

PUMPS

1- Function Of Pumps

2- Pumps Classification

3- Code and Standards

- A wide variety of pumps are used in petroleum industry.
- A pump is used to increase the total energy content of a liquid in the form of pressure increase.

The pumps are used to perform one of the following jobs:

- -Move liquids from low level to high level
- -Move liquids from low pressure location to high pressure location
- -Hydraulic Systems
- -To increase the flow rate of a liquid

Pump is used to convert

Mechanical Power into **Hydraulic Power**

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Pump Drives

The source of power for a pump could be

- 1. Electric motor,
- 2. Gas or diesel internal combustion engine,
- 3. Steam turbine,
- 4. Gas turbine

Small pumps may be operated by hand or foot, by air pressure or another fluid pressure, or an electromagnet.

www.aucegypt.edu/business/execed

Pressure is dependent on the (specific gravity) of the liquid

Head is totally independent of (specific gravity) of the liquid

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

2- Pumps Classification

Main Types Pumps

EXECUTIVE EDUCATION

	Positive D.P.	Centrifugal	Axial Flow
Pressure P	V. HIGH	HIGH	LOW
Flow Rate Q	LOW	HIGH	V. HIGH
S.R.V	YES	NO	NO
Efficiency	HIGH	MEDIUM	V. HIGH
Maint. cost	V. HIGH	LOW	LOW
Pulsation	YES	NO	NO

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

[©] Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

Impeller Propeller Turbine

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

Semi open impeller

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

E X E C U T I V E E D U C A T I O N

Double suction impeller

Centrifugal pumps

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

EXECUTIVE EDUCATION

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

• Reciprocating Pumps

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Reciprocating Pumps

EXECUTIVE EDUCATION

•

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Reciprocating Pumps

EXECUTIVE EDUCATION

•

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

3- Code and Standards

EXECUTIVE EDUCATION

Centrifugal Pumps

API 610

ASME B73.1 & B73.2 Most common pumps

API 685 Seal less Pumps

<u>Liquid Ring Vacuum Pumps</u>

API 681

Positive Displacement Pumps

- API 674 Reciprocating
- API 675 Controlled volume
- API 676 Rotary

<u>Firewater Pumps</u>

NFPA 20

Centrifugal pumps

Centrifugal pumps

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

Volute casing

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Impellers Classification

Very high Flow Very Low Head

www.aucegypt.edu/business/execed

High Head

Low Flow

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

SOME TYPES OF CENTRIFUGAL PUMPS

EXECUTIVE EDUCATION

DOUBLE SUCTION

IMPELLER

MULTI STAGE

SINGLE IMPELLER

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Seals

- All pumps developed pressure to pump the liquid.
- The pressurize liquid must be contained by a seal to prevent leakage around the drive shaft .
- There are many types of seals that are used in many types of pump. E.g.
 - Wearing ring
 - Packing
 - Mechanical seal

- THE AMERICAN
UNIVERSITY IN CAIROSCHOOL OF
BUSINESSE X E C U T I V EE D U C A T I O N
- Some wear or erosion will occur at the point where the impeller and the pump casing nearly come into contact.
- This wear is due to the erosion caused by liquid leaking through this tight clearance and other causes.
- As wear occurs , the clearances become larger and the rate of leakage increases.
- Eventually, the leakage could become unacceptably large and maintenance would be required on the pump.
- To minimize the cost of pump maintenance, many centrifugal pumps are designed with wearing rings.

