Pumping

A major ancillary item

Considerations

- Type of fluid: chemical and physical characteristics of the fluid to be pumped.
- System-head curve: may be obtained from the manufacturer.
- 3. Potential system modifications
- 4. Operational mode: degree of flow, head fluctuation, and mode of operation (continuous or intermittent)
- 5. Required margins: 15~20% over the design points

Pumping System -

 Pump selection: based on the fluid characteristics, turn-down ratio, discharge pressure and system requirements, availability of space, lay-out, energy and pump costs, code requirements, and the materials used in the construction.

- Reciprocating pumps (plunger or diaphragm type) for liquid chemical metering and injection applications (small capacity)
- Centrifugal pumps for wide variety of hydraulic head and over a wide range of capacity requirements, for low to medium capacity with medium to high pressure.

Pumping System -

- Axial flow pumps: for low hydraulic head and high flow conditions
- Vertical turbine pumps: require much less space and self-priming but more head room.
- Drive selection: electric motor, internal combustion engine, or steam; constant or variable speed drives; the majority of pumps are driven by squirrel-cage induction motors due to their versatility and availability

Synchronous: requiring large horse power
Wound rotor: requiring variable speed drives
Reduced voltage starting and low in-rush current

Pumping System -

continued

8. Number of pumps and standby generators: A three pump system employing identical electric motor driven pumps, each having a capacity that is 50% of the max. demand is commonly selected; for frequent power outrages, an engine driven pump or standby diesel generator should be incorporated; for a standby generator, the system will require reduced voltage starting.

Pump Specifications

- Related to pump construction and performance
- Selection of the appropriate type of metal e.g., for anaerobic sludge or deep well water or pumping out the bottom portion of deep lakes, type 301 or 304 stainless steel rather than type 316 should be specified.
- Request for bidding: technical specifications and general information (commercial term).
- Performance testing: agree on the method of testing and whether the testing of the pump should be witnessed.

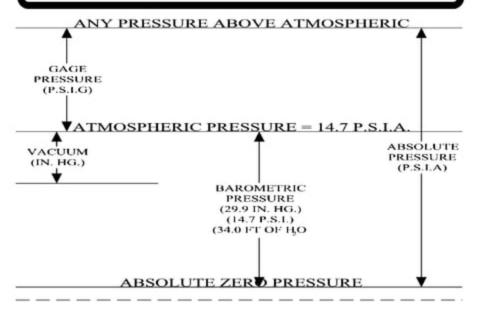
Special Considerations

1. Pump starting conditions

<u>Centrifugal pumps</u>: close the discharge valve during startup to prevent hydraulic surges.

<u>Propeller type pumps</u>: require very high horse power at start-up.

- High-speed versus low-speed pumps
 - a small sized impeller with a high-speed motor
 - a larger impeller with a slower speed motor
- Hydraulic surge control
 During pump start-up: install a surge control valve
 Water hammer: install a surge tank


Special Considerations -

continued

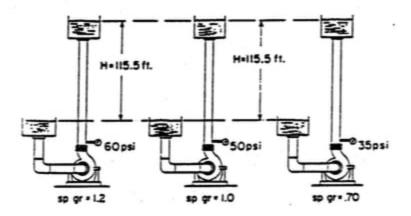
- Design of the pump suction well
 The pump impeller requires a particular type of flow condition to exist.
- Sludge pumps
- Positive displacement type plunger (seldom used) and progressive cavity (Moyno) pumps
- Centrifugal type screw feed, bladeless
- Torque flow type the Wemco pump, effective but very low pump efficiency

The sludge piping should be < 6 in. in diameter and the velocity should be $5 \sim 6$ ft/sec.

Types of Pressure

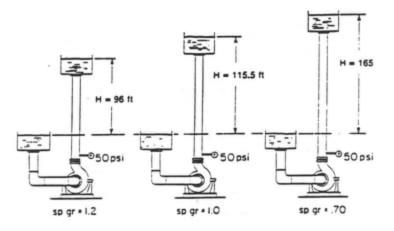
Gage pressure is usually the one we mean when we talk about pump pressure in pounds per square inch (P.S.I.)

