

TYPES OF MEMBRANES

MIDUATER

- *** MICROFILTRATION (MF).**
- **& ULTRAFILTRATION (UF).**
- *** NANOFILTRATION (NF).**
- REVERSE OSMOSIS (RO).

MICRO FILTRATION

ULTRA FILTRATION

NANO FILTRATION

REVERSE OSMOSIS

ADVANTAGES OF R.O

Removal of Dissolved Compounds
 Low Energy Requirements
 Minimal Use of Chemicals
 Environmentally Friendly
 Modular

MIDUGTER

DEFINITION AND COMMON TERMINOLOGIES

MEMBRANE: A selective barrier between <u>TWO PHASES</u> that allows one phase to pass through, while the other phase will be rejected.

SELECTIVITY : The ability of the membrane to differentiate between two phases.

OSMOTIC PRESSURE

OSMOSIS: Natural movement of water from a less concentrated solution into a more concentrated solution with respect to the solute across two sides of a semi-permeable membranes.

OSMOTIC PRESSURE: The hydraulic pressure generated naturally by the imbalance of salt concentrations across a semi-permeable membrane.

OSMOTIC PRESSURE

	$\pi \cdot \Omega$ smotic pressure
$\pi = \mathbf{k.C}$	k · Constant [har/(mg/L)
	C: TDS [mg/L]

	TDS	k	π à 25°C
Water quality	[mg/L]	[bar/(mg/l)]	[bar]
NaCl solution	2 000	8,34 x 10 ⁻⁴	1,67
Sea water	35 000	3,59 x 10 ⁻⁴	27,3
Brackish water	2 000	7,79 x 10 ⁻⁴	1,06
CaSO4 solution	2 000	5,31 x 10 ⁻⁴	0,72
			10

Reverse Osmosis (RO): A pressure-driven process developed by man where water is mechanically forced to flow in a reverse direction through a semi-permeable membrane from a solution of high salt content to a solution of lower salt concentration. This reverse flow will not start until the osmotic pressure is overcome

RO Membrane Separation Mechanism CROSS-FLOW PROCESS

CROSS FLOW IN A SPIRAL ELEMENT SHEET

Cross Flow in A Spiral Wound Element Removes Rejected Material

IMPORTANT MEMBRANE CHARACTERISTICS

Water

Salt

SEPARATION THEORY BY A RO MEMBRANE

Two Transport Models exist:

- 1. Physical Pore Size.
- 2. Chemical Diffusion.

Current scientific thinking suggests that the physical (porosity) and chemical (diffusion) nature of the semi-permeable RO membrane determines its ability to allow for the preferential transport of water over salt through the membrane.

MIDUATER

TYPES OF MEMBRANE - Material

TWO TYPES OF MEMBRANES ARE MANUFACTURED :

MIPULATER

• CELLULOSE ACETATE.

• COMPOSITE.

Made of three different materials

- 1. Polyester support Layer.
- 2. Polysulphone interlayer.
- 3. Active Layer on top.

CHEMICAL COMPOSITION OF TYPICAL RO MEMBRANE

COMPOSITE PA MEMBRANE CROSS-SECTION

MAGNIFIED VIEW OF POLYAMIDE MEMBRANE

PA Thickness = 0.15 micron **RO** membrane Side View POLYAMIDE **2000 X Magnification** 003 SOR **POLYSULPHONE SUPPORT** 5

MEMBRANE CONFIGURATIONS

• FOUR TYPES OF MEMBRANE CONFIGURATION :

MIDUATER

- Spiral Wound.
 Hollow Fiber.
- Plate & Frame.
 Tubular.

SPIRAL WOUND MEMBRANES

 In a spiral wound configuration two flat sheets of membrane are separated with a permeate collector channel material to form a leaf. This assembly is sealed on three sides with the fourth side left open for permeate to exit. A number of these assemblies or leaves are wound around a central plastic permeate tube.

RO SPIRAL WOUND ELEMENT SCHEMATIC

THIN FILM COMPOSITE MEMBRANE

SPIRAL WOUND ELEMENTS & PRESSURE VESSELS

 Pressure Vessels: Spiral wound elements are installed in pressure vessels. Up to seven elements can be connected in series in one pressure vessel.

•Stages: Pressure vessels are arranged in connected parallel groups with a common feed called Stages.

