Session 4 – "Selecting the Right Pump for the Application"

Covering such topics as when to transition from an OH2 to a BB2; when to consider VS6 pumps; Barrel vs Horizontal Split Case multi-stage pumps.

Scenario A

Process Engineer or Mechanical / Rotating Equipment Engineer

You have preliminary process data for a pump

For example:

200m³/hr, 200m TDH, 5m NPSHA, SG 0.7, Temp 150^oC, 50 Hz What sort of pump will this be? You guess OH2 Are you right?

I am going to give you the tools to be able to check this out & save you getting yourself into trouble.

Scenario B

Sales or Applications Engineer

Your customer (from Scenario A) has phoned you up with the same preliminary data

200m³/hr, 200m TDH, 5m NPSHA, SG 0.7, Temp 150^oC "What sort of pump do I need, just a quick check, don't spend long on it?" What do you do?

Do you immediately plug the duty into your pump selection program and tell your customer the first selection it comes up with?

Size		Speed, rated (rpm)	Motor poles	Bowl Efficiency (%)	Pump Efficiency (%)
SM 6x14 (A) (BB3) CH	A.	1485	4	~	76.19
SM 4x11 (A) (BB3)	X	2960	2	~	75.78
SM 4x11 (D) (BB3) CH		2960	2		75.54
SM 4x9.5 (A) (BB3)		2960	2	-	75.43
🛕 SM 4x11 (C) (BB3) CH		2965	2	1	75.08
🛕 SM 4x11 (C) (BB3) CH		2965	2	8	73.62
AB 8x6x15 C-C (A) CH		1485	4	5	72.86
🛕 SM 4x11 (C) (BB3) CH	1 m	2965	2	2	72.56
SM 4x11 (B) (BB3)		2960	2	a .	71.77

Ę

Size		Speed, rated (rpm)	Motor poles	Bowl Efficiency (%)	Pump Efficiency (%)
4X15J (BB2)		2975	2	-	69.80
4X15JH (BB2)		2975	2	-	69.80
RON 6x14 (A)		2960	2	-	69.68
🛕 JTN 6 x 4 x 9 1/2 (A) (BB3)	$\overline{\mathbb{N}}$	2960	2	-	69.05
AB 6x4x12 (B)	$\overline{\mathbf{x}}$	2960	2	-	68.74
RON-D 6x13 (A) CH	The second se	2960	2	-	68.64
RON-D 6x13 (B) CH		2960	2	-	68.64
SCE 6x4x16 (A) Inducer 1 (OH2)		2960	2	-	66.77
SCE 6x4x16 (A) (OH2)		2960	2	-	66.77

Pump selection programs are STUPID

- They are a great tool but a poor master
- ALWAYS KNOW THE PUMP YOU EXPECT TO SEE BEFORE YOU USE THE PUMP SELECTION PROGRAM

I am going to give you the tools to be able to check this out & save you getting yourself into trouble.

SCE Pump

PARTS LIST				
ITEM	QTY	DESCRIPTION		
102	1	VOLUTE CASING		
161	1	CASING COVER		
211	1	PUMP SHAFT		
230	1	IMPELLER		
330	1	BEARING BRACKET		
360.1	1	BEARING COVER		
360.2	1	BEARING COVER		
411	1	JOINT RING		
423.1	1	LABYRINTH RING		
423.2	1	LABYRINTH RING		
456	1	STUFFING BOX BUSHING		
502	2	CASING WEAR RING		
503	2	IMPELLER RING		
638	1	CONSTANT LEVER OILER		
642	1	OIL LEVEL SIGHT GLASS		
644	2	LUBRICATING RING		
673	2	VENT FILTER		
831	1	VENTILATOR FAN		
832	1	VENTILATOR CAP		
922	1	IMPELLER NUT		

OH2 50Hz 2 Pole

OH2 50Hz 4 Pole

RP

OH2 60Hz 2 Pole

RP

OH2, 60Hz 4 Pole

RP

Benchmark

Ruhrpumpen vs Flowserve

https://www.flowserve.com/files/Files/Literature/ProductLiterature/Pumps/pss-10-5.3-ea4.pdf

Benchmark

Ruhrpumpen vs Sulzer

- Optional triple row thrust bearing and roller radial bearing
- Optional high pressure casing

Ruhrpumpen vs Goulds

http://www.gouldspumps.com/ittgp/medialibrary/goulds/website/Products/3700/3700_reader_spreads.pdf?ext=.pdf

Do you have enough NPSH_A?