Head in ft


Column of Liquid which exerts a pressure

- ightharpoonup Head in feet = 2.31 × psi/Liquid Sp. Gr.
 - \checkmark For most cases water Sp. Gr. = 1.0
 - \checkmark Lighter than water like oil Sp. Gr. = 0.85
 - ✓ Heavier than water like brine Sp. Gr. = 1.15
- Specific gravities for various liquids and for water at various temperatures can be found in pump handbooks such as:
 - Hydraulic institute engineering data book
 - Cameron hydraulic Data.
 - Hydraulic handbook (colt industries)

Head vs. Pressure


The figure are to illustrate the relationship between head and pressure with a centrifugal pump handling liquids of varying specific gravity

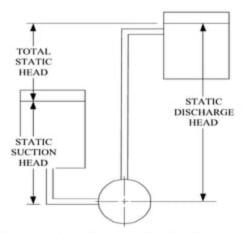
Head vs. Pressure - continued

Three identical pump, each designed to develop 115.5 ft. of head (water Sp. Gr. 1.0) when liquids of other Sp. Gr. are handled, the head (in feet) will remain the same, but the pressure will very proportional to the specific gravity

Head vs. Pressure - continued

Three pumps designed for same pressure will develop heads (ft. of liquid) inversely proportional to the specific gravity.

Capacity


- Quality of liquid to be pumped in a time period
 - Usually expressed as gallons per minute (gpm)
 - ✓ Sometimes expressed as gallons per hour (gph)
 - ✓ Other examples

Flow Equivalents
Example: 100 U S gal/min × 0.0631 = 6.31 liters/sec

Convert to Convert from	U S gal/ min	Imp gal/ min	U S million gal/day	Cu ft per sec (sec-ft)	meters per hour	Liters per sec	(42 gal) per min	(42 gal) per day
U S gal/min	- 1	0.8327	0.00144	0.00223	0.2271	0.0631	0.0238	34.286
Imp gal/min	1.201	1	0.00173	0.002676	0.2727	0.0758	0.02859	41.176
U S million gal/day	694.4	578.25	1	1.547	157.7	43.8	16.53	23810
Cu ft/sec	448.83	373.7	0.646	1	101.9	28.32	10.686	15388
Cu m/sec	15852	13200	22.83	35.35	3600	1000	377.4	
Cu m/min	264.2	220	0.3804	0.5886	60.0	16.667	6.290	9058
Cu m/hr	4.403	3.67	0.00634	0.00982	1	0.2778	0.1048	151
Liters/sec	15.85	13.20	0.0228	0.0353	3.60	1	0.3773	543.3
Liters/min	0.2642	0.220	0.000380	0.000589	0.060	0.0167	0.00629	9.058
Barreis (42 gai)/min	42	34.97	0.0605	0.0937	9.538	2.65	1	1440
Barreis (42 gai)/day	0.0292	0.0243	0.000042	0.000065	0.00662	0.00184	0.00069	1

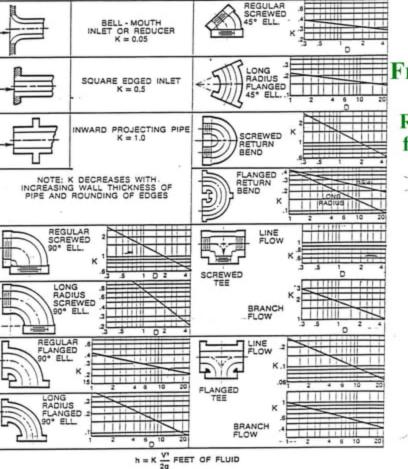
Total Static Head

Total static head = static discharge head – static suction head

Total static head = static discharge head + static suction lift

Friction Loss or Friction Head

- Measured in feet of liquid, equivalent head to overcome resistance to liquid flow in pipes, valves and fittings in the piping system.
- Values can be located in most hydraulic handbooks. (see examples on following pages)


