

Elastohydrodynamic Lubrication Fundamentals

Wind Turbine Tribology Seminar November 15-17, 2011

Vern Wedeven

Wedeven Associates, Inc. 5072 West Chester Pike Edgmont, PA 19028-0646 610-356-7161 www.wedeven.com

National Renewable Energy Laboratory Argonne National Laboratory U.S. Department of Energy Renaissance Bolder Flatiron Hotel Broomfield, CO, USA

Elastohydrodynamic Lubrication Fundamentals

Focus on Concentrated Contacts Hertzian Contact Geometry

2

How Do Gear/Bearing Surfaces Fail?

Mechanistic processes

<u>Wear</u>

- Polishing
- Adhesive
- Abrasive
- Oxidative
- Corrosive

Scuffing

- Micro-scuffing
- Macro-scuffing

Fatigue

- Micro-pitting
- Spalling

Contact Structural Elements

Functions and technologies to prevent wear scuffing and fatigue processes

Boundary lubrication creates & maintains integrity of surfaces to promote EHD mechanisms

EHD - The Miracle Mechanism

EHD - The Miracle Mechanism

Elastohydrodynamic Lubrication

The physics behind the mechanism

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

Μ	
R	
Α	
С	
L	
Ε	

Viscous Flow Between Parallel Surfaces

Flow between 8 parallel surfaces

Adsorbed Films

Viscous Flow Between Non-Parallel Surfaces

Hydrodynamic Pressure Generation

Viscous flow between parallel surfaces

Requirements for Pressure Generation

- 1. Converging geometry
- 2. Viscous fluid media
- 3. Surface motion

Pressure Generation in a Journal Bearing

Film Thickness Equation (general form)

Conformal and Non-conformal Contacts

Roller Bearing Components

Hertzian Contact

Hertzian condition for dry contact

Fluid flow in Convergent Inlet Region

Flow distribution within the convergent inlet region

Effect of Pressure on Viscosity

R = <u>R</u>adical increase of viscosity with pressure

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

EHD Film Thickness Equation

A = <u>A</u>ccommodation of stress

Contact with Optical Configuration

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Center film thickness 0.4 µm (16x10⁻⁶ inch)

Micro-EHD Lubrication

Traction (Friction) – Tangential Shear of Pseudo-Solid Film

Traction

Traction Coefficient Measurement

Entraining Velocity = 30 m/s

Oil/Air Separation at Divergent Exit Region

Oil/Air Separation at Divergent Exit Region

EHD - the MIRACLE Mechanism

- **M– Molecular attachment**
- I Inlet refueling
- **R** Radical viscosity increase with pressure
- A Accommodation of stress
- **C** Cushioning of asperities
- L Limiting shear stress (traction)
- **E** Exit without trauma

Contact Structural Elements

Functions and technologies to prevent failures

Contact Structural Elements

Functions and technologies to prevent wear scuffing and fatigue processes

Five Parameters Control Wear, Scuffing and Fatigue

Entraining velocity, $U_e = \frac{1}{2} (U_1 + U_2)$ Degree of asperity penetration (h/ σ) Sliding velocity, $U_s = (U_1 - U_2)$ Contact temp ($T_c = T_{bulk} + T_{flash}$)

Contact Stress (asperity stress)

Wedeven Assoc. Machine (WAM)

Wear and Scuffing Tests – Gear Simulation

Wear and Micro-Scuffing

36

Wear and Scuffing

Average TC for each load stage

Wear and Scuffing Tests – Gear Simulation

Dither Motion and Fretting

Thank you, Questions?

40