

Center of Excellence for Water

Dr. Mahmoud Dawood

Associate Prof. & Post-doc researcher Center for Applied Research on the Environment and Sustainability - AUC

Modern Aquaculture

<u>Agenda</u>

- Understanding the concepts and types of aquaculture systems
- Understand the concept of intensive aquaculture and fish farming
- Prospects and considerations of different aquaculture systems
- Integrated aquaculture systems
- Understand the concept of aquaculture in different water salinities
- Aquaculture in Egypt

Aquaculture and Fisheries

1.4

Feed conversion efficiency of aquatic farming vs. land-based farming

Advantages of Aquaculture

Fastest growing food production system

Alternative of capture fisheries

Supply the increasing human populations of food demand

Produce more food fish

kept the overall price of fish down

Important source of animal protein

Challenges of Aquaculture

Genetic changes by introduced species

Disease outbreaks impact production

Ensuring livelihood of local communities

Don't compromise the needs of future generations

Don't destroy ecological balances

Main producers of Aquaculture Top 5 Countries in the World

Top species in world aquaculture

Japanese kelp

- Laminaria japonica
- 11 174 505 tones

Cupped oysters nei

- Crassostrea spp.
- 4 905 215 tones

Gracilaria seaweeds

- Gracilaria spp.
- 4 311 040 tones

Common

carp

- Cyprinus carpio
- 4 129 100 tones

Silver carp

- Hypophthalmichthys molitrix
- 4 704 673 tones

Japanese carpet shell

- Ruditapes philippinarum
- 4 228 206 tones

Grass carp (= white Amur)

- Ctenopharyngodon idellus
- 5 519 487 tones

Whiteleg shrimp

- Penaeus vannamei
- 4 456 603 tones

Nile tilapia

- Oreochromis niloticus
- 4 130 281 tones

Types of aquaculture systems Water-based systems

Cages

Types of aquaculture systems Land-based systems

Rainfed ponds

Tanks

Raceways

Types of aquaculture systems

Extensive

Semi-Intensive

Highly Intensive

Hyper-Intensive

Types of aquaculture systems

Integrated farming systems

Livestock-fish

Agriculture & fish dual use aquaculture

Integrated aquaculture production system

Integrated aquaculture (aquaponics)

RAS (recirculated aquaculture system)

Intra-basin running water system (IBRS)

Bioflocs (BFT)

Aquaponics Aquaculture + Hydro**ponic**

Ponds

Integrated pond systems

Technological Advancements

Conventional pond systems' problems

Water shortage is a controlling factor in many countries

Aquaculture is ineffective usage of fresh water – in warm, dry countries

Technological Advancements

Integration of aquaculture into other systems

remineralized sludge

Integration of livestock and aquaculture

Decoupled-RAS system

Types of aquaculture systems

Recycling systems

High control enclosed systems

More open pond based recirculation

Types of integrative farming

Intra-basin running water system (IBRS).

This is an example of a general design for a 20.000m3 water volume system

- Developed at Auburn University
- To grow American catfish
- Grow Grass carp in China
- Fixed system
- Floating system

Center of Excellence for Water - Exchange, Training, and Scholarships

500m3 (Ti raceway cel

Recirculation systems

RAS system

A flow chart for the various water treatment processes needed in a recirculating aquaculture system, by AndyyParadise, licensed by CC BY-SA 4.0

https://www.youtube.com/results?search_query=recirculating+aquaculture+system

Application and Feasibility

Recirculation systems

Minimum water demand

High capital costs

Limited space demand

Reduced water discharges

Exclusion of predators & climatic events

Application and Feasibility Fish cage systems

Increasing globally

High cost of feeds

Shortage of fish seed

Application and Feasibility Inshore-nearshore cage farms

Reduce nutrient & organic loading

Contribute to stock enhancement

Better knowledge about mortality

Long term potential for culture based fisheries

Better feeding regimes

Biological filter

1 ½ O2

Different MBBR media, by CARES - AUC

Recirculating Aquaculture System, by Narek75, Licensed by CC BY-SA 4.0

RAS indoor facility located in VSU Randolph Farm, by Narek75, Licensed by CC BY-SA 4.0

Recirculating Aquaculture System, Narek75, licensed by CC BY-SA 4.0

Circular tank, D-ended raceway, and raceway type. From "<u>A guide to</u> <u>Recirculation Aquaculture</u>", by Jacob Bregnballe, FAO & EUROFISH, 2015

https://www.evoqua.com/en-GB/articles/uv-in-recirculating-aquaculture-systems/

Aquaculture pond Water inlet by CARES - AUC

http://photos.prnewswire.com/prnfull/20160928/412741

An example of octagonal tank design in a recirculation system saving space yet achieving the good hydraulic effects of the circular tank. From "<u>A quide to</u> <u>Recirculation Aquaculture</u>", by Jacob Bregnballe, FAO & EUROFISH, 2015