- You have established that the pump flow and head falls within the general range for most vendors of OH2 Pumps
- But do you have enough NPSH available?
- Use this simple NPSH/Nss Calculator to check.
- (A copy of this calculator will be sent to all participants when we send out the copy of this Session's slides.)

RP

NPSH / Nss Calculator

Is there a commercially available pump to meet your NPSH requirement?

Enter rated flow, available NPSH, and pump speed below (in the units of your choice).

The calculator will calculate the Suction Specific Speed (Nss) of the theoretical pump that will meet your requirments with a 1m (3ft) NPSH margin.

If you see a Nss value at or below 11,000 (US units) or 12,760 (metric units) then there is probably a pump that will meet your needs

If not, try a lower speed (e.g 1450rpm instead of 2950rpm)

If the Nss is still too high, increase the NPSHA until you DO find a theoretical pump

ENTER DATA	\rightarrow
Flow m3/hr	200
NPSHA (M)	5
RPM	2960

ENTER DATA	¢
Flow (USGPM)	1100
NPSHA (FT)	25
RPM	3550

Theoretical	Nss of a pump to do this duty	with a 1m (or 3ft) NPSH margin	
Single Suction Pump		Single Suction Pump	
m3/hr,m,rpm units	14800	USGPM,Ft,RPM units	11591
USGPM,Ft,RPM units	12759	m3/hr,m,rpm units	13445
	<u> </u>		
Try a slower speed or increa	ase the NPSH available	Try a slower speed or increa	se the NPSH availa
Double Suction Pump		Double Suction Pump	
m3/hr,m,rpm units	10465	USGPM,Ft,RPM units	8196
USGPM,Ft,RPM units	9022	m3/hr,m,rpm units	9507
SUCCESS! There is probably	a suitable double suction	SUCCESS! There is probably a	a suitable double s
nump for your NPSH condition		pump for your NPSH condition	on

$N_{SS} = N_{(RPM)} Q_{(BEP Full Dia)}^{0.5} / NPSH_{(BEP Full Dia)}^{0.75}$ $N_{SS(Metric)} = N_{SS(US)} \times 1.16 \text{ (m}^{3}/\text{hr, m, rpm)}$

ble

uction

So your options are:-

Is there a 4 Pole OH2 selection available?

OH2 50Hz 4 Pole

RP

So your options are:-

- Is there a 4 Pole OH2 selection available
- Can you find a bit more NPSHA?

NPSH / Nss Calculator

Is there a commercially available pump to meet your NPSH requirement?

 $\frac{N_{SS} = N_{(RPM)} Q_{(BEP \ Full \ Dia)}^{0.5} / NPSH}{N_{SS(Metric)} = N_{SS(US)} \times 1.16 \ (m^{3}/hr, m, rpr)}$

Enter rated flow, available NPSH, and pump speed below (in the units of your choice).

The calculator will calculate the Suction Specific Speed (Nss) of the theoretical pump that will meet your requirments with a 1m (3ft) NPSH margin. If you see a Nss value at or below 11,000 (US units) or 12,760 (metric units) then there is probably a pump that will meet your needs If not, try a lower speed (e.g 1450rpm instead of 2950rpm)

If the Nss is still too high, increase the NPSHA until you DO find a theoretical pump

ENTER DATA	¢
Flow m3/hr	200
NPSHA (M)	6
RPM	2960

ENTER DATA	\checkmark
Flow (USGPM)	1100
NPSHA (FT)	25
RPM	3550

Theoretical Nss of a pump to do this duty with a 1m (or 3ft) NPSH margin					
Single Suction Pump		Single Suction Pump			
m3/hr,m,rpm units	12519	USGPM,Ft,RPM units	<mark>11591</mark>		
USGPM,Ft,RPM units	10792	m3/hr,m,rpm units	13445		
SUCCESS! There is probably a	a suitable single suction	Try a slower speed or increa	Try a slower speed or increase the NPSH available		
pump for your NPSH condition	on				
Double Suction Pump		Double Suction Pump			
m3/hr,m,rpm units	<mark>8852</mark>	USGPM,Ft,RPM units	<mark>8196</mark>		
USGPM,Ft,RPM units	7631	m3/hr,m,rpm units	<mark>9507</mark>		
		an an a <u>n an an an an an an an a</u>			
SUCCESS! There is probably a suitable double suction		SUCCESS! There is probably a	a suitable double suction		
pump for your NPSH condition	on	pump for your NPSH condition	on		

Do you have enough NPSH_A?

So your options are:-

- Is there a 4 Pole OH2 selection available
- Can you find a bit more NPSHA?
- Is there a BB2 pump available?