	INCH KINAL	CONTRACT	ID = 3.068 INC	HES		ID = 3,00 IN «/D = 0,00160		
DISC	HARGE CPM	t/sec	VI/2g test	No lest per 100 lest of pipe	V It/sec	V2/2g teet	feet per 10 teet of pig	
0.0111	5	0.217	0.000732	0.0112	0.227	0.000800	0,0128	
0.0223	10	0.434	0.00293	0.0372	0.454	0.00320	0,0435	
0.0334	15	0.651	0.00659	0.0762	0.681	0.00720	0,0900	
0.0448	20	0.868	0.0117	0.126	0.908	0.0128	0,1510	
0.0557	25	1.085	0.0163	0.189	1.13	0.0200	0,2280	
0.0668	30	1.30	0.0263	0.262	1.36	0,0288	0.320	
0.0780	35	1.52	0.0359	0.347	1.59	0,0392	0.427	
0.0891	40	1.74	0.0468	0.443	1.82	0,0512	0.549	
0.100	45	1.95	0.0593	0.547	2.04	0,0648	0.683	
0.111	50	2.17	0.0732	0.662	2.27	0,0800	0.830	
0.123	55	2.39	0.0885	0.789	2.50	0.0948	0.993	
0.134	60	2.60	0.105	0.924	2.72	0.115	1.170	
0.145	65	2.82	0.124	1.07	2.95	0.135	1.36	
0.156	70	3.04	0.143	1.22	3.18	0.157	1.56	
0.167	75	3.25	0.165	1.39	3.40	0.180	1.78	
0.178	80	3.47	0.187	1.57	3.63	0.205	2.02	
0.189	85	3.69	0.211	1.76	3.66	0.231	2.28	
0.201	90	3.91	0.237	1.96	4.08	0.259	2.55	
0.212	95	4.12	0.254	2.17	4.31	0.289	2.82	
0.223	100	4.34	0.2927	2.29	4.54	0.320	3.10	
0.245	110	4.77	0.354	2.86	4.99	0.387	3.73	
0.267	120	5.21	0.421	3.27	5.45	0.461	4.40	
0.290	130	5.64	0.495	3.92	5.90	0.541	5.13	
0.312	140	6.08	0.574	4.51	6.35	0.827	5.93	
0.334	150	6.51	0.659	5.14	6.81	0.720	8.80	
0.256	160	6.94	0.749	5.81	7,26	0.820	7,71	
0.379	170	7.38	0.846	6.53	7,72	0.925	8,70	
0.401	180	7.81	0.948	7.28	8,17	1.04	9,73	
0.423	190	6.25	1.06	8.07	8,62	1.16	10,80	
0.446	200	8.68	1.17	8.90	9,08	1.28	11,9	
0.490	220	9.55	1,42	10.7	9.58	1.55	14.3	
0.535	240	10.4	1,69	12.6	10.5	1.54	17.0	
0.579	260	11.3	1,98	14.7	11.8	2.16	19.8	
0.624	280	12.2	2,29	16.9	12.7	2.51	22.8	
0.668	200	13.0	2,63	19.2	13.6	2.88	26.1	
0.713	320	13.9	3.00	22.0	14.5	3.28	29.7	
0.758	340	14.8	2.38	24.8	15.4	3.70	33.6	
0.802	360	15.5	3.79	27.7	16.3	4.15	37.8	
0.847	380	16.3	4.23	30.7	17.2	4.62	42.2	
0.891	400	17.4	4.68	33.9	18.2	5.12	46.8	
0.936	420	18.2	5.16	37.3	19.1	5.65	51.5	
0.980	440	19.1	5.67	40.9	20.0	6.20	56.4	
1.025	460	20.0	6.19	44.5	20.9	6.77	61.5	
1.069	480	20.8	6.74	48.5	21.8	7.38	66.3	
1.114	500	21.7	7.32	52.5	22.7	8.00	72.3	
1.225	550	22.9	8.65	63.2	25.0	9.68	87	
1.337	600	26.0	10.5	74.8	27.2	11.5	102	
1.448	650	28.2	12.4	87.5	29.5	12.5	121	
1.560	700	30.4	14.3	101	31.8	15.7	142	
1.671	750	32.5	16.5	116	34.0	18.0	162	
1.782	800	34.7	18.7	121	36.3	20.5	184	
1.894	850	36.9	21.1	148	38.6	22.1	207	
2.005	900	39.1	23.7	165	40.8	23.9	232	
2.117	950	41.2	26.4	184	43.1	28.9	258	
2.228	1 000	43.4	29.27	204	45.4	32.0	265	

