

برنامج المسار الوظيفي للعاملين بقطاع مياه الشرب والصرف الصحي

دور الكيماويات في المعالجة

المحتوى

مراحل عملية التنقية بمحطات المياه انواع المروبات تحضير المحاليل إضافة الجرعات التنديف الترسيب منظومة حقن الشبة طلمبات حقن الشبة تخزين الكيماويات الكلور تعليمات التشغيل والأمان الخاصة بمخزن الكلور نظام الحماية والأمان الإسعافات الأولية لمصاب غاز الكلور

مراحل عملية التنقية بمحطات المياه

- 1. اعمال التنقية وتشمل ازالة الشوائب والطحالب بالترسيب باستخدام المروبات والكلور المبدئي وكذلك ازالة المواد الدقيقة والكائنات الحية الدقيقة بالترشيح.
 - ٢. اعمال التطهير بغرض القضاء على البكتريا والكائنات الحية الدقيقة المتبقية وذلك بإضافة الكلور النهائي.
 - ٣. اعمال التخزين والتوزيع بتجميع المياه المنقاه في خزانات ارضية ثم ضخها لشبكة التوزيع بواسطة طلمبات الضغط العالى او طلمبات المدينة.

كما تستخدم عملية التهوية للتخلص من الروائح ولأكسدة بعض المواد، ولإزالة الحديد والمنجنيز من المياه

وعليه فالترويب والتنديف عملية ضرورية في معالجة المياه، ويرجع ذلك أساساً إلى وجود هذه الجسيمات الدقيقة المعلقة في الماء وغير القابلة للترسيب في وقت مناسب، ولكن يمكن تحويلها إلى أجسام أكبر وأثقل وزناً بواسطة إضافة مروبات كيماوية (Coagulants)وخلطها مع الماء.

وتحمل هذه الجسيمات الدقيقة شحنة كهربائية سالبة، وبالتالي يحدث تنافر بينها لتماثل شحناتها، وهكذا تبقى متباعدة عن بعضها، أي معلقة في الماء لذلك تستخدم المروبات لتساعد على تجميع هذه الجسيمات وترسيبها بسرعة

انواع المروبات:

تستعمل مواد كيماوية ((Coagulantsفي عمليات ترويب المياه، من أهمها:

- •سلفات (كبريتات) الألمونيوم (الشبه).
 - •كلوريد الحديديك.
 - •سلفات (كبريتات) الحديديك.
 - •سلفات (كبريتات) الحديدوز والجير

كما تستعمل مواد أخرى كمساعدات مروبات من أهمها:

- •السيليكا المنشطة (سليكات الصوديوم).
- •عوامل التثقيل (مثل طين البانتونايت).
 - •البولي الكتروليتات.

وتتم عملية الترويب بإضافة مادة أو أكثر، حسب خواص المياه ومكوناتها، وتؤثر درجة قلوية المياه تأثيراً مباشراً في كفاءة الترويب وجرعة المادة المروبة، وكل مادة من هذه المواد لها درجات معينة من ال PHتكون كفاءتها خلالها أكبر ما يمكن.

والشبة هي أكثر مواد الترويب استعمالاً، وهي تتفاعل مع القلوية الموجودة في الماء طبيعياً أو القلوية المضافة (إذ يجب توفير مستوى معين من القلوية لحدوث التفاعل) مكونة جسيمات ندفية جيلاتينية هلامية القوام من أيدروكسيد الألومنيوم، والتي لها خاصية تجميع المواد العالقة.

