100	115
2	95	115	130
1	110	130	145
1/0	125	150	170
2/0	145	175	195
3/0	165	200	225
4/0	195	230	260
250	215	255	290
300	240	285	320
350	260	310	350
400	280	335	380
500	320	380	430
600	350	420	475
700	385	460	520
750	400	475	535
800	410	490	555
900	435	520	585
1000	455	545	615

American Wire Gauge (AWG)

American Wire Gauge (AWG) to mm²

AWG	mm²	AWG	mm²
30	0.05	2	35
28	0.08	1	50
26	0.14	1/0	50
24	0.25	2/0	70
22	0.34	3/0	95
20	0.50	4/0	120
19	0.75	250	150
18	1.0	300	150
16	1.5	350	185
14	2.5	400	185
12	4	450	240
10	6	500	240
8	10	600	300
6	16	750	400
4	25		

- PV Source Wire (Module to Combiner Box)
- Maximum Panel Current:

9.09A lsc X 1.25 (over-irradiance) = 11.36A

Continuous Current:

11.36A X 1.25 (3 hour continuous) = 14.2A

- Using USE-2 Wire from PV module to combiner box
- Terminal Temperature Rate:

Breaker rater for 75°C

Must use 75°C rating, even though wire is rated for 90°C

Breaker accepts 18-6AWG

Temperature Compensation:

Ambient temperature of 38°C

- PV Output Wire (Combiner Box to DC Load Center)
- Combined Current:

9.09 X 1.56= 14.2A X 2 strings = 28.4A

Using THWN-2 Wire from combiner box to DC Load Center in conduit

4 current carrying wires and ground

Temperature Compensation:

Ambient temperature of 38°C

• Terminal Temperature Range:

Breaker rater for 75°C

Must use 75°C rating, even though wire is rated for 90°C

Breaker accepts 18-6AWG

- Battery to Inverter Cables
- Calculate the highest current possible:

Inverter Wattage ÷ Battery Bank Lowest Voltage 3500W ÷ 20V = 175A

Using THW Wire for Dry Location

2 wires in conduit

• Temperature Compensation:

Cool equipment room temperature of 22°C

Voltage Drop

Calculate Voltage Drop from Battery to Inverter

175A

24V system

≤ 2% voltage drop recommended

Use Voltage Drop Calculator:

https://www.calculator.net/voltage-drop-calculator.html

Result

Voltage drop: 0.27

Voltage drop percentage: 1.14% Voltage at the end: 23.73

Please note that the result is an estimation based on normal conditions. The actual voltage drop can vary depending on the condition of the wire, the conduit being used, the temperature, the connector, the frequency etc. But, in most cases, it will be very close.

Wire Material	Copper		*	
Wire Size	2/0 AWG (13	3 kcmil)	٧	
Voltage	24			
Phase	DC		٧	
Number of conductors	single set of	single set of conductors		
Distance*	10	10 feet		
Load current	175	Amps		
Ca	alculate ()	Clear		

- Inverter Output Wires
- Calculate the Continuous current:

Inverter Wattage ÷ VAC

 $3500W \div 120V = 29.2A$

Check NEC Tables

2 current carrying wires in conduit

• Temperature Compensation:

Cool equipment room temperature of 22°C

- Summary
- PV Source Wires:

Minimum required USE-2 of 14 AWG

PV Output Wires:

Minimum required THWN-2 of 6 AWG

Battery to Inverter Cables:

Minimum required THW of 2/0 AWG

Inverter Output Wires:

Minimum required wire of 10 AWG

مواصفات الاسلاك والكابلات سواء DC & AC

1- يجب استخدام الكابلات الخاصة بتطبيقات الطاقة الشمسية وأن تكون معزولة بعزل حراري و مائي طبقاً للمواصفات الفنية وأن تكون حاصلة على شهادة LUV & UL. جميع كابلات الطاقة الشمسية مصنوعة من شعيرات النحاس المقصدر Tinned Copper عالي الجودة.

3- مساحة مقطّع الكابلات والاسلاك مناسبة لشدة التيار بها مع الاخذ في الاعتبار معامل امان

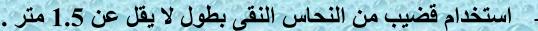
4- أن تتحمل درجات الحرارة العالية لتصل الى 70درجة مئوية وذو عمر افتراضى كبير.