STEEL SCHEDULE 40

CAST IRON

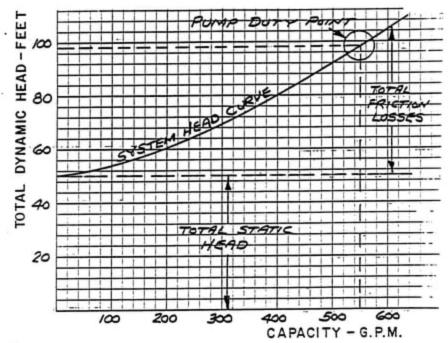
Fluid flow Friction loss - Water

Friction loss for water in ft per 100 ft of pipe

Fluid flow Friction loss – Water

Resistance coefficients for valves and fittings

Losses and

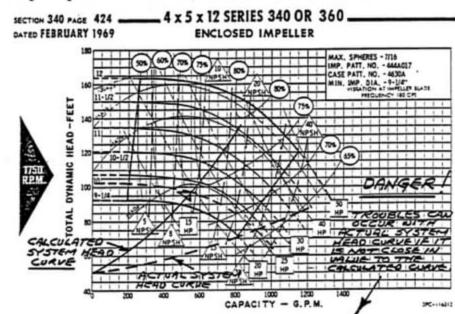

Tead

- Entrance and Exit losses
 - Bell mouth opening will reduce entrance losses. Handle same way as a pipe loss. Values found in hydraulic handbooks.
- Velocity Head
 - Energy in the fluid as a result of movement. Usually a small value and can be neglected except for very accurate calculations.
 - Velocity Head = v²/2g

Defining Total Head

- Combining from previous pages on static heads and friction losses.
 - Suction lift (-)
 - Dynamic suction lift = static suction lift + suction friction losses + suction entrance losses
 - Suction head (+)
 - Dynamic suction head = static suction head + suction friction losses + suction entrance losses.
 - Discharge head (+)
 - Dynamic discharge head = static discharge head + discharge friction losses + exit losses.
 - Total Head or TDH
 - Total Head = Discharge Head + Suction lift or Suction Head.

System Head Curve



Example:

If Customer needs 550 G.P.M. the pump head as selected from the system head curve will be 98 ft. T.D.H.

Selection of Pump

Pump will operate at intersection of pump curve and system head curve. For duty point of 550 GPM@ 98 ft. T.D.H., select 4 x5 x 12 –340 pump with 20 H.P., 1750 R.P.M. motor

DO NOT! Over calculate pump head requirement

- Higher driver H.P. will be required.
- Possibility of cavitation (pump noise vibration and internal damage)

Solution

For Pumping Problems for unit over selected as result of improper system head curve

- hp requirement too high
 - Larger motor
 - Throttle discharge valve to get more head and reduce hp required. (temporary solution)
 - Cut impeller diameter for proper head and capacity requirements.
- Cavitation
 - Throttle discharge valve to get back on pump curve. (Temp. solution)
 - Cut impeller diameter to meet correct Head-Capacity requirement.