"سلفات الومنيوم + بيكربونات كالسيوم= ايدروكسيد ألومنيوم + سلفات كالسيوم + ثاني اكسيد الكربون"

تحضير المحاليل

- يتم إذابة وتخفيف المروبات (أو مساعداتها) بالمياه بمحطة التنقية لتكوين محاليل ذات تركيز يتناسب مع وسيلة الإضافة المتاحة قبل إضافتها للمياه الخام
- في المحطات الكبرى يتم تخصيص مبنى للكيماويات مستقل لتحضير وتجهيز محاليل الترويب (الشبه) يشمل أحواض الإذابة، طلمبات الحقن، شبكات مواسير ووسائل الإذابة وسيور ناقله وأوناش وخزانات للتخزين المؤقت.
 - تشمل التجهيزات الكاملة لتغذية المروبات على خزانات لتحضير المحاليل تستعمل لخلط وتخفيف المواد الكيماوية، طلمبات نقل، وخطوط مياه التخفيف وخطوط مواسير المحاليل، وموازين مختلفة، ومعدات تقليب وخلط.
 - تتم عملية إذابة الشبه إما ميكانيكيا أو باستخدام التقليب بالهواء.
 - يجب أن تكون كافة التجهيزات المستعملة لتحضير وتجهيز وضخ وتخزين كيماويات المعالجة (الشبة) مصنوعة من مواد خاصة تقاوم تأثير هذه الكيماويات.

عند إذابة أو تخفيف المروب يجب معايرته وضبط التركيز ويتم استخدام وإضافة محلول المروب للمياه الخام عند نقطة الحقن (في غرفة الخلط السريع).

وتستخدم للإضافة عادة طلمبات حقن الشبه "طلمبة التغذية بالمحلول" وأكثر أنواع الطلمبات شيوعاً هي طلمبة المعايرة ((Dosing Pump وتسمى كذلك لأنها تضخ مع كل شوط (مشوار أو لفة) حجما معينا معايراً بدقة من المحلول. ومن الأنواع التي تستعمل على نطاق واسع طلمبة المعايرة ذات الغشاء المرن (Diaphragm) أو ذات المكبس (Plunger)وكلتاهما تدار كهربائيا ولها سرعات أو مشاوير متغيرة ويمكن ضبطها يدويا أو أوتوماتيكيا أثناء إيقافها أو دورانها

الخلط (التقليب) السريع

ويعنى بها خلط محلول المروب (الشبة) المضاف إلى المياه الخام العكرة. ويعتبر الخلط أو التقليب السريع من أهم خطوات عملية الترويب فهو ضروري جدا لتوزيع المروب (الشبه) توزيعا منتظما في كل أجزاء المياه. والتلامس الأول للمروب (الشبه) مع المياه الخام تعتبر أكثر الفترات الزمنية حرجاً في عملية الترويب بأكملها، ذلك أن تفاعل الترويب يحدث بسرعة وفي جزء من الثانية، ولذلك فمن الضروري أن يتلامس المروب (الشبه) والجسيمات الغروية فوراً، ويجب تقليب المياه بسرعة لعدة ثوان لضمان تلامس جزئيات المروب تماما مع الجسيمات العالقة. وهناك أنواع من المعدات والتجهيزات التي تستعمل لتوفير الخلط السريع و تشمل:

□ الخلاطات الميكانيكية

□ الطلمبات والموصلات

□ الخلط الهيدروليكي

هي عملية ملازمة لعملية الترويب (إضافة المروب والخلط السريع) الغرض منها تكبير حجم الندف بالتقليب البطيء لتصادم الجزئيات الدقيقة ببعضها والتصاقها معا تتكون وحدة التنديف من حوض للتقليب البطيء، وحيث أن عملية التنديف أبطأ بكثير من عملية الخلط السريع فإن حوض التنديف أكبر نسبيا.

ونظرا لأن الندف ((Flocs هشة تماما فلذلك يجب أن يجرى التقليب ببطء وبسرعة تصرف بطيئة بما لا يفتت الندف ولا يكسرها.

الخواص التى تؤثر على عملية الترويب والتنديف

درجة الحرارة:

درجة التأين الإيدروجيني :pH

القلوية:

العكارة:

عملية الترسيب تلي عملية الترويب / التنديف، وبحدوث هذه العملية تتم عملية الترويق، وتتم بإزالة المواد الصلبة القابلة للترسيب والتي تشمل الرمل والطمي والحصى والرواسب الكيميائية والملوثات والندف، وتتم في حوض الترسيب تهيئة المياه المروقة للدخول إلى المرشحات لإجراء عملية الترشيح.