Type BB2

Pump Type BB2

Heavy duty, dual volute, centerlined supported, radial split casing designed to reduce the effects of piping loads, thereby maximizing the life of bearings, seals and wear rings. The single cover casing minimizes alignment problems.

Wide dimensioned shaft sealing chamber fitting for all commercially available designs (single, dual unpressurized and pressurized mechanical seal).

Dynamically balanced, double suction impeller minimizes thrust problems, reduces NPSH requirements and provides smooth operation for longer mechanical seal and bearing life.

Between bearing, stiff shaft design reduces shaft deflection for longer bearing and mechanical seal life

Positive positioned oil rings assure complete oil penetration into the bearing without foaming and thereby extend bearing life. Provisions for oil mist lubrication are standard design.

Labyrinth flingers at each end of the bearing housing provide builtin protection of the lubrication against contamination

Standard finned cooling inserts reduce bearing temperatures on hot services and lengthen bearing life. The insert is made of corrosion-resistant materials to handle the most difficult cooling liquids.

Optional bearing designs and lubrication systems can be customfit to application. Pressure lubrication systems to API 610 or 617 are available.

www.ruhrpumpen.com

Full API Compliant

BB2 50Hz 2 Pole

F

Do you have enough NPSH_A?

So your options are:-

- Is there a 4 Pole OH2 selection available
- Can you find a bit more NPSHA?
- Is there a BB2 pump available?
- Is an inducer acceptable?
- Is a higher Nss impeller acceptable?
- Select a VS6 Pump (vertical barrel pump, low NPSH_R)
- DON'T Select a 3 stage BB3 and lose the project!

BB2 50Hz 4 Pole

RP

www.ruhrpum

BB2 60Hz 2 Pole

RP

www.ruhrpum

BB2 60Hz 4 Pole

F

RP

www.ruhrpum

BB2-2 Stage Pumps

INNOVATION EFFICIENCY QUALITY

BB2-2 Stage Pumps

Available in Single Suction and Double Suction 1st Stage construction.

BB2 – 2 Stage, 50 Hz 2 Pole

F

VS6 Pumps – Zero NPSH_R

The Spacesaver and Costsaver

- You've looked OH2 pumps and at BB2 pumps and you still have an NPSH problem
- Not just an NPSH saver but a space saver too. Around 20% of the floorspace of the equivalent BB2
- And a cost saver too. Less expensive than the equivalent BB2
- One seal, one sealing system
- Once you can persuade your civil engineers to dig a hole you are saving all the way.

Semi Engineered Range Multispeed VS6

F

RP

VS6 – Multispeed – Engineered Range

F

RP

Axially Split Pumps BB1 & BB3

Pipeline Pumps

www.ruhrpumpen.com

Ţ

Axially Split Pumps BB1 & BB3

Limitation from API610 on use of axially split pumps

- 6.3.9 Unless otherwise specified, pumps with radially split casings are required in services for any of the following conditions:
- a) pumping temperature of 200 C (400 F) or higher (a lower temperature limit should be considered if thermal shock is probable);
- b) liquids with a relative density of less then 0,7 at the specified pumping temperature;
- c) liquids at a rated discharge gauge pressure above 10 MPa (100 bar; 1450 psi).

Axial split casings have been used successfully beyond the limits given above, generally for off-plot applications at higher pressure or lower relative density (specific gravity). The success of such applications depends on the margin between design pressure and rated pressure, the manufacturers experience with similar applications, the design and manufacture of the split joint, the user's ability to correctly remake the split joint in the field. The purchaser should take these factors into account before specifying an axial split casing for conditions beyond these limits.

- For an excellent article by Simon Bradshaw on this subject, follow this link
- https://www.linkedin.com/pulse/thngs-api-610-got-wrong-part-5-simon-bradshaw/

INNOVATION EFFICIENCY QUALITY

ZM I to III

Axially Split Case, Heavy Duty API 610 Process Pump (BB1)

FLOW

BB1, 50 & 60 Hz, <mark>4</mark> Pole

RP

Axially Split Multistage Type BB3

Axially Split Type BB3

Interstage Bolting ensures gasket compression in this area and prevents erosion caused by fluid washover. It means this design is good for SG as low as 0.4 and pressures to 180 Bar.

Smaller Sizes, 50 & 60 Hz, 2 Pole **BB**3

Ę

BB3 Larger Sizes, 50 & 60 Hz, 2 Pole

F

Double Case Pump Type BB5

www.ruhrpumpen.com

Double Case Pump Type BB5

Pull-out Design

50 & 60 Hz, 2 Pole

BB5,

SELECTION CHART A-LINE

2 POLES

<u>BB5</u>

FLOW