•<u>Pass</u>: Stages are connected in series where the concentrate of the 1st stage is collected to become the feed to the next stage to make a Pass.

•Pyramid Design: The number of pressure vessels contained between two subsequent stages is about a 2:1 ratio. This is to maintain an optimal feed flow velocity in the element feed channe along the train.

SINGLE STAGE RO WITH CONCENTRATE RECIRCULATION

TWO STAGE RO SYSTEM

TWO STAGE RO SYSTEM AT 75% RECOVERY

PARAMETERS INFLUENCE MEMBRANES EFFICIENCIES.

MIDUATER

Net Driving Pressure (NDP)

NDP – Net driving pressure : Driving force of the water transport(Flux) through the membrane.

PRESSURE α **PRODUCTIVITY**

Element Housing

Water Transport: The rate of water passage through a semi-permeable membrane is proportional to NDP and is a function of :

- 1. The type of membrane used.
- 2. NDP (Net Driving Pressure).

$Qw = A \times NDP$

where: Qw = rate of water flow
 A = unique constant for each membrane
 NDP = feed psi - osmotic psi - product psi

MIDUGTE

Salt Transport: The rate of salt flow across the membrane is proportional to the salt concentration differential and is a function of:

- 1. The type of membrane used.
- 2. Salt (or TDS) concentration.

Qs = B x (delta C)

- where: Qs = Flow rate of salt thru membrane
 - B = unique constant for each membrane type

delta C = salt concentration differential across the membrane

RO Salt Rejection

RO Permeate Quality is based on:

- 1. The amount of salt that passes through the membrane.
- 2. The amount of water that passes through to dilute the salt.

- % Salt Leakage: (Product TDS / Feed TDS) x 100%
- % Salt Rejection: 100% (% Salt Passage)

At 50 % recovery, reject TDS is 2 times higher than feed TDS At 67 % recovery, reject TDS is 3 times higher than ed TDS At 75 % recovery, reject TDS is 4 times higher than ed TDS At 80 % recovery, reject TDS is 5 times higher than feed TDS At 90 % recovery, reject TDS is 10 times higher than feed TDS

Seawater Salinity versus Recovery

FLUX : RATE OF PERMEATE TRANSPORTED PER UNIT OF MEMBRANE AREA.

SELECTING FLUX RATE

1. Flux rate depends on feed water type and degree of fouling potential.

2. Lead element flux is critical when TOC or particle fouling is likely.

MIDUATER

TYPICAL FLUX

DUGTE

Reverse osmosis

Typical flux (l/h/m2)

Sea water (30 000 - 50 000 mg/L) Brackish water (100 - 10 000 mg/L) 13-20
27-34 - Well water
20-29 – Surface Water
36-42

RO Permeate

HYDRADAULIC FLOW IN SWRO VESSEL

EFFECT OF RECOVERY ON BRINE FLOW

Flow per Element, Brackish Water (2100 mg/l TDS, 32 C, 21.4 lmh)

Factors affecting membrane performance

CONCENTRATION POLARISATION.

CONCENTRATION POLARIZATION

Concentration Polarization (CP):

Build-Up of boundary layer of salts near the membrane surface in which the salt concentration there exceeds the salt concentration in the bulk solution.

CONCENTRATION POLARIZATION

Effects of Higher Concentration Polarization

Increases Osmotic Pressure at the membrane surface due to higher TDS concentration. This in turn reduces the permeate flow by reducing the available NDP.

Increases Salt Passage through the membrane due to the higher TDS concentration at the membrane surface.

Increases probability of membrane scaling due to exceeding solubility of sparingly soluble salts at the membrane surface.

WHAT IS FOULING ?

ACCUMULATION OF INORGANIC PARTICLES, COLLOIDS, MICROORGANISMS & ORGANIC SLIMES ON SURFACE OR INTO PORES OF THE MEMBRANES.

WHAT IS THE ROOT CAUSE OF MEMBRANE FOULING ?

TWO TYPES

- SURFACE (TEMPORARY) FOULING.
- PORE (PERMANENT) FOULING.

- SURFACE (TEMPORARY) FOULING
- FOULANT APPEARS AN EVENLY DEPOSITED LAYER ON THE MEMBRANE SURFACE.
- CAN BE REMOVED BY CLEANING SOLUTION.
- PERMEATION RATE OF MEMBRANE CAN BE REGENERATED BY CLEANING.