عملية الترسيب ذات الكفاءة العالية تساعد على إنتاج مياه مروقة بأقل عكارة ممكنة وتقلل إلى حد كبير من المواد العالقة التي يجب أن تزيلها المرشحات وبالتالي تساعد على زيادة ورفع كفاءة عملية الترشيح.

تجري عملية الترسيب (طبقا لتصميم محطة التنقية) في أحواض الترسيب أو في حيز الترسيب في المروقات وهي ذات تصميمات وأشكال مختلفة قد تكون مستطيلة أو مربعة أو دائرية وغالبا ما تكون المروقات الدائرية ذات تغذية في مركزها.

العوامل التي تؤثر في عملية الترسيب

- -حجم الحبيبات وطريقة توزيعها فكلما زاد حجمها ووزنها زادت كفاءة الترسيب فشكل الحبيبات كلما اقترب شكلها من الشكل الكروي كان ترسيبها اسرع واكفأ كثافة الحبيبات فكلما زادت كثافتها زادت كتلتها بالنسبة لحجمها وزادت سرعة رسوبها وبالتالى كفاءة الترسيب
- -درجة حرارة الماء كلما ارتفعت درجة حرارته قلت كثافته ولزوجته وبالتالي زادت سرعة الرسوب وزادت كفاءة الترسيب
 - -الشحنة الكهربية للجسيمات والتي تكون دائما سالبة وعند معالجة المياه بالشبة موجبة الشحنة يحدث تجاذب بين الجسيمات الموجبة والسالبة مما يساعد على ترسيبها وزيادة كفاءة الترسيب.
 - -سرعة سريان الماء في الحوض كلما قلت سرعته زادت كفاءة الترسيب.
 - -مدة بقاء الماء في الحوض (مدة المكث) كلما زادت المدة زادت كفاءة الترسيب
 - مدة المكث = حجم حوض الترسيب معدل التصرف على خلال الحوض
 - -النسبة بين طول وعرض حوض الترسيب في الاحواض المستطيلة وذلك لإقلال وجود مناطق راكدة عند زيادة عرض الحوض.

إزالة الروبة:

تتجمع الروبة مع إتمام عملية الترسيب، ويجب أن يتم إزالتها دوريا للأسباب الاتية:

- منع تداخلها مع المياه المروقة وإعادة تعكيرها.
- منع تكائر البكتريا التي تسبب طعما ورائحة غير مقبولين للمياه.
- تفادى شغل حيز كبير من الحوض ، يخفض من كفاءة تشغيله ، مع انخفاض نوعية المياه المنتجة لانخفاض مدة المكث

وتتم عملية إزالة الروبة من المروقات (أو أحواض الترسيب) طبقاً للتصميمات المختلفة بها سواء بالطرق اليدوية أو الميكانيكية أو هيدروليكيا (كباري كسح الروبة – أو أنابيب تجميع الروبة

منظومة حقن الشبة

تتكون منظومة حقن الشبة عادة بالمحطات من العناصر الآتية: 1 خزان الشبة المركزة (أو خزان التذويب في حالة استخدام الشبة الصلبة)

٢ منظومة طلمبات النقل والتدوير

٣_خزانات التخفيف

٤ طلمبات حقن الشبة (والمعدات المساعدة وتشمل محابس الأمان وخامدات النبضات)

ه خطوط الحقن

٦ نقطة الحقن

تحضير محلول الشبة في أحواض الإذابة

يتم إضافة الشبة في صورة سائلة او صلبة بتركيز معين للمياه العكرة المطلوب معالجتها وبعد إضافة جرعة الكلور المبدئي بمسافة وزمن كافي لتحقيق التلامس المطلوب بين الكلور والماء أ. في حالة الشبة الصلبة:

يتم نقل الأجولة يدوياً أو ميكانيكيا إلى داخل أحواض خشبية وبها فتحات وفراغات طويلة وتكون مغلقة داخل أحواض الإذابة ذات أحجام معايرة يتم بعدها فتح المياه أعلى الأحواض الخشبية خلال مجموعة فواني أو رشاشات حتى تصل إلى حد معين يتم بعدها تشغيل قلابات مروحية كهربائية لإتمام عملية الإذابة.