Water Quality

Water Quality Parameters of Interest to Aquaculture Include:

- Salinity
- Dissolved oxygen
- CO₂, pH, alkalinity, hardness
- Dissolved and particulate organic matter
- Total solids, suspended inorganic particles, and turbidity
- Nitrogen
- Phosphorous
- Sediment quality (especially Redox Potential)
- Temperature

Organism type	Temperature	الم	Ammonia	Nitrite	Nitrate	DO
	(°C)	рп	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Warm water fish	22-32	6-8.5	<3	<1	<300	4-6
Cold water fish	10-18	6-8.5	<1	<0.2	<300	6-8
Plants	16-30	5.5-6.5	<30	<1	_	> 3
Bacteria	14-34	6-8.5	<3	<1	_	4-8

Potential of innovative marine aquaculture techniques to close nutrient cycles

Example of an Integrated Multi-Trophic Aquaculture (IMTA) in the open sea. A fish aquaculture produces waste, which is transported downstream by a current to two extractive species, which clean the nutrient-rich wastewater stream.

Biofloc

Colombo, S.M., Roy, K., Mraz, J., Wan, A.H., Davies, S.J., Tibbetts, S.M., Øverland, M., Francis, D.S., Rocker, M.M., Gasco, L. and Spencer, E., Towards achieving circularity and sustainability in feeds for farmed blue foods. *Reviews in Aquaculture*. <u>https://onlinelibrary.wiley.com/doi/full/10.1111/raq.12766</u>

Aquatic ecosystem classification (by

water salt concentration)

freshwater: < 0.5 mg/L (ppt)

estuarine (brackish) water: ppt

seawater: ppt (average, 35 ppt)

https://slideplayer.com/slide/4214157/

TABLE 5 INLAND WATERS CAPTURE PRODUCTION: MAJOR PRODUCING COUNTRIES

	Production (average per year)				Percentage					
Country	1980s	1990s	2000s	2015	2016	2017	2018	of total, 2018		
			(million	tonnes, live	weight)					
Top 25 Inland water capture producers										
China	0.54	1.46	2.11	1.99	2.00	2.18	1.96	16		
India	0.50	0.58	0.84	1.35	1.46	1.59	1.70	14		
Bangladesh	0.44	0.50	0.86	1.02	1.05	1.16	1.22	10		
Myanmar	0.14	0.15	0.48	0.86	0.89	0.89	0.89	7		
Cambodia	0.05	0.09	0.34	0.49	0.51	0.53	0.54	4		
Indonesia	0.27	0.31	0.31	0.47	0.43	0.43	0.51	4		
Uganda	0.19	0.22	0.33	0.40	0.39	0.39	0.44	4		
Nigeria	0.10	0.10	0.21	0.34	0.38	0.42	0.39	3		
United Republic of Tanzania	0.25	0.29	0.30	0.31	0.31	0.33	0.31	3		
Russian Federation	0.09	0.26	0.22	0.29	0.29	0.27	0.27	2		
Egypt	0.12	0.23	0.27	0.24	0.23	0.26	0.27	2		
Democratic Republic of the Congo	0.13	0.17	0.23	0.23	0.23	0.23	0.23	2		
Brazil	0.20	0.18	0.24	0.23	0.22	0.22	0.22	2		
Mexico	0.10	0.11	0.11	0.15	0.20	0.17	0.22	2		
Malawi	0.07	0.06	0.06	0.14	0.15	0.20	0.22	2		
Thailand	0.10	0.18	0.21	0.18	0.19	0.19	0.20	2		
Philippines	0.26	0.19	0.15	0.20	0.16	0.16	0.16	1		
Viet Nam	0.11	0.14	0.21	0.15	0.15	0.16	0.16	1		
Pakistan	0.07	0.13	0.12	0.13	0.14	0.14	0.14	1		
Chad	0.05	0.08	0.08	0.10	0.11	0.11	0.11	1		
Iran (Islamic Republic of)	0.01	0.09	0.07	0.09	0.09	0.10	0.11	1		
Kenya	0.09	0.18	0.14	0.16	0.13	0.10	0.10	1		
Mozambique	0.00	0.01	0.02	0.09	0.10	0.10	0.10	1		
Mali	0.07	0.09	0.10	0.09	0.10	0.11	0.09	1		
Ghana	0.05	0.06	0.08	0.09	0.09	0.09	0.09	1		
Top 25 producers	4.01	5.86	8.08	9.79	10.01	10.53	10.64	89		
Total all other producers	1.69	1.19	1.19	1.36	1.36	1.37	1.38	11		
All producers	5.70	7.05	9.27	11.15	11.37	11.91	12.02	100		
Inland water captures, by region										
Asia	2.87	4.17	5.98	7.30	7.44	7.90	7.95	66		
Africa	1.47	1.89	2.34	2.84	2.87	3.00	3.00	25		
Americas	0.56	0.54	0.58	0.57	0.60	0.58	0.63	5		
Europe	0.28	0.43	0.36	0.43	0.44	0.41	0.41	3		
Oceania	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0		
Others ¹	0.51	-	-	-	-	-	-	0		
World total	5.70	7.05	9.27	11.15	11.37	11.91	12.02	100		