MIDUATER

PORE (PERMANENT) FOULING

- Particulate matter diffuses into the membrane.
- Could be caused by the poor quality of the feed water.
- Uneven distribution of the foulant and compression of the separation zone.

MIDUUATER

- Flux cannot be regenerated by cleaning.
- Determines the lifetime of the membrane.

- EFFECTS OF FOULING IN REVERSE OSMOSIS PLANTS :
- > INCREASE IN FEED PRESSURE.
- INCREASE IN DELTA PRESSURE.
- REDUCTION IN PERMEATE FLOW RATE.
- REDUCTION IN PERMEATE QUALITY.
- INCREASE IN CLEANING FREQUENCY.
- INCREASE IN WATER PRODUCTION COSTS.

TYPES OF FOULING

Particulates

Biological

Colloidal

Scale

Scanning Electron Micrographs

Fouling Decreases Membrane Productivity

BIOLOGICAL FOULING : Loss in productivity throughout the system

Causes.....

- Microbacterial Contamination Of The Feed Water.
- Microbes In The System (e.g. after carbon filter).
- System Lay-Up.
- Biocide Application.
- Contamination In Dosing Tanks

ACCUMULATION OF BIOFILMS OCCURE IN FOUR STAGES :

1. Adsorption of organic matter resulting in conditioned matter.

MIDUATER

- 2. Transport of microbial cells to the conditioned surface.
- 3. Adhesion of microbial cells.
- 4. Biofilm development.

How Can I Reduce Fouling in My RO System ?

III A TE

- Identify Bio-Foulant and Eliminate Source.
- Effective Design Of Pre-Treatment System.
- Regular Disinfections/Sanitizing Of System.
- Frequency Of Biocide Application.

Chemical Prevention of Biofouling.....

> HYDREX[™] 4202

PRODUCT : **HYDREX[™] 4202**

Based on DBNPA (2,2, DIBROMO-3-NITRILO-PROPRIONAMIDE).

PRODUCT : HYDREX[™] 4202

Characteristics:

- Compatible with the membrane.
- Non- Oxidizing Biocide.
- Fast acting.
- Cost effective .

Dosage Rate : Depends on the severity of the biological fouling.

- Shock Dose
 Continuous dose
 CIP
- : 10 30 ppm for 30 minutes to 3 hours every 5 days.
- : 0.5 to 1 ppm
- : 100-200 ppm of active ingredient for 1 hour (keep pH neutral)

During shock dosing: Permeate should be dumped if it is for a potable water system.

PRODUCT : HYDREXTM 4201

Based on :

PRODUCT : HYDREXTM 4201

- 4 HOURS OF CONTACT TIME (OR MORE).
- BROAD SPECTRUM BIOSTATIC AGENT.
- TARGET: AEROBIC AND ANAEROBIC BACTERIA, FUNGI, AND ALGAE.

MIDUATER

PH RANGE: 6 - 9

COLLOIDAL FOULING Fouling of Front End Of System

Causes.....

- Organic Matter.
- Silica.
- Iron Oxide.

FOULANT : IRON OXIDE :

Iron is dissolved in water as Fe⁺²

 $4Fe^{+2} + O_2 + 10H_2O \rightarrow 4Fe(OH)_3 + 8H^+$

> 1 mg Fe⁺² needs 0.14 mg O_2

Solutions....

Pre-Chlorination to enhance oxidation of Fe⁺².

MIDUGTER

Aeration followed by Filtration.

Fe (III)

FOULANT : SILICA

Fouling of membrane due to Silica deposition occurs due to the following factors:

DUGTER

- High silica concentration in the feed/brine water (Super saturation).
- Conc. polarization next to membrane surface.
- Presence of metal ions and silicate formation at low pH.

Solutions....

PH

- HYDREXTM Antiscalants (HYDREX 4109).
- Reducing Recovery.
- Lime Softening.

How Can I Reduce Colloidal Fouling in My RO System ?

TTE

EFFECTIVE DESIGN OF PRE-TREATMENT SYSTEM.

SDI (< 3 preferred).
Turbidity (< 0.1 preferred).
Particle Counts (<100 of 2 µm particles/ml).

FILTRATION SYSTEM MAY NEED ADJUSTMENT.

Media Selection.
 Coagulant Optimization.
 Filtration Velocities.

Membrane Pretreatment.
 MF is generally 0.1-0.2 micron.
 UF is generally 0.02 micron.