ب. في حالة الشبة السائلة:

- يتم نقلها من أحواض التخزين بواسطة طلمبات خاصة إلي داخل أحواض الإذابة من خلال مواسير من البلاستيك القوي ـ u p v c يتم نقلها
- يتم تجهيز جميع أحواض الإذابة بمقياس مدرج لتحديد كمية المياه أو المحلول الموجودة به ويمكن الاستعانة بالأجهزة الحديثة للقياس مع معايرتها بصفة دورية.
- يقوم المعمل بأجراء الاختبارات اللازمة لتحديد درجة التركيز المطلوبة لمحلول الشبة وهي في محطات مياه القاهرة تتراوح بين ١٠% إلي ٢٠% ويقوم المعمل كذلك بالتأكد من تركيز الأحواض بصفة دورية كلما تكررت عملية الإذابة.
 - كما يقوم المعمل بتحديد جرعة الشبة المناسبة طبقا لنتائج الاختبارات الدورية.

طلمبات حقن الشبة

لإتمام عملية حقن الشبة يتم استخدام طلمبات خاصة بذلك ويوجد منها نوعان رئيسيان هما:

ذو الغشاء أو الرق (الدايفرام)

ويتميز بوجود رق أو غشاء مرن وهو الذي يدفع السائل (الشبة المخففة) إلى المروقات لمعالجة المياه. وهذا النوع على اتصال مباشر أو ملامسة للمادة الكيميائية المضافة (السائل المخفف).

نظرية تشغيل الطلمبة ذات الغشاء أو الرق وهي نفس الحركة الميكانيكية للطلمبات ذات المكبس ماعدا الجزء النهائي وهو مكون من ثلاثة أجزاء رئيسية كالآتي: ممجموعة من صمامات عدم الرجوع للسحب والطرد ممجموعة الطلمبة: وتتكون من دليل غشاء ومانع زيت مبطط ودليل تحكم واسطوانة المكبس.

وعند حدوث الحركة الميكانكية في مشوار السحب بواسطة الكرنك وذراع التوصيل فإنه يحدث تفريغ عن طريق المكبس مما يؤدي إلى فتح صمام عدم رجوع السحب ودخول السائل المخفف إلى الحيز اللازم لكمية التصرف المطلوبة بواسطة الغشاء (الدايفرام). وفي مشوار الضغط يتم قفل صمام عدم رجوع السحب وقتح صمام عدم رجوع الطرد ويضغط المكبس على الغشاء (الديفرام) دافعا أمامه كمية المحلول المطلوبة كما هو موضح بالشكل التالي:

الحركة الميكانيكية للطلمبة ذات الغشاء (الرق)

طلمية حقن الشبة ذات المكبس

ذو المكبس
يتميز ذو المكبس
بتركيبه الذي يتميز
بالبساطة وسهولة
الصيانة بالإضافة
إلى ان هذا النوع
يعطى تصرف عالى

تخزين الكيماويات

- تتوفر المروبات مثل الشبة في شكل سائل او صلب
- يتم تخزين الكيماويات في مناطق جافة جيدة التهوية ذات درجة حرارة مناسبة.
- يتم تخزين الكيماويات الصلبة في عبوات سليمة تخزن فوق منصات بعيدة عن الاماكن الرطبة ووفقا لاشتراطات التخزين السليم
 - يتم تخزين الشبة السائلة داخل خزانات خرسانية او معدنية مبطنة ومغطاة بالكاوتشوك.
 - يتم الاحتفاظ بمساعدات المروبات داخل عبواتها في مخازن مغطاة جيدة التهوية ذات درجة حرارة مناسبة

استلام سيارات الشبة السائلة والصلبة

سيارات الشبة السائلة:

يتم استلام كميات الشبة السائلة الواردة للمحطة بطريقة سليمة ويتم حساب الكمية الواردة فعليا بتكعيب الكمية وقياس التركيز ويقوم المعمل بحساب الحجم والوزن ومطابقته بالوارد بإذن الشبة الواردة.

