

Dutch from origin.....International in scope

Water ... a precious

Lessons Learnt In Facility Design, Tendering and Operation of MBR's for Industrial and Municipal Wastewater Treatment

ADECO

DUTCH INNOVATIVE ENGINEER

Andreas Giesen andreas.giesen@dhv.com

Consultancy and Engineering

For how long and how intensive are you learning ?

THERE PRIME

Carrousel[®] MBR, Sonac Turn-key project

ltem	Influent	Effluent	Efficiency
	mg/l	mg/l	%
COD	5.000 - 10.000	< 65	> 99
BOD	3.000 – 7.000	< 5	> 99
TKN	900 – 1.350	< 5	> 99
NH4 - N	> 80 % of TKN	< 1	> 99
TN		< 10	> 99
TSS	200 - 500	< 1	> 99

12 – 13 g MLSS/I

Design flux 42 l/(m².h) at T > 25 °C

start-up: 1998 (Membrane lifetime > 5 years)

MBR at Vos Logistics Turn-key project

ltem	Influent	Effluent	Efficiency
	mg/l	mg/l	%
COD	2.500 - 8.000	< 400	> 90
BOD	25 – 40 % of COD	< 10	> 99
FOG	200 – 300	< 1	> 99
TSS	200 – 500	0	100

25 g MLSS/I

Design flux 100 - 150 l/(m².h) at T > 30 °C

Cross flow intensive cleaning

start-up: 2000

MBR at Rendac EPCM project

Largest in Europa
4,000

ltem	Influent	Effluent	Efficiency
	mg/l	mg/l	%
COD	4.000 - 12.000	< 100	> 98
BOD	50 – 70 % of COD	< 10	> 99
TKN	900 – 1.400	< 5	> 99
NH4 – N	> 80 % of TKN	< 1	> 99
TN		< 10	> 99
TSS	< 1.000	< 1	> 99

10 – 13 g MLSS/I

Design flux 30 - 35 l/(m².h) at T > 25 °C

MC in air (developed in Beverwijk)

start-up: 2002

MBR at Ben Gurion Airport full water reuse, phased construction $(3 \rightarrow 5 \text{ MLD})$

ltem	Influent	Target	Currently ¹
	mg/l	mg/l	mg/l
COD	1.250	< 70	
BOD	650	< 5	1
TKN	75		0.1
TN		< 10	
ТР	17	< 0.2	
Turb.			1 NTU

Phased construction: $3 \rightarrow 5$ MLD

Submerged hollow-fiber

Start-up: early 2008

1) First 3 months of plant operation under full load

- only affordable for higher concentrated waste
- focus on membrane flux and membrane sales
- insufficient know-how on

MBR: few years ago

- fundamentals
- field optimisation

- many negative experience in the field
- no sound engineering standards for large scale application

Dutch MBR programme Three phase approach

PILOT RESEARCH	DEMONSTRATION INSTALLATION	FULL SCALE INSTALLATIONS
INTEGRATION membranes and microbiology	technical STANDARDISATION of MBR-installation	Competition on the MARKET
01/2000		01/2010

MBR research Beverwijk 4,5 year hands-on operation

Mitsubishi

Zenon

Huber

Kubota

Toray

X-Flow

Koch/Puron

Results of pilot

- extensive hands-on experience with most membrane types
 - clear picture on performance, operability aspects and pitfalls
 - determination of "safe" and optimised design and process conditions
- initiation of many technology improvements \rightarrow opex reduction
 - improved cleaning strategies
 - improved membrane aeration
 - improved control systems
 - improved pre-treatment concepts
 - improved membrane module configurations
- significant contributions to worldwide MBR knowhow (M-cleaning and importance biology)

MBR Varsseveld Dutch first municipal MBR

Consultancy and Engineering

Aeration

Membranes

Rijn en IJssel

stowa

Waterschap

Design: 755 m³/h and 23,150 p.e. 5 mg TN/l and 0.15 mg TP/l 4 membrane tanks Size = 21 m. x 78 m.