Break Horsepower

The BHP required to drive a pump at a specific duty point is:

BHP =
$$\frac{\text{Head (ft)} \times \text{gpm} \times \text{Sp. Gv.}}{3,960 \times \text{Pump eff.}}$$

These values can be determined from the pump specification and the pump curve.

Example

Spec. calls for 675 gpm at 95 ft. head. Performance curve shows 86%. Pump effluent liquid is ethylene glycol at Sp. Gr. of 1.08.

BHP =
$$\frac{95 \text{ ft} \times 675 \text{ gpm} \times 1.08}{3,960 \times 86\%}$$

= 20.3

Would select a 25 hp Driver

NPSH Definition

- Hydraulic institute defines net positive suction head (NPSH) as follows:
 - The net positive suction head in feet of liquid absolute determined at the suction nozzle and referred to datum less the vapor pressure of the liquid in feet absolute (This sounds pretty complicated,but let's try to simplify it a bit as it is very important in pump selection.)
- Also be defined as the combination of atmospheric pressure and static suction head that causes liquid to flow thru the suction piping and finally enter the eye of the impeller.
- From that it can be seen that NPSH is very important to successful operation of a pump.

Two Kinds of

NPSH

Net positive suction head.

- NPSH_R. <u>required</u> by pump at duty point, found on the pump performance curve.
- NPSH_A. <u>Available</u> in the system and must be determined by calculation

Important!

For the pump to perform properly, the NPSH_R (required), must be less than the NPSH_A (available)

NPSH_A

$$NPSH_A = \frac{2.31(P_A - P_V)}{Sp. Gr.} + (H_E - H_F)$$

 P_A = atmospheric pressure or pressure in tank (psia);

 P_v = vapor pressure of liquid at maximum pumping temperature;

Sp. Gr. = specific gravity at pumping temperature;

 H_E = elevation head (ft); and

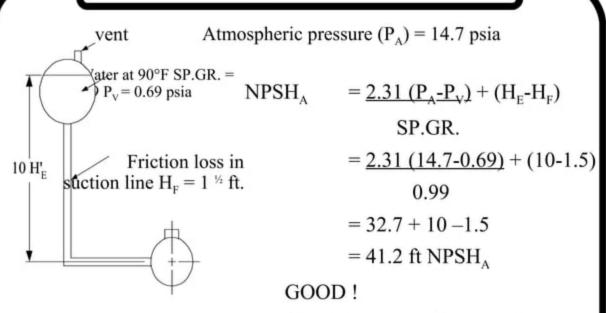
 H_F = friction loss in suction line (ft).

Refer to following pages for example calculations.

Values for vapor pressure (P_v) and atmospheric pressure (P_A) found in pump handbooks. (see attached)

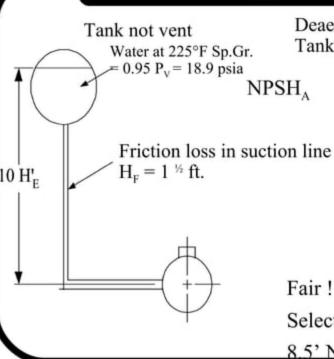
Properties of Saturated Steam—Temperature Table

Tomo	VAPO	R PRI	SSURI	Vacuum in ring rat to 23,921 in	Special "	Total heat or enthalpy Bluffs			
				ber. at 225	- 1770-	-	~	1	
180	15.293	34.4	7,5110	14,629	50,225	144.00	990.2	1138.3	
181	15.635	297,12	7,679	14.287	49,194	149.00	909.6	1138.6	
162	15.963	405.96	7.850	12,939	46.189	150.01	900.0	1138.0	
183	16,339	415.01	LO25	13.582	47.207	151.01	968.4	1139	
184	16,701	44.22	1200	12.220	46,249	152.01	907.8	1138.	
185	17,070	433.58	6,384	12,051	45313	153.02	967.1	1140.2	
186	17,445	443.00	8,586	12,477	44,400	154.02	906.5	1140.5	
167	17,827	452.81	8,756	12,094	43,500	155.02	965.9	1140.5	
186	18.216	462.50	8.947	11,706	42.606	154.03	945.3	1141.3	
180	16.611	472.72	2.141	11,210	41,787	157.03	984.7	1141.7	
190	19,016	41.02	1340	10.905	40.957	156.04	984.1	1142.1	
191	19,426	493.41	2.541	10.496	40,146	159.04	963.5	1142 5	
192	19.845	504.06	2.747	10.076	39,334	150.05	962.5	1142.5	
193	20,271	314.87	3,954	3.651	38,540	161.05	982.2	1143.3	
194	20.702	525.84	10,100	9.219	37.824	162.05	301.6	1141.7	
195	21,144	537.06	10.705	6,777	37.006	163.06	961.0	1144.0	
196	21,582	544.43	10,605	8,329	38.364	164.06	900.4	1144.4	
197	22 010	560.07	10,430	7,871	25,650	165.07	979.7	1144.8	
198	22.514	571.86	11,050	7,407	34,970	166.06	579.1	1145.2	
190	22.967	563.66	11.290	6.935	34.297	167.00	97L5	1145.6	
200	23.467	504.05	11,536	6.454	200	166.09	977.9	1146.0	
201	23,964	600.44	11,786	5,906	32,996	100,00	977.2	1144.3	
202	34.456	G1.15	12.011	5.467	32,367	170,10	976.6	1146.7	
200	24,960	633.57	12.250	4.962	31.752	171,10	976.0	1147.1	
204	25.475	647.05	12.512	4,447	31.151	172.11	975.4	1147.5	
205	21,000	900.40	12,770	1921	30,564	173.12	974.7	1147.9	
204	26.521	673.89	13.031	3,390	29,900	174.12	974.1	1144.2	
207	27.973	667.65	13.297	2.846	23,425	175.13	973.5	1146.6	
208	27.525	701.67	13.566	2.297	28.879	17E.14	972.6	1149.0	
200	28.185	715.00	13.843	1.737	28,341	177.14	972.2	1149.4	
210	29,795	730.37	14,127	1,167	27.816	178.15	971.6	1149.7	
211	29.333	745.05	14,407	0.586	27.302	179,16	970.9	1150.1	
212	29.921	780.00	14.004	0.000	24,799	180,17	470.3	1150.5	



CAMERON HYDRAULIC DATA

Approximate Atmospheric Pressures and Barometer Readings at Different Altitudes


-	-				-			
A	titude	Baror		Atmospheric	Equivalent head of	Boiling point of water		
Foot	Meters	mercury	Mm of mercury	- Ibini	water (75°F) Feet	7.	~	
-1000	-304.8	31.02	787.9	15.2	35.2	213.8	101.0	
-500	-152.4	30.47	773.9	15.0	34.7	212.9	100.5	
0	0	29.921	760.0	14.7	34.0	212.0	100.0	
500	152.4	29.38	745.3	14.4	33.4	211.1	99.5	
1000	304.8	28.56	733.1	14.2	32.8	210.2	99.0	
1500	457.2	28.33	719.6	13.9	32.2	209.3	98.5	
2000	609.6	27.82	706.6	13.7	31.6	208.4	98.0	
2500	762.0	27.31	693.7	13.4	31.0	207.4	97.4	
3000	914.4	25.81	681.0	13.2	30.5	206.5	96.9	
3500	1066.8	26.32	688.5	12.9	29.9	205.6	96.4	
4000	1219.2	25.84	656.3	12.7	29.4	204,7	95.9	
4500	1371.6	25.36	644,1	12.4	28.8	203.8	95.4	
5000	1524.0	24.89	632.2	12.2	28.3	202.9	94.9	
5500	1676.4	24.43	620.5	12.0	27.8	201.9	94.4	
6000	1828.8	23.98	609.1	11.8	27.3	201.0	93.9	
6500	1961.2	23.53	597.7	11.5	26.7	200.1	93.4	
7000	2133.6	23.09	586.5	11.3	26.2	199.2	92.9	
7500	2288.0	22.65	575.3	11.1	25.7	196.3	92.4	
8000	2438.4	22.22	564.4	10.9	25.2	197.4	91.9	
8500	2590.8	21.50	551.7	10.7	24.8	196.5	91.4	
9000	2743.2	21.38	542.1	10.5	24.3	195.5	90.8	
9500	2895.6	20.96	532.9	10.3	23.8	194.6	90.3	
10000	3048.0	20.58	522.7	10.1	23.4	193.7	89.8	
15000	4572.0	16.88	428.8	8.3 6.7	19.1	184	84.4	
20000	6096	13.75	349.3	6.7	15.2	-	_	
30000	9144	8.88	225.6	4,4	10.2	- 1		
40000	12192	5.54-	140.7	2.7	6.3	-		
50000	15240	3.44	87.4	1.7	3.9	- 1		

NPSH Example #1

Should be no problem to select a pump to perform satisfactorily.

NPSH_A Example #2

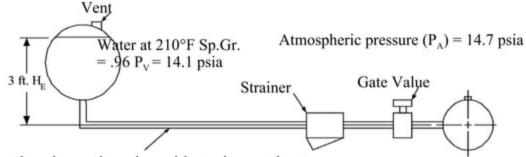
Deaerator system Tank pressure $(P_A) = 18.9 \text{ psia}$

$$NPSH_A = \underline{2.31 (P_A - P_V)} + (H_E - H_F)$$

$$SP.GR.$$

$$=$$
 $2.31 (18.9-18.9) + (10-1.5)$

$$= 0 + 10 - 1.5$$


Fair!

Select a pump that requires less than

0.953

8.5' NPSH, a duty point

NPSA_A Example #3

Friction loss in suction pipe with strainer and gate valve $H_F = 1\frac{1}{2}$ ft.

NPSH_A =
$$\frac{2.31(P_A - P_V)}{\text{Sp.Gr.}} + (H_E - H_F)$$

= $\frac{2.31(14.7 - 14.1)}{0.96} + (3 - 2.5)$
= 1.9 ft NPSH_A

NPSH_A Example #3 - continued

Bad!

It will be difficult to select a pump for satisfactory operation the NPSH_A could be increased by raising the tank (H_E). If the pump requires 7 ft. NPSH_R, tank should be raised approximately 6 ft. add to give 7.9 ft NPSH_A even more if possible

NPSH_A Example #4

Atmospheric pressure (
$$P_A$$
) = 14.7 psia

Strainer

Gate Value

Friction loss in suction pipe with strainer and gate valve $H_F = 1\frac{1}{2}$ ft.

Water at 90°F Sp. Gr. Foot value
$$= 0.99 P_V = 0.69 \text{ psia}$$

NPSH_A = $\frac{2.31(P_A - P_V)}{\text{Sp.Gr.}} + (H_E - H_F)$

$$= \frac{2.31(14.7 - 0.69)}{0.99} + (-15 - 2.5)$$

$$= 32.7 - 17.5$$

$$= 15.2 \text{ ft NPSH}_A$$

In selection the pump it would be necessary to see that the NPSH_R required did not exceed 13 to 14 ft at the duty point, otherwise noise and cavitation would occur at the pump

Final Note on NPSH

Although a good working knowledge of NPSH is required to select pumps for hot water service, an estimation chart is often helpful to get you in the right area

The following chart shows approximate NPSH available at various water temperatures along with various static suction heads up to 15 feet. Note that the chart is based on water at sea level and also that no friction losses in the suction pipe are accounted for.

Example of chart use:

Given: Vented tank with water level at 8 feet above pump suction and water at 204°F

NPSH available = 13.1 feet

Available NPSH table for water

3

3.0

4.4

5.6

7.0

2

2.0

3.4

4.6

6.0

Temp

°F

212

210

208

206

Vapor

press.

P.S.I.A

14.7

14.1

13.7

13.0

Equiv.

Ft. of

water

34.0

32.6

31.4

30.0

0

0.0

1.4

2.6

4.0

one (1) foot from the available NPSH

1.0

2.4

3.6

5.0

NPSH (ft) available at various static suction heads. (ft)

6

6.0

7.4

8.6

10.0

7.0

8.4

9.6

11.0

8

8.0

9.4

10.6

12.0

9

9.0

10.4

11.6

13.0

10

10.0

11.4

12.6

14.0

15

15

16.4

17.6

19.0

5

5.0

6.4

7.6

9.0

204	12.5	28.9	5.1	6.1	7.1	8.1	9.1	10.1	11.1	12.1	13.1	14.1	15.1	20.1
202	12.0	27.7	6.3	7.3	8.3	9.3	10.3	11.3	12.3	13.3	14.3	15.3	16.3	21.3
200	11.5	26.6	7.4	8.4	9.4	10.4	11.4	12.4	13.4	14.4	15.4	16.4	17.4	22.4
190	9.3	21.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5	21.5	22.5	27.5
160	4.7	10.9	23.1	24.1	25.1	26.1	27.1	28.1	29.1	30.1	31.1	32.1	33.1	38.1
120	1.7	3.9	30.1	31.1	32.1	33.1	34.1	35.1	36.1	37.1	38.1	39.1	40.1	45.1
80	0.5	1.5	32.5	33.5	34.5	35.5	36.5	37.5	38.5	39.5	40.5	41.5	42.5	47.5
40	0.1	0.2	33.8	34.8	35.8	36.8	37.8	38.8	39.8	40.8	41.8	42.8	43.8	48.8
Notes	:													

This chart does not take into account head losses due to friction in the pump suction piping which must be deducted from the available NPSH for the specific application
 Values given are for water at sea level. For each 1000 feet above sea level, deduct

4.0

5.4

6.6

8.0

Affinity

On occasion you may find it necessary to determine the performance of a pump at a different operating speed the affinity laws are used in making these calculations.

$$\frac{Q_1}{Q_1} = \frac{N_1}{Q_1}$$
 $Q_1 = capacity$

$$H_1 = \text{Head (feet) at N}_1 - \text{rpm}$$

$$Q_2 = capacity$$

$$H_2$$
 = Head (feet) at N_2 – rpm

$$\frac{BHP_1}{BHP_2} = \left(\frac{N_1}{N_2}\right)^3$$

Example

Given pump at 600 gpm, 80 ft head, 15.1 BHP at 1750 rpm, what is comparable point at 1550 rpm?

$$Q_1 = 600$$
 $H_1 = 80$ $BHP_1 = 15.1$ $N_1 = 1750$
 $Q_2 = ?$ $H_2 = ?$ $BHP_2 = ?$ $N_2 = 1550$
 $Q_2 = \frac{Q_1 \times N_2}{N_1} = \frac{600 \times 1,550}{1,750} = 531 \text{ gpm}$

$$H_2 = H_1 \times (N_2/N_1)^2 = 80 (1550/1750)^2 = 62.8 \text{ ft.}$$

 $BHP_2 = BHP_1(N_2/N_1)^3 = 15.1 (1550/1750)^3 = 10.5 BHP$

Example - continued

Other points from the 1750 rpm curve can be converted in a similar manner to plot an expected curve at the new rpm.

There are also similar equations to determine expected performance when changing the impeller diameter with rpm remaining constant. These can be shown by replacing N_1 and N_2 with D_1 and D_2 in the above equations. The use with different diameters would be the same as above