The following factors does affect the wear ring clearance:

- The impeller size There is certain value for each size range given by the pump manufacturer
- 2. The liquid is clean or contaminated with solid particles, the particle size and the concentration
- 3. The pump RPM

www.aucegypt.edu/business/execed

Eccentric Reducer

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

flat should be at the top

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Horizontal Split Case Feed Pump

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Kights Reserved

Slurry Applications

Vertical Cantilever Pump

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Sundyne Pumps

One impeller with Gear box , High speed Pumps

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

PUMPS AFFINITY LAWS

THE FLOW RATE WILL BE

$$\frac{\mathbf{Q}_2}{\mathbf{Q}_1} = \left[\frac{\mathbf{N}_2}{\mathbf{N}_1}\right]$$

THE DISCH PRESS. WILL BE

THE HORSEPWER WILL BE

 $\frac{P_2}{P_1} = \left[\frac{N_2}{N_1}\right]^3$

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

1- Horizontally Split

High Flow Medium pressure

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

2- Vertically Split (Double Barrel) high pressure and medium Flow

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Pumps arrangement

Centrifugal pumps in series

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Centrifugal pumps in parallel

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Volute function is to convert most of the Velocity energy to pressure

$$\mathbf{P} = (\mathbf{V}^2/_2g)$$

www.aucegypt.edu/business/execed

/2023

8/2

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

FLUIDS FLOW KINAMATIC ENERGY

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

execed@aucegypt.edu

P2

TOTAL ENERGY DIMENTIONS

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

1- Centrifugal pumps Performance curve

2- Pumps Specific speed

3- Pumps Horse Power

ΕD

UCATION

EXECUTIVE

Centrifugal Pump Performance Curve (Q-H)

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Iso-Efficiency Curves

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Iso-Efficiency Curves

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Impeller Design vs Specific Speed foot system

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Classification of Centrifugal Pumps

- Radial Flow a centrifugal pump in which the pressure is developed wholly by centrifugal force.
- Axial Flow a centrifugal pump in which the pressure is developed by the propelling or lifting action of the vanes of the impeller on the liquid.
- Mixed Flow a centrifugal pump in which the pressure is developed partly by centrifugal force and partly by the lift of the vanes of the impeller on the liquid.

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Ns = Dimensionless Number

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

$$N_{s} = \frac{N Q^{1/2}}{H^{3/4}}$$

 $\mathbf{N} = \mathbf{R}\mathbf{P}\mathbf{M}$

 $\mathbf{Q} = \mathbf{Flow Rate}$ (Gallons. Per Min).

H = Head **Per Impeller** (Feet)

or

$$N = RPM$$

 $Q = Flow Rate$ (m³/ sec).

H = Head Per Impeller (Meter)

Note: Specific speed derived using cubic meters per second and meters multiplied by a factor of 51.6 is equal to specific speed derived using U.S. gallons per minute and feet. The usual symbol for specific speed in U.S. units is Ns.

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

						EFFI	CIEN	ICY				
	1	2	3	4	5	6	7	8	9	10	11	12
Qgpm Ns	5	10	30	50	100	200	300	500	1000	3000	10000	>
200	14	19	20	22	24							
300	21	25	29	33	39							
400	26	31	35	39	45							
500	31	34	42	47	53	56	61	64	66	70	73	81
600			45	50	56	59	64	67	70	73	76	84
700			49	54	60	63	67	71	73	76	79	88
800			51	55	63	65	69	73	75	79	81	91
900			53	58	65	68	72	74	77	81	83	93
1000			55	60	66	69	73	75	79	83	85	94
1100			56	61	67	70	74	77	81	84	87	95
1200			57	63	69	72	75	78	82	85	87	95
1300			57	63	69	72	75	78	82	85	87	95
1400			57	63	69	72	75	78	82	85	87	95
1500			58	64	70	72	77	79	82	85	87	95
>1500			60	65	72	75	77	80	84	87	90	97

www.aucegypt.edu/business/execed

 $WHP = WATER HORSEPOWER \qquad W HP = P Q$ $BHP = BREAK HORSEPOWER \qquad B HP = \frac{P Q}{\xi}$

- $\mathbf{P} = \mathbf{PUMP DIFF. PRESSURE}$
- $\mathbf{Q} = \mathbf{PUMP FLOW RATE}$
- $\xi = PUMP EFFICINCY$

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

CALCULATE MOTOR HP. FOR

<u>EXAMPLE</u>

N = 3000

execed@aucegypt.edu

- 1-PUMP (A) HAS D.P = 20 PSI Q = 2000 GPM
- 2-PUMP (B) HAS D.P = 400 PSI Q = 100 GPM

FOR BOTH PUMPS

WATER. HP. = 0.00058 * 20*2000 HP.

= 23.2 HP

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

EDUCATION

EXECUTIVE

PUMP (A) NS

1.0 ¹⁰⁰⁰⁰ GPM 0.9 0.85 3000 1000 0.8 500 300 200 0.7 100 50 0.6 30 0.5 0.4 10 GPM 0.3 5 GPM 0.2 0.1 500 1000 1500 2000 2500 3000 ____3000 \\ 2000 Q = 2000**GPM** $N_{\rm S} = 7590$ Ns 46.2^{3/4} H / Imp = 20 * 2.31 =46.2 ft

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

execed@aucegypt.edu

V9

7590

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

ξ = **0.25**

924

BRAKE HP = 23.2 /0.25 = 97 HP.

Motor HP = 97 * 1.2 = 116 HP

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

167.7

Net Positive Suction Head

NPSH

Examples of Cavitation Damage

EXECUTIVE EDUCATION

- Increase of noise and vibration, resulting in shorter seal and bearing life.
- Erosion of surfaces, especially when pumping waterbased liquids.

Cavitation

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

POSITIVE DISPLACEMENT PUMPS

NPSHA < NPSHR

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

WHAT IS CAVITATIONS PHENOMENON

It is an action of fluid vapor attack on the parts of equipment which produce:

Suction pressure less than **Vapor pressure** of the pumped fluid.

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

This action will cause:

loss of the weakest component element of suction parts material <u>due to</u> bubble explosion on the surface of suction parts causing cavities .

Vapor bubble explosion on

the parts surface could be

60,000 psi.

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

execed@aucegypt.edu

www.aucegypt.edu/business/execed

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

LOST ELEMENTS IN SUCTION PARTS

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

EXECUTIVE

What is Cavitation Effect

1- CENTRIFUGAL PUMPS

EDU

Impeller deterioration Decrease discharge pressure Decrease pump flow rate Increase vibration level Bearings & M/S failure

2- RECIPROCATING PUMPS

Suction valve deteriorations Decrease discharge pressure Decrease pump flow rate Spring Rupture Cylinder Head Damage

1- NET POSITIVE SUCTION HEAD *REQUIRED*

YOU CAN GET FROM PUMP MANUAL

2- NET POSITIVE SUCTION HEAD AVAILABLE

YOU CAN CALCULATE FROM PUMP SITE

3- TO AVOID SUCTION CAVITATION

NPSHA > NPSHR

www.aucegypt.edu/business/execed

What is the parameters affecting NPSHA

SUCTION PIPE LENGTH SUCTION PIPE DIAMETER LIQUID SPECIFIC GRAVITY **INTERNAL SURFACE OF SUCTION PIPE** LIQUID SURFACE ALTITUDE VAPOR CONTAMINATION SUCTION PIPE LEAKS SUCTION PRESSURE LIQUID TEMPERATURE LIQUID VISCOCITY LIQUID VAPOR PRESURE

Shorten The Suction Pipe Length Increase Suction Pipe Size Decrease Suction Liquid Temp. Decrease Suction Negative Altitude Increase Suction Positive Altitude Stop The Piping Suction Leaks Renew The Suction Pipe

NET POSITIVE (+) SUCTION HEAD

Ps

c
sec.

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

execed@aucegypt.edu

Pvs

V

Ζ

 The Suction Gauge Pressure

Not

Pvs

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

execed@aucegypt.edu

Ζ

NPSHA =
$$Z + \frac{V^2}{2g} + \frac{\{(Pvs + Pa) - Vp\} 2.31}{Sp.gr}$$
 - hL

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

IF The Suction pressure is known

NPSHA =
$$Z + \frac{V^2}{2g} + \frac{\{P_{sava} - V_p\} 2.31}{Sp.gr} - hL$$

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

If The Suction pressure is known

2

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Centrifugal Pumps Losses

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

- 1- Heat up a little of water in a pot up to boiling point 100 C (valve 1 is opened)
- 2- Take off the heating source, simultaneously close valve 1.

www.aucegypt.edu/business/execed

- **3- During cooling down, Start to record the P Gauge relevant to Temp.**
 - 4- Apply Absolute pressure Equation .

5- Record the Absolute Liquid vapor pressure.

Temp C	100	95	90	80	70	15
P Gauge	0	- 0.1	- 0.3	- 0.5	- 0.7	- 0.98
Vapor Pressure	1	0.9	0.7	0.5	0.3	0.02

www.aucegypt.edu/business/execed

Crude oil level is 8 feet above center line of a pump, Vessel pressure is Atmospheric Vp is 4 psia Sp gr. is 0.8 Friction loss : 12 ft of liquid Atmospheric pressure is 14.7 psia (Neglect velocity head)

Solution NPSHA = Z + $\frac{\{ (Psv + Pa) - Vp \} 2.31}{Sp.gr} = 8 + \frac{\{ (0 + 14.7) - 4 \} 2.31}{0.8} - 12$ = 8 + 31 - 12= + 27 (ft)

Compare with NPSHR

www.aucegypt.edu/business/execed

EXECUTIVE

PUMPS AFFINITY LAWS

IF THE PUMP SPEED CHANGES FROM N_1 to N_2

THE FLOW RATE WILL BE

EDUCATION

THE DISCH PRESS. WILL BE

THE HORSEPWER WILL BE

 $\frac{2}{2} = \left[\frac{N_2}{N_1}\right]^3$

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

- Find the flow rate, head and power for a centrifugal pump that has increased its speed $N_1 = 1000 \text{ rpm}$ TO $N_2 = 1100 \text{ rpm}$
- Given data:

$$HP_1 = \underline{123 \text{ kW}}$$
 $H_1 = \underline{100 \text{ m}}$ $Q_1 = \underline{1 \text{ m}^3/\text{s}}$

$$Q_{2} = \frac{n_{2}}{n_{1}} \cdot Q_{1} = \frac{1100}{1000} \cdot 1 = 1.1 \text{ m}^{3}/\text{s}$$
$$H_{2} = \left(\frac{n_{2}}{n_{1}}\right)^{2} \cdot H_{1} = \left(\frac{1100}{1000}\right)^{2} \cdot 100 = 121 \text{ m}$$

$$HP_2 = \left(\frac{n_2}{n_1}\right)^3 \cdot HP_1 = \left(\frac{1100}{1000}\right)^3 \cdot 123 = 164 \ kW$$

www.aucegypt.edu/business/execed

	PUMPS
AFF	TINITY LAWS
Initial N ₁ or D ₁	1000
New N ₂ or D ₂	1500
Initial Q1 Flow rate	120
Initial P1 Pressure	10
Initial HP1 Horse power	100
New Q2 Flow rate	180
New P2 Pressure	23
New HP2 Horse power	338
$\mathbf{N} = \mathbf{PUMP} \mathbf{RPM}$	
\mathbf{D} = pump impeller diame	CTER

www.aucegypt.edu/business/execed

ROTARY PUMPS

- Rotary pumps provide constant flow over varying pressures
- Flow is directly proportional to speed.
- Rotary pumps can handle solids (e.g., cherries and olives), slurries, and a variety of liquids. If wetted, they offer self-priming performance.
- They also offer continuous and intermittent reversible flows and can operate dry for brief periods of time.

- Flow is relatively independent of changes in process pressure, too, so output is constant and continuous.
- As a general rule, rotary pumps require very little maintenance.
- Rotary pumps deliver high pressure liquid without the pulsations that occur in reciprocating pumps.
- Pressure relief should be installed in the discharge line before the discharge valve. If the discharge valve is inadvertently closed, excessively high pressures could be produced, which could cause damage to the pump or piping.

Basic Features

- Gear pumps use close running clearances to:
 - Seal suction from discharge pressure
 - Enable self-priming
 - Provide increasing volumetric efficiency with increasing viscosity

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

External Gear Pump

- External gear pumps are a popular pumping principle and are often used as lubrication pumps in machine tools, in fluid power transfer units, and as oil pumps in engines.
- External gear pumps can come in single or double (two sets of gears) pump configurations with spur, helical, and herringbone gears.
- External gear pumps have close tolerances and shaft support on both sides of the gears.
- This allows them to run to pressures beyond 200 BAR, making them well suited for use in hydraulics.

External Gear Pump

- With four bearings in the liquid and tight tolerances, they are not well suited to handling abrasive or extreme high temperature applications.
- Tighter internal clearances provide for a more reliable measure of liquid passing through a pump and for greater flow control.
- Because of this, external gear pumps are popular for precise transfer and metering applications involving polymers, fuels, and chemical additives.

External Gear Pump

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Rotary Vane Pump

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Rotary Vane Pump

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

ROTARY PUMPS

<u>External Gear</u>

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

THREE LOBE PUMPS

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Rotary Twin-lobe Pump

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

TWO LOBE PUMPS

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Diaphragm pump

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Internal Gear

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

TIMING GEAR FUNCTION

1- TRANSMIT MOTION

TO OTHER ROTOR

EXECUTIVE EDUCATION

2- KEEPS NO CONTACT BETWEEN ROTORS

3- PREVENT WEAR BETWEEN ROTORS

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

RECIPROCATING PUMPS

Reciprocating Pump

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Reciprocating Pump

PRESSURE **RINGS RIDER RINGS**

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Reciprocating Pump

EXECUTIVE EDUCATION

Single Plunger Pump

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Reciprocating Pump

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Reciprocating Pump

Duplex Pump

PRESSURE

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed © Copyright 2015 Executive Ec

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Triplex Pump

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Reciprocating Pump

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Vacuum Pump

Vacuum Pump

LIQUID RING Compressors

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Rotor with Fixed Vans

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Pump Cover

www.aucegypt.edu/business/execed

A

.

A

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

execed@aucegypt.edu

Side View

Fill liquid volume According to manual instruction

		1

Side View

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Side View

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Fill liquid volume According to manual instruction

This port is connected to pump discharge

Due to centrifugal force, a liquid ring will be formed

This port is Connected to pump suction

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Seal Less Pumps

Mag Drive Pumps

Seal Less Pumps

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Thrust Bearing Details

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Titan 130 Thrust Bearing

EXECUTIVE EDUCATION

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

Active Thrust Bearing

100

www.aucegypt.edu/business/execed

•••••• Сорупан: 2013 Блессино Баасанон — эсноог ог Базинску гис Атенсан-Онгоскку тосано. Ан Кизик-Кезенсен-

Inactive Thrust Bearing

(31) (31) (31)

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

Radial Tilt-Pad Bearing

EXECUTIVE EDUCATION

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

EXECUTIVE EDUCA

SCHOOL OF **BUSINESS**

Oil Wedge Effect

Friction Effect

Shaft

www.aucegypt.edu/business/execed

© Copyright 2015 Executive Education – School of Business The American University in Cairo. All Rights Reserved

RADIAL TILTING PAD BEARING

www.aucegypt.edu/business/execed

8/29/2023

© Copyright 2015 Executive Education - School of Business The American University in Cairo. All Rights Reserved

BY

Ha

ssan

execed@aucegypt.edu

V