Pretreatment

- Initial Operation and Control
- Training of Operators

- Continuous Support and Optimization

- We have learnt many lessons and will probably experience more wise lessons
- Many lessons seem to be obvious, logical or

one-liners, but are indeed based on a lesson

There are too many lessons to cover in this presentation

A MBR is more than only a membrane

"Dutch" contribution

Not the membrane, but the biology is the critical factor

- Biosludge characteristics depends on biotreater design & operation
- It is the biology that gives the pollutants removal

MBR Biosludge Morphology

EPS

Poor allround performance SVI = 200 – 300ml/g

Fine sludge+EPS Stress Ok performance SVI = 100-150ml/g

EPS Filamentous Bad performance SVI = >300ml/g

MBR Biosludge Morphology

Useful tool: BioWatch

Sludge bound EPS + Big flocs = Much Water Phase

Excellent Performance SVI < 100 ml/g

Perfect biosludge characteristics results in low energy consumption and in low membrane fouling

MBR Varsseveld Energy consumption

Lessons Learnt

It is difficult not to get a good COD-conversation

It requires expertise to obtain good nutrient removal

Parameter	Influent	Effluent	Efficiency	
	mg/l	mg/l	%	
COD	824	23	97	
Total N	58	3.5	94	
Total P	16.3	0.15	99	
Suspended solids		0	100	
Turbidity		<< 0,1 NTU		
Bacteria and viruses		swimming water		

MBR at Rendac EPCM project

Largest in Europa
4,000

ltem	Influent	Effluent	Efficiency
	mg/l	mg/l	%
COD	4.000 - 12.000	< 100	> 98
BOD	50 – 70 % of COD	< 10	> 99
TKN	900 – 1.400	< 5	> 99
NH4 – N	> 80 % of TKN	< 1	> 99
TN		< 10	> 99
TSS	< 1.000	< 1	> 99

10 – 13 g MLSS/I

Design flux 30 - 35 l/(m².h) at T > 25 °C

MC in air (developed in Beverwijk)

start-up: 2002

Most membranes are good, it's the plant design and operation that makes them to perform well

A better design

All membranes foul, proper pretreatment design and operation is essential

Do not focus on how rough you can clean fouled membranes, better focus on how gentle

- Pre-requisites
 - No macro-pollution
 - Good sludge quality
 - Perfect process and cleaning control
 - Low TMP
 - Good mix between relaxation, MC and IC (membrane type dependent)
- Results
 - High fluxes
 - Low chemical consumption
 - Stable permeability at low T and RWF

Integrity membranes can be at stake with all

- Plate membranes in Dutch municipal MBR
 - Membrane layer detaches from support within several months after start-up → all membranes replaced
 - Leakage permeate lines/connectors
- Hollow Fiber membranes in Dutch municipal MBR
 - New more effective air cross-flow control strategy → breakage permeate pipe connectors
- Have early warning (e.g. turbidity meter)

For all submerged membranes, air cross-flow is critical to prevent fouling and sludge thickening

- Cross-flow failure → plate membranes clogged within tens of minutes
- Prevent power and air failures

There is not a "best" membrane for a certain application

	Hollow Fiber	Plates	Tubular
Flux	+/-	+/-	+
Energy consumption	+/-	+/ -	+
Membrane costs	+	+/-	-
Sludge concentration	+/-	+	-
Pretreatment requirements	+/-	+	+/-

But there is certainly a best design for the membrane in that particular application

Plates or Hollow-Fibers? World distribution (> 20 m³/d)

Consultancy and Engineering

Region	# MBR J	plants (-)	Total	Capacity MBR plants (m ³ /day)		Totaal
	Plate Membranes	Hollow- Fiber Membranes		Plate Membranes	Hollow-Fiber Membranes	
North America	98	198	296	123.452	368.980	492.432
Asia	241	45	286	159.509	108.132	267.641
Europe	113	56	169	164.357	259.175	423.532
Australia	18	5	23	13.919	30.931	44.850
Africa	12	3	15	1.082	28.239	29.321
South America	3	5	8	703	3.370	4.073
Total	485	312	797	463.022	798.827	1.261.849

Source: Pinnekamp. 2007

Reduce the maximum membrane capacity as far as possible

- Smart selection of average and maximum flux
- Peak-shaving using existing tanks/clarifiers
- Hybrid<u>s</u>

The air cross-flow is the largest energy consumer, optimization essential for acceptable running costs

The air cross-flow is the largest energy consumer, optimization essential for acceptable running costs

- Ensure good biosludge characteristics
- Switch-off membrane lines to operate remaining lines close to optimum flux
- Reduce air flow at higher temperature
- Intermittent operation
- Optimize the critical flux
- Optimize air flow during stand-by mode

In a good designed MBR, it is not the membrane that causes the operational problems.

