# **Primary Treatment**

**Sedimentation and Flotation** 

New Mexico Rural Water Association Revised 2012

# **Primary Treatment**

Physically removes those materials that will float or settle in 2 - 3 hours

Settling tank
Sedimentation tank
Clarifier

Names for the same

Usually located After grit removal and before biological treatment

- Secondary clarifiers are located following biological treatment and are considered part of the secondary treatment phase
- The main difference in Primary and Secondary clarifiers is the density of the sludge generated
- Primary sludges are denser

Also, Secondary clarifiers produce clearer effluents

### Rectangular Clarifier











### **Round Clarifier**



#### **Round Clarifier**









#### **Empty Clarifier**

Scum baffle

Effluent weir

Effluent trough

### **Round Clarifier**

Yes, these are made from culvert.



### Calculation of Primary Clarifier Efficiencies

#### Efficiency % = (<u>IN - OUT</u>) (100%) (Removal) IN

Influent (IN) BOD = 200 mg/l Effluent (OUT) BOD = 120 mg/l

Calculate how well this clarifier removes BOD

### Answer

Efficiency % = (IN - OUT) (100%) IN

| % | = | ( <u>200 – 120</u> ) (100%) |        |
|---|---|-----------------------------|--------|
|   |   | 200                         |        |
| % | = | ( <u>80</u> )               | (100%) |
|   |   | 200                         |        |
| % | = | (0.4) (100%)                |        |
|   |   |                             |        |

Efficiency % =

40% BOD removal

# **Typical Clarifier Efficiencies**

Parameter BOD TSS Settleable Solids Total Solids Bacteria Expected Removal 20% - 50% 40% - 60% 95% - 99% 10% - 15% 25% - 75%

# **Sludge & Scum Pumping**

Remove sludge at frequent intervals Sludge septicity indicators Gassing **Floating clumps** Pump as thick a sludge as possible 4 – 8% Total Dry Solids Withdrawal rates should be slow to prevent coning



### Conditions Affecting Sludge Concentration

Specific gravity [p.E-25 in Study Guide]

Size and shape of particles

Temperature

Turbulence in tank



### **Specific Gravity**

- The <u>ratio</u> of a liquids' density to that of water
  - Density of molasses is 93.6 lbs/cu ft
  - Density of water is 62.4 lbs/cu ft

Specific Gravity of molasses is 1.5
 <u>93.6</u> = 1.5 (no units)
 62.4

### Factors Influencing Settling Characteristics

Temperature
Short circuits
Detention time
Weir overflow rate
Surface loading rate
Solids loading

Pretty dry stuff



### **Temperature**



#### **IN GENERAL**

# As water temperature increases, settling rate of particles increases

As water temperature decreases, settling rate of particles decreases

# **Short Circuits**

Water entering should be evenly dispersed across the entire cross-section of tank

Water should flow at the same velocity toward the discharge end of the tank

Baffles, weirs, port openings and proper design of inlet channels are key

### **Detention Time**

Need to know
Flow in gpd
Tank dimensions or volume



Usual detention time design is 2 – 3 hours

## **Weir Overflow Rate**

• Number of gallons that flow over 1 linear foot of weir per day

Generally design for 10,000-20,000 gal/ day per lineal foot for Primary Treatment

 Lower weir overflow rates for Secondary clarifiers

### **Surface Loading Rate**

GPD/sq ft of tank surface area
 300 -1,200 GPD/sq ft typical range

Low rates for small plants in cold climates
 High rates for warm regions to avoid septic conditions

Important for settleable solids removal efficiency

# **Solids Loading**

Indicates the amount of solids removed daily for each sq ft of clarifier liquid surface area Expressed in lbs/day/sq ft Need to know Flow in MGD TSS in mg/l Liquid surface area in sq ft

# **Imhoff-Type Tanks**

Combined sedimentation-digestion tanks

Top compartment is for settling/flotation
 Bottom chamber is for <u>anaerobic</u> digestion

Round units - Clarigester
 Rectangular units - Imhoff Tanks

## **Typical Values**

Clarification Tank (Upper chamber)

- Detention time
  Surface loading rate
  Weir overflow rate
- BOD removalTSS removal

1 – 4 hours 600-1,200 GPD/sq ft 10,000-20,000 GPD/lineal ft 25% - 35% 45% - 65%

# **Typical Values cont'**

- Digestion Tank (Lower chamber)
  - Digestion capacity
  - Sludge storage

- 1 3 cu ft/person
- 3 12 months



Acid producing bacteria convert organic matter to volatile acids, carbon dioxide, water, and nitrogen. Methane fermenting bacteria break down acids and other products to methane gas, carbon dioxide, hydrogen sulfide, alkalinity, and water.













# Sludge Drying Beds

Sand Drying Beds
 – Can dry to > 95 % Total Solids
 – Typical 70 – 80 % Total Solids

Asphalt/Concrete Drying Beds

Vacuum Filter Beds





# Asphalt/Concrete Drying Beds

- Similar to sand drying beds
- Have hard asphalt or concrete surface
- Sludge can be poured to depth 18 30 inches
- Mixing equipment assists in quick drying
   Using tractor, backhoe, "Brown Bear"
   Decant tubes to remove water

# Vacuum Filter Beds

Shallow concrete basin with underdrains Covered with one of the following Porous pumice bricks Stainless steel perforated panels Plastic perforated panels Polymer-conditioned sludge is poured Vacuum applied under panels to draw water to drains Sludge dewatered to 15 – 30 % TS in a few hours to a few days

# EVEN MORE TOILET HISTORY

The pollution in the River Thames caused by sewage became particularly bad in the Victorian Era. In 1858 "The Great Stink" from the Thames caused Parliament to close down.

London's first proper drainage system, with eighty-three miles of large intercepting sewers, opened in 1865.