¹ Includes the Union of Soviet Socialist Republics.

SOURCE: FAO.

Fig. 2 Features of aquaculture production (GAFRD 2012; CAPMAS 2012)

Governorate	Area/ feddan	Production						
		Meager	European sea bass	Gilthead seabream	Carp ^a	Mullets nei	Tilapia nei	
Kafr El Shaikh	61,400	_	-	-	19,897	11,940	183,063	214,900
Daqahlia	221	-	-	-	151	34	478	663
Sharkia	25,000	-	-	-	121,813	3866	61,477	77,526
Damietta	35,000	2859	4230	4009	1754	3881	3217	19,950
Port Said	50,000	-	-	-	-	50,410	99,590	150,000
Ismailia	1500	-	-	-	300	1200	1500	3000
Total	173,121	2589	4230	4009	34,285	71,331	349,325	466,039

Table 3	Area and	production of	private fish	farms	(temporary)	by	fish group/MT	during 2012
---------	----------	---------------	--------------	-------	-------------	----	---------------	-------------

Total aquaculture production for the Arab Republic of Egypt (tonnes) Source: FAO FishStat

Center of Excellence for Water - Exchange, Training, and Scholarships

Aquaculture production by culture environment the Arab Republic of Egypt (tonnes) Source: FAO FishStat

Center of Excellence for Water - Exchange, Training, and Scholarships

Egypt's ambition of constructing the largest fish farm in the Middle East is materializing on the international coastal road in the Berket Ghalioun area in the Metoubas locality, in Kafr al-Sheikh.

The National Fish Farming Project is to be built on an area spanning 2,750 feddans, costing LE 1.7 billion.

Egypt's aqua-cultural production ranks seventh in the world, according to the FAO, and ranks first in Africa in fish production.

In 2016, Egypt produced 1.5 million tons of fish, according to the General Authority for Fish Wealth Development. In the same year, it imported 236,000 tons of fish, worth 16 percent of total fish production.

The project consists of a hatchery for fish and shrimp on an area of 17 feddans with a capacity of 20 million fish and two billion shrimp. On top of this, a marine farm will produce up to 3,000 tons of fish per cycle, a shrimp farm 2,000 tons, and a freshwater fish farm will produce up to fish 2,000 tons per cycle.

The project will also include a research and development center on an area of 700 square meters, a marine fish feed plant on an area of 1,500 square meters with a production capacity of 120,000 tons annually, a shrimp feed plant on an area of 570 meters with an annual production capacity of 60,000 tons, and a foam factory on an area of 1,200 square meters to produce fish and shrimp containers.

Further, an ice factory will be built on an area of 450 meters, with a production capacity of 40 tons of crushed ice each day, and 20 tons of ice blocks for freezing fish and shrimp.

References

- Bank, World. FISH TO 2030 Prospects for Fisheries and Aquaculture FISH TO 2030 Prospects for Fisheries and Aquaculture. no. 83177, 2013.
- Bernal, P. & Oliva, D. "Chapter 12: Aquaculture." United Nations, vol. 2012, 2016, pp. 1–18.
- Junning, Cai, et al. "Top 10 Species Groups in Global Aquaculture 2017." Food and Agriculture Organization of the United Nations, vol. June, 2017, p. 7, http://www.fao.org/3/ca5224en/ca5224en.pdf.

E-mail: <u>omdawood_eg@yahoo.com</u> <u>Mahmouddawood55@gmail.com</u>

Facebook: Mahmoud Abdelhamid Dawood

Center of Excellence for Water Partners:

This presentation is made possible by the support of the American People through the United States Agency for International Development (USAID.) The contents of this presentation are the sole responsibility of the Center of Excellence for Water and do not necessarily reflect the views of USAID or the United States Government.