5- استخدام ال Cable tray للكابلات والاسلاك المتواجدة بالخارج.

7- إستخدام الترامل والكوس المناسبة للاسلاك والكابلات وترقيمها تبعا لكل مصفوفة

6- استخدام وصلات MC4 معتمدة وحاصلة على شهادة TUV على أن يكون كل لوح به 2 وصلة.

0.01724المسافة بين الالواح والانفرتر \star التيار الكلى 1.73^{*} 1.4 مساحة مقطع كابلات ΛC (للفازة الواحدة) \pm الأنخفاض المسموح به للجهد \star الجهد الكلى


لوحة التجميع والحمايات

- في حال ان عدد السلاسل علي التوازي اكثر من أثنين يجب تجميعها في لوحة التجميع واستخدام البارات النحاس للتجميع.
 - عمل جلندات لمداخل ومخارج كابلات لوحة التجميع.
 - يجب تركيب قاطع تيار مستمر عمومي DC Circuit يجب تركيب قاطع تيار مستمر عمومي Breaker
 - * امبير القاطع العمومي = 1.56 * Isc * اجمالي عدد الخطوط على التوازي في المنظومة
- تركيب قاطع تيار مستمر فرعى لكل String لامكانية فصله اثناء الصيانة والاختبار دون التأثير على باقى المنظومة.
 - يمكن الاستغناء عن القواطع الفرعية بإستخدام Inline مكن الاستغناء عن القواطع الفرعية بإستخدام عبارة عن فيوزيتم وضعه في السلك نفسه من خلال استخدام وصلات MC4.
- استخدام DC fuse protectionبقدرة مناسبة لجهد وتيار كل string
 - تركيب DC Surge protection device للحماية من الصعق نتيجة لزيادة الجهد.
 - تركيب قاطع AC عند خرج الانفرتر وقبل الأحمال بسعة قطع مناسبة مع الأخذ في الاعتبار التيار المسحوب عند القدرة 4 القصوى Surge Power للانفرتر.

تأريض المنظومة

- يتم في البئر الأرضي وضع حول القضان المواد المحسنة لخواص توصيل التربة مثل الفحم و الملح.

يتم قياس مقاومه الأرضى بحيث لا تتعدى 2 اوم. و إذا تم عمل نظام تأريض ولم نصل للمقاومة المطلوبة فيتم زيادة عدد القضبان المستخدمة

يتم التوصيل بين بئر التأريض و النظام الشمسي عن طريق سلك من نحاس معزول بمادة بلاستيكية باللون الاخضر مع الاصفر

يتم توصيل الإطار المعدني للألواح مع بعض بواسطة ربط اسلاك التأريض بصواميل وبشكل محكم الى إطار الالواح.

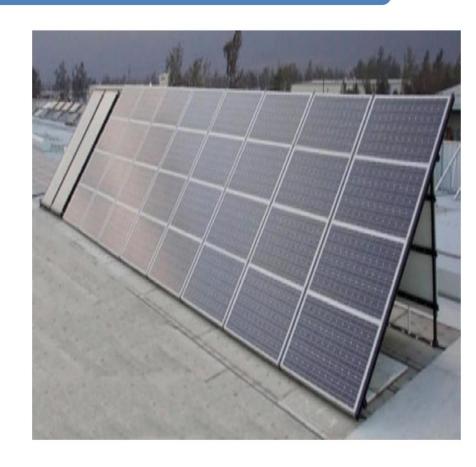
يتم استخدام سلك ذو قطر لأيقل عن 4 مم2 للتوصيل بين الألواح و بعضها

بعد ربط و توصيل جميع الألواح بعضها ببعض يتم عمل سلك أرضي من بارة تجميع الارضى الي قضيب التأريض مباشرة و يتم تنفيذ هذا السلك بقطاع لأ يقل عن 16مم2 في حالة ان طوله لأ يزيد عن 25 متر, اما في حال ان المسافة بين الألواح و قضيب الأرضي اكبر من 25 متر و اقل من 50 متر فيتم تنفييذ السلك بقطر 25 مم2.