Expect higher scum productions in MBR's

- Higher hydrophobility by accumulation of hydrophobic compounds
- High air input (membrane cross-flow)
- Higher DS

A MBR is often not the preferred technology if treatment objectives can be met with conventional activated sludge systems or new breakthroughs like the Nereda aerobic granule technology

- MBR versus CAS
 - Energy (optimized systems!)
 - CAS without filter: 50-100% higher
 - CAS with filter: 0- 20%
 - Investments: higher
 - Operating costs: 10-20% higher WE Price Level, sludge disposal = approx. 40% OPEX
- → Use only if "perfect" effluent quality is essential (e.g. as building block to water reuse)

MBR and CAS

Consultancy and Engineering

To get a well-performing MBR against acceptable plant-life-time costs a smart tender strategy is often essential

Why a tender strategy ?

- MBR is not a commodity, but tailor-made engineered solution
- Technology is still quickly developing: no standards, no global "know-how sharing"
- Life-cycle-cost depends strongly on
 - Design & Membrane selection
 - Construction details & Appropriate operation
- Sub-optimal design \rightarrow high costs and/or low performance

Tender strategy aim:

- Get a plant that works well and shows low running costs
- At reasonable investment

Ensure "working well"

Get a guarantee Design & Construct

Design, Build & Operate

→ Limited effect

- □ water characteristics never well defined
- □ limited liability (and endless for the enduser?)
- □ does not protect against know-how gaps contractor
- □ contractor blames the operation (not DBO)

Include pilot validation ?

- □ difficult to fully mimic actual plant
- □ representative wastewater
- Iimited inputs for process stability
- Iimits project competition and makes competition field very/too transparent
- \rightarrow Essential for industrial wastewater, but focus on
 - "transferability" of data
 - pilot setup
 - experience the wastewater "problems"

The key to success

Ensure appropriate integrated know-how on:

- Biology
- Membranes
- Hands-on operation

How?

- Contractor/Designer/Consultant with proven track-record and experienced team (that will work on your project) → not much parties
- Increase role experienced consultant
 - verify / optimize design
 - "green light" critical details & operation procedures
 - coach during plant start-up & plant optimization

Ensure "reasonable investments"

Use market & competition

- DB(O)
- Designers/consultants

Limited experienced parties

Construction contractors → many

Focus competition in project phase with highest volume \rightarrow construction

- EPCM with experienced designer
- Increased role experienced consultant
 - verify / optimize design
 - "green light" critical details & operation procedures
 - coach during plant start-up & plant optimization
- Construction Alliance
 - Alliance is Client Designer
 - Synergy: Classic EPMC and DB

Pricing contract models

Membrane interchangeability

Make the plant independent from the selected membranes during construction phase

- Increase competition
- Rapid improvements

Options:

- 1. Flexible/Generic membrane box
 - Housing / control adapted to various membranes
 - Active or Latent changeability
- 2. Plug&Play Concept (Membrane Tank = "Disposable")
 - Maximum flexibility
 - Complex control interactions
 - Changeability can be expensive

NautilusTM MBR DHV's universal Membrane Housing

124

Generic (Exchangable) Membrane Housing for e.g.: HUBER / KUBOTA / KOCH MITSUBISHI / TORAY / ZENON

Membrane independence Cost reduction Flexibility

33

NautilusTM MBR ASF Leachate and digester wastewater

ltem	Influent	Effluent	Efficiency
	mg/l	mg/l	%
COD	4.000 - 8.000	800	> 90
BOD	25 – 40 % of COD	< 10	> 99
TKN	800 – 1.500	< 20	> 98
NH4 - N	80 % of TKN	< 1	> 99
TN		< 30	> 98
TSS	< 200	< 1	> 99