بمعنى أن يتم الحصول على عينة من الشبة السائلة الواردة للمحطة ويتم قياس الكثافة لها باستخدام جهاز الهيدروميتر ومطابقة النتائج مع الوارد بمستندات الكمية

ثم يتم حساب حجم الشبة الواردة بمعلومية مساحة الخزان السطحية وقياس ارتفاع كمية الشبة الواردة بالخزان ويكون الحجم = المساحة السطحية * الارتفاع

الوزن = الحجم * الكثافة

سيارات الشبة الصلبة

يتم رفع عينات من الشبة الصلبة الموردة ومقارنة النتائج مع كراسة الشروط والمواصفات للشبة المطلوبة وبعد التأكد من مطابقتها يتم توزيعها على مخازن المحطات وتقدير الكمية بواسطة كارت الوزن للسيارة او بعدد الاجولة ووزن الجوال لمعرفة الكمية التي تم توريدها. يستخدم الكلور في محطات مياه الشرب بغرض:

١. التطهير: قتل البكتيريا الضارة والمسببة للأمراض

٢. القضاء على مشاكل الطعم والرائحة

٣. الأكسدة: أكسدة عدد من الشوائب الكيميائية الموجودة في الماء كالحديد والمنجنيز والأمونيا وكبريتيد الهيدروجين

عملية تطهير المياه:

هي أهم خطوة من خطوات معالجة المياه فهي التي تضفي علية صفة الصلاحية وتؤمنه ضد الأمراض المعدية ولا يمكن للترشيح مهما كان بطيئا ان يحجز كل ما في الماء من بكتريا وكائنات دقيقة لذلك كان لابد من وجود طريقة للتخلص من هذه الكائنات الحية التي تسبب الامراض.

العوامل المؤثرة في عملية التعقيم

تتاثر عملية التعقيم بعدة عوامل اهمها:

- درجة تركيز الاس الهيدروجيني PHحيث يسرى مفعول الكلور الحرفي الماء الحمضي او المتعادل بسرعة اكبر منها في الماء القلوي لذا يفضل ان تكون قيمة ال PHللماء اقل من ٥٠٨.
 - ٢ تؤثر العكارة على تغلغل الكلور في الماء الختفاء الكائنات الحية الدقيقة
 داخل جسيمات العكارة فيصعب القضاء عليها
 - ٣. وجود الامونيا العضوية قد يمنع تكوين الكلور الحر المتبقى.
 - ٤. تقل قدرة الكلور على قتل البكتريا في درجات الحرارة المنخفضة.
- ٥. تحتاج عملية التطهير الى فترة تلامس لا تقل عن ١٥ ٢٠ دقيقة للكلور الحر.

يتم إضافة الكلور للمياه بإحدى طريقتين:

- إضافة الكلور بجرعات عالية ثم إزالة الكلور الزائد.
- إضافة الكلور بعد تحديد النسبة بواسطة التجارب المعملية الدقيقة.

الكلور المستهلك:

عند إضافة الكلور للمياه التي تحتوي على مواد عضوية وغير عضوية فإنه يتفاعل معها ويؤكسدها.

ويطلق على هذه العملية "حد الطلب للكلورين".

ويعرف الكلور المستهلك بأنه الفرق بين كمية الكلور المضافة للماء وكمية الكلور المتبقي (الحر والمتحد) في الماء بعد انتهاء فترة التلامس.

جرعة الكلور:

تعرف جرعة الكلور بأنها أقل كمية كلور تضاف إلى وحدة حجم من الماء