- يتم تأريض جميع مكونات المنظومة دون استناء وربطها بالبئر الارضى

مكوثات الكثرود او قضيب الارضى

Auxiliary Components


Monitoring:

Monitoring Equipment components are usually connected to a concurrent Inverter manufacturer, and they view and relay system energy information analytics to an in-product console or web connected device through their proprietary software. Monitoring Equipment components may be integrated into an Inverter, or in some instances — be connected to another component of a photovoltaic array.

Racking & Mounting System

Fixed Roof Mounting:

Fixed roof mounting has all the advantages of fixed ground mounting but with reduced ease of maintenance traded off against immunity to tampering and/or vandalism. One additional issue is the possible need for roof penetrations to accommodate mounting hardware.

Racking & Mounting System

Wall Mounting:

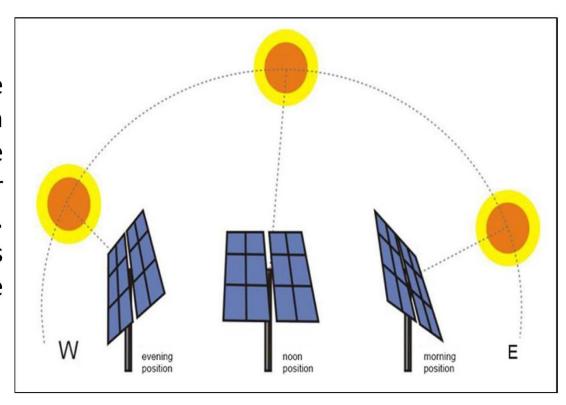
South facing building walls can be taken advantage of as module mounting surfaces. Modules arrays can be parallel to the wall, tilted away from the wall, or configured as an overhanging canopy.

Racking & Mounting System

Top of Pole Mounting:

Top of pole mounting is another fixed array mounting method. Arrays remain stationary even through the arrangement looks similar to a tracker. Top of pole mounts often allow for seasonal tilt adjustments which may help to optimize harvests particularly during winter conditions.

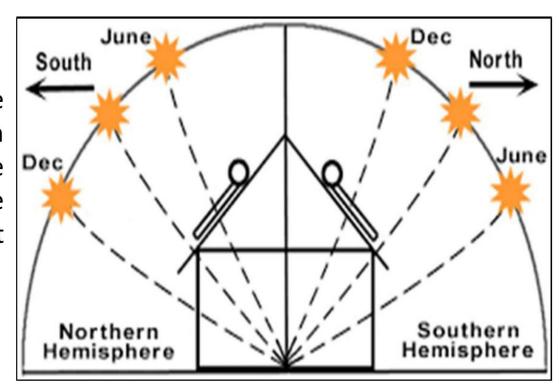
اختيار الموقع المناسب و عمل در اسة الجدوى لإنشاء محطة طاقة شمسية On-Grid


- 1- المساحة المناسبة والكافية لانشاء المحطة الشمسية بالقدرة المسموح بها حيث أن توليد 1 كوات يحتاج مساحة في حدود 8 متر مربع أو أقل ع حسب قدرة اللوح المستخدم.
 - 2- أن يكون المكان المخصص لإنشاء المحطة الشمسية بعيد عن الظلال.
- 3- توافر بيان بالاستهلاك السنوى للموقع المراد انشاء المحطة به وذلك لحساب القدرة المسموح بها من قبل شركة الكهرباء.
 - 4- عدم مخالفة الموقع لقانون البناء الموحد.
 - 5- تحمل المبانى لاحمال محطة الطاقة الشمسية من ألواح وشاسيهات.

Solar Cell Orientation & Angles

Azimuth Orientation:

Azimuth – This is the compass angle of the sun as it moves through the sky from East to West over the course of the day. Generally, azimuth is calculated as an angle from true south.