10 – 12 g MLSS/I

MC in air (developed in Beverwijk) start-up with membrane X (2002), 20 m3/h extended with membrane Y (2005), 40 m3/h replace first set of membranes by membrane Y (2006)

Conclusion

- MBR is a mature and reliable technology, but not yet a commodity and still shows fast evolution
- Especially of interest for water reuse
- MBR requires extensive know-how on design & operation of biology, membranes and interactions
- Many lessons were learnt in design and tendering (and one will continue to do so)
 - \rightarrow make optimal use of existing know-how
- Use international Best-in-Class MBR know-how

Conclusion

- MBR is a mature and reliable technology, but not yet a commodity and still shows fast evolution
- Especially of interest for water reuse
- MBR requires extensive know-how on design & operation of biology, membranes and interactions
- Many lessons were learnt in design and tendering (and one will continue to do so)
 - \rightarrow make optimal use of existing know-how
- Use international Best-in-Class MBR know-how

MBR technology

Consultancy and Engineering

MBR technology

MBR as enabler for integrated and Engineering sustainable urban developments

. \

. .

MBR Varsseveld

Design and load

Parameter		Design	Influent	
the second se	1	JA.	Average	Min. – Max.
Flow	m³/h	755	- Aller	
	m³/d	5,000	4,225	2,100 - 15,600
			" A	1 State
COD	kg/d	3,000	3,340	990 - 14,900
Total Nitrogen	kg/d	280	228	70 - 820
Total Phosphorous	kg/d	50	66	20 - 330
		The state		
Energy	kWh/m ³	1.0	0.85	0.8-1.2

MBR and energy MBR Varsseveld

Consultancy and Engineering

Case	Nett Flux	Period	Flow per tank
	l/(m².h)	h	m³/h
Minimum	10	-	50
Optimal	15 - 25	-	75 - 125
Design	37,5	72	190
Maximum	50	8	250

MBR and energy Optimumflux of 20 l/(m².h)

Consultancy and Engineering

Cumulatieve verdeling influentdebiet

Gateway to solutions

MBR at Rendac EPCM project

Consultancy and Engineering

ltem	Influent	Effluent	Efficiency
	mg/l	mg/l	%
COD	4.000 - 12.000	< 100	> 98
BOD	50 – 70 % of COD	< 10	> 99
TKN	900 – 1.400	< 5	> 99
NH4 – N	> 80 % of TKN	< 1	> 99
TN		< 10	> 99
TSS	< 1.000	< 1	> 99

10 – 13 g MLSS/I

Design flux 30 - 35 l/(m².h) at T > 25 °C

MC in air (developed in Beverwijk)

start-up: 2002

Permeability critical

Consultancy and Engineering

PFD MBR-Carrousel® (Hybrid)

Consultancy and Engineering

MBR for produced water (Azerbaijan)

Consultancy and Engineering

Highly Saline (30 – 60 g/l)

- COD removal >95% Feasible
 - Very high influent COD (average 25.000 ppm) prohibit meeting effluent demand
- Substantial Biomass growth:
 - ABR reduces surplus sludge
- Cleaning Feasible:
 - Repeated Recovery to permeability >100 l/(m².h.bar)
- Net Flux 5 8 l/(m².h)

Visual result

Consultancy and Engineering

Produced water

ABR

MBR

Effluent

MBR Varsseveld Process conditions

MLSS in g/l and Temperature in °C

21-dec-04

19-feb-05

20-apr-05

19-jun-05

Consultancy and Engineering

ADECO 150 50 FeCISO₄ Dosing 45 40 120 35 30 90 25 l in ml/g 20 60 15 10 30 5 0 0

18-aug-05

17-okt-05

Gateway to solutions

14-feb-06

16-dec-05

MBR Varsseveld Control Membrane fouling

Consultancy and Engineering

MBR Varsseveld

MBR Varsseveld

N-Removal

MBR Varsseveld P-Removal

Consultancy and Engineering

MBR Varsseveld Membrane performance

Gateway to solutions

Consultancy and Engineering

Thank you