PARTICULATE FOULING

PARTICULATE FOULING : Front End Fouling

Causes

- Suspended Solids.
- Silts.
- Filter media.
- Corrosion Debris.
- Foreign objects.

PARTICULATE FOULING

Surface Damage Caused By Particulate Matter on RO surface

PARTICULATE FOULING

Particulate on Spiral Wound Element

PARTICULATE FOULING

Solution.....

- Identify Foulant.
- Effective Design Of Pre-Treatment System.
- Sedimentation.
- Filtration (cartridge, multi-media etc).
- Good maintenance schedule.

■ Use effective antiscalant/antifoulant - HYDREXTM

III N TE

EXPECTED AVERAGE RAW WATER QUALITY FROM WELL, SURFACE INTAKE AND SECONDARY EFFLUENT

		Surface Water	Secondary
Parameter	Well Water	(Sea Water)	Effluent
Turbidity, NTU	<0.1	< 2	< 2
SDI	< 2	6 - 12	6 –12
Suspended Solids	< 1	< 5	< 20
TOC , ppm	< 3	< 5	< 20
Scaling Potential	Low to High	Low	Low (Except in presence of high concentration of phosphate

Particles and bacteria cause rapid fouling of RO membranes

MEASUREMENT OF FEED WATER FOR SWRO PLANT SDI

Silt Density index : SDI = 100*(1 - t0/t15)/15

IMPORTANCE OF LOW SDI

Causes.

Inorganic Salt Solubility Exceeded in Brine.

Examples :

- Calcium Carbonate. CaCO₃
- Calcium Sulphate. CaSO₄
- Silica.SiO₄
- Barium Sulphate. BaSO₄
- Strontium Sulphate. SrSO₄

Calcium Flouride. CaF

Structure of fouling deposit
Composition of fouling deposit

SOLUBILITIES OF SALTS IN PURE WATER , GRAM/LITRE @ 18 °C

	Na ⁺	Ca ⁺²	Mg ⁺²	K -	Ba ⁺²	Sr+2
CI	360	730	560	330	370	510
SO ₄ ⁻²	170	2	350	110	0.002	0.11
NO ₃ -	840	1220	740	300	90	70
CO ₃ -2	190	0.013	1	1080	0.02	0.011
F -	45	0.016	0.076	930	1.6	0.1

MIDUATER

CALCIUM CARBONATE SCALE:

Common method to judge the scale potential of CaCO_{3:}

1. Langeliar Saturation Index :

 $LSI = PH_{Brine water} - PH_{S}$ (TDS < 10,000 mg/L)

 $PH_s = pH$ @ which concentrate stream is saturated with CaCO₃

 $PH_s = pCa + palk + C$

where

PCa = calcium hardness factor (expressed as ppm CaCO₃) Palk = M alkalinity factor (expressed as ppm CaCO₃,) C = total solids (expressed as ppm at the temperature of the water)

Equation # 1 $(CO_2) =$			
· · · · · · · · · · · · · · · · · · ·	$K_1 x [1 + (2K_2/(H^+))]$		
Equation # 2 (HCO, $-$) –	<u> </u>		
Equation # 2 (100_3) =	1 + (2K ₂ /(H ⁺))		
Equation # $2(00^{-2})$	(TA)		
Equation # 5 $(CO_3^2) =$	2 + ((H ⁺)/K ₂)		1
Equation # 4 $PK_1 = 6.4^{\circ}$	1–1.559 x10 ⁻³ T+ 3.52	x10 ⁻⁶ T ² - 3.07x10 ⁻⁵	P-0.4772I ^P +0.1108I
Equation # 5 $PK_2 = 10.6$	61– 4. 97x10 ⁻³ T+ 1.33	SI x10 ⁻⁵ T ² – 2.624	⁻⁵ P-1.166l ^P +0.3488l
TA : Total Alkalinity,	Equivelant/Liter.		
T : Temperature , I	: Ionic Strength		
K ₁ , K ₂ : First & Second	ionization constants of Cark	onic Acid	
P : Pressure , psig		the second se	
() : Moles/Liter of in	dicated ion.		
PK : Negative Log of	K		

SULPHATE SALTS :

 $CaSO_4$, $BaSO_4$, $SrSO_4$

To avoid precipitation of these salts :

IP_b < Ksp

IP_b : lon product of brine water **Ksp : Solubility product**

To Calculate the ion product of CaSO₄ in concentrate stream :

THE ION PRODUCT IP OF CaSO₄:

 $IP_{Feed} = [Ca]^2[So_4]^2$

IP_{Brine}

where: [Ca], [So₄] = molal concentrations (Mol/L)

To convert concentration of ion from (mg/ltr) to (Mol/L) : Ca (mg/Ltr) [Ca] = 1000 M.Weight - Ca

SO₄ (mg/Ltr) $[SO_4] = \frac{1}{1000 \text{ M.Weight} - SO_4}$

If IP_{Brine} > Ksp , CaSO₄ scaling can occur

IP_{Brine} < Ksp , No Scale

Recovery Limitations: Scaling

	Saturation Limits:	HYDREX [™] Antiscalants		
CaSO ₄	230 %	350%		
SrSO ₄	800 %	3500%		
BaSO ₄	6000 %	12000%		
SiO ₂	100 %	<mark>24</mark> 0%		
CaCO ₃	0	2.8		
CaF ₂	Section 2 and the section of the sec	10000%		
m	DWAT			

CHEMICAL FOULING SCALE FORMATION

PRECIPITATION (CRYSTALLISATION) OF SCALE

CHEMICAL FOULING SCALE FORMATION

SCALE FORMS IN THREE STAGES

CHEMICAL FOULING SCALE FORMATION

Solution....

- Identify Scale.
- Check Water Analysis.
- Calculate Saturation Limits (HYDREXTM Antiscalant Dosing Calculator ASDC).

MIDUNTER

- Use Effective Antiscalant HYDREXTM
- Reduce Recovery (if necessary).

METHODS OF CONTROLING SCALE FORMATION

MECHANISM TO CONTROL SCALE DEPOSITION TYPES OF ANTISALANT

1. THRESHOLD EFFECT

These inhibitors, when used is <u>sub-stoichiometric</u> amount is capable of retard the precipitation of salts from a supersaturated solution. **e.g.**, **Phosphonate-based products**.

2. CRYSTAL GROWTH INHIBITION / CRYSRAL DISTORTION.

These inhibitors distort normal crystal growth and produce an irregular crystal structure with poor scale forming ability.

e.g., polyacrylic acid [CH₂CHCOOH]_n with molecular weights in the 1,500-2,500 range.

3. **DISPERSANCY** :

Dispersants work by placing a surface charge on the crystal. Comparable charges cause the crystals repel one other and are dispersed into the water bulk.

METHODS OF CONTROLING SCALE FORMATION

Common active substances used for scale control :

H+

- : Acid (used as H_2SO_4 or HCI).
- : Polyphosphate.

O₃P-C

 $O-P(O)_2 - O$

(CH₂-CH-COOH)_n

: Phosphonate.

: Polyacrylic acid.

HYDREXTM ANTISCALANT RANG OF PRODUCTS

PRODUCT

TROUBLE-SHOOTING GUIDELINES

Possible Fouling	Possible Location	Pressure Drop	Feed Pressure	Salt Passage
Metal Oxide Fouling (e.g.Fe,Mn,Cu,Ni,Zn	1 st stage lead elements	Rapid increase	Rapid increase	Rapid increase
Colloidal Fouling (organic and/or inorganic complexes)	1 st stage lead elements	Gradual Increase	Gradual Increase	Slight Increase
Mineral Scaling	Last stage	Moderate	Slight increase	Marked
(e.g. Ca, Mg, Ba, Sr)	tail elements	Increase	Signt increase	Increase
Polymerized Silica	Last stage tail elements	Normal to increased	Increased	Normal to increased
Biological Fouling	Any stage, usually lead Elements	Marked Increase	Marked Increase	Normal in Increased
Organic Fouling (descried nDM)	stere	Gradual Increase	- Cre	Decreased
				6

CLEANING PROCESS CONDITIONS

Cleaning and Flushing Flow Rates per RO Pressure Tube (Pressures are not to exceed 60 psi (4 bar) at inlet to tubes.)			
Element Diameter	GPM	LPM	
4-inches	6 to 10	23 to 38	
6-inches	12 to 20	46 to 76	
8-inches	24 to 40	91 to 151	
8.5-inches	27 to 45	102 to 170	

CLEANING PROCESS

R.O CLEAN UP SKID