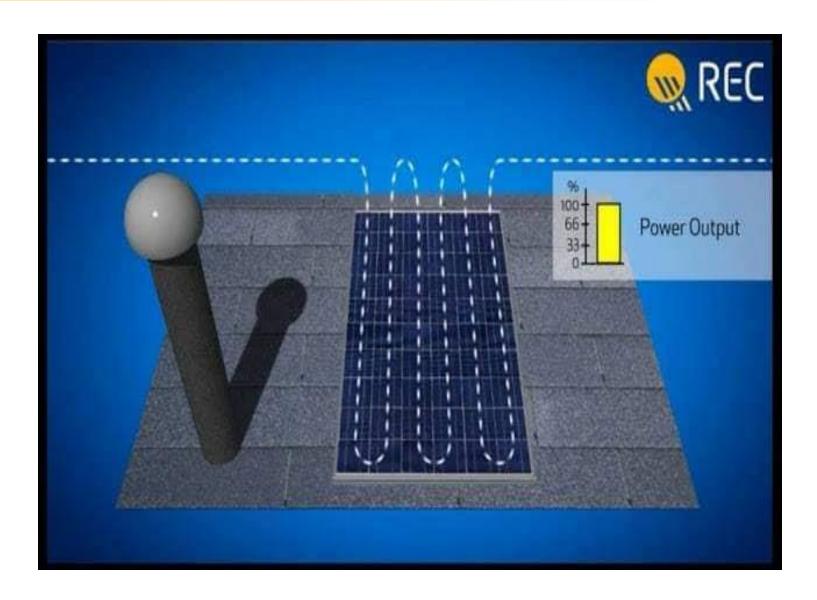
Solar Cell Orientation & Angles

Zenith Orientation:

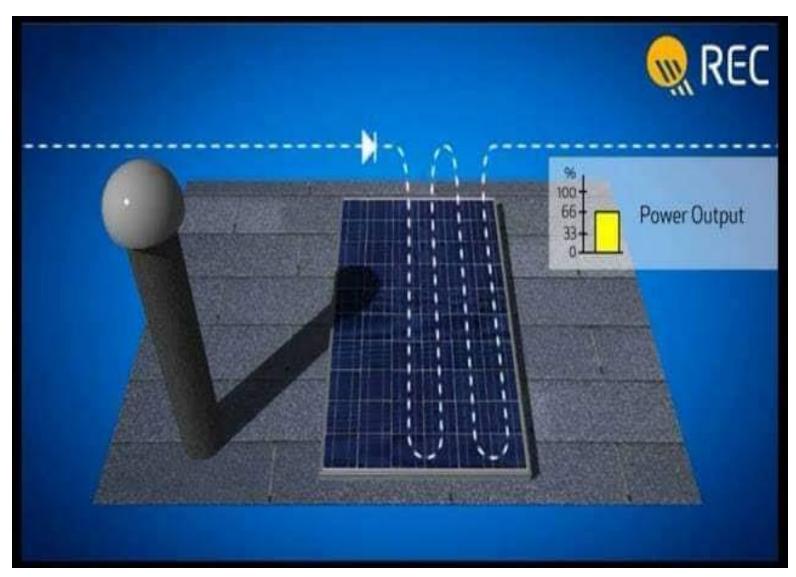
Zenith – This is the angle of the sun looking up from ground level or the horizon. Solar zenith angle at midday is different depending on the season.

Self-Shading

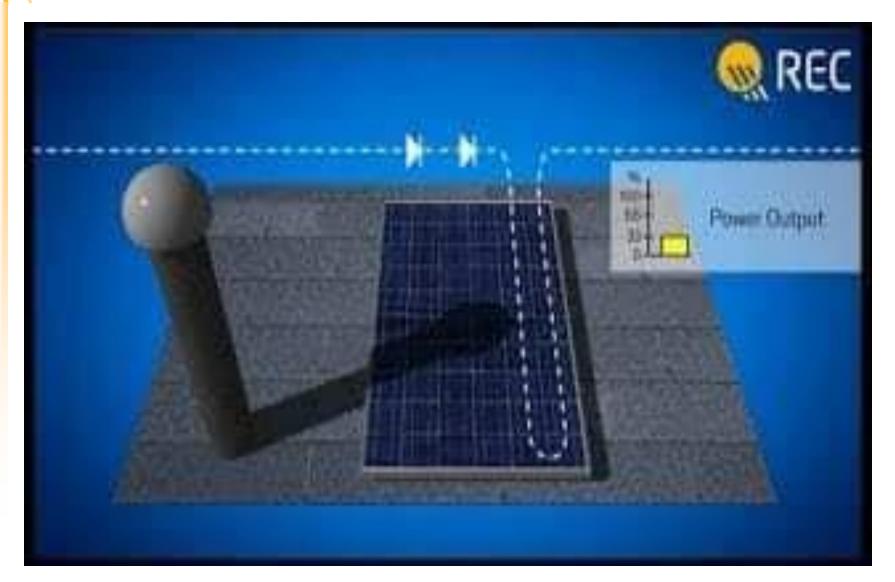
Example:


For 21, Dec, the tilt angle = 45° and the panel tilted length = 2 (m). Calculate the minimum and maximum inter-row spacing needed.

$$h = 2 * \sin(45) = 1.41 (m)$$


$$maximum spacing D' = \frac{1.41}{\tan(36.49)} = 1.91 (m)$$

minimum spacing D @ 9 am (
$$\psi = 137.2$$
)
 $D = 1.91 * \cos(180 - 137.2) = 1.4 (m)$



- After designing RO plant with energy load 4.179 kWh/day and 1m3/day.
- PV solar system will two panels each is 545 watt monocrystalline panel.
- With battery bank 12 batteries each of 500 AH, 2V can be used.
- Total cost will be 46000 LE.
- Thus, the cost of Power to desalinate is 7 L.E/m3.
- Costs are relatively reasonable compared to the costs of other alternative sources such as diesel, which is higher or wind energy in the absence of the national grid.

- Plant Performance

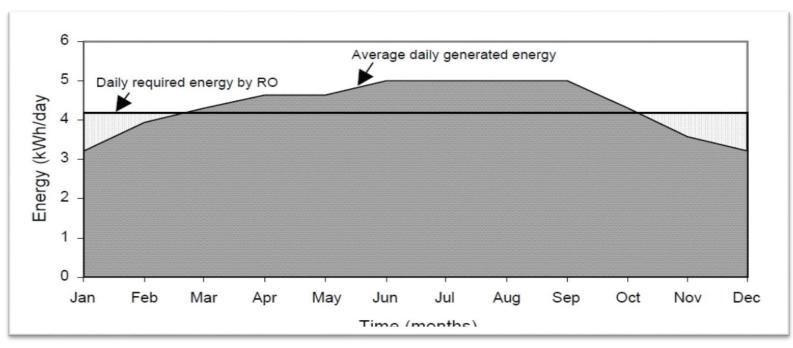
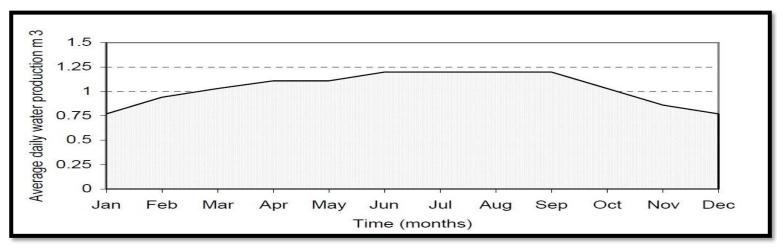
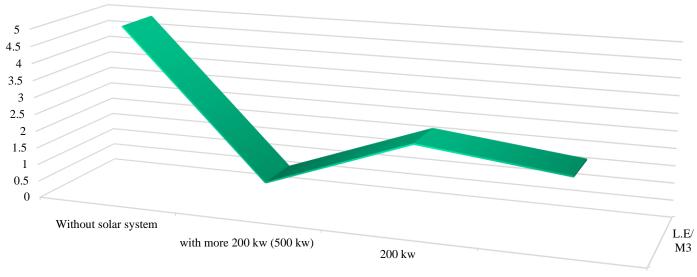


Figure 3 The average daily generated energy versus that required by the RO unit at different months

- Plant Performance




Figure 4 introduces the expected water production during different months

-the cost of Power to desalinate is 7 L.E/m3.

- The national grid's availability, opinions disagree, thus we turn to the on-grid solar system, it is the subject of our next study in Sina, in a sadr reverse desalination plant driven by an on-grid solar system.

L.E/M3

for fully power plant 100000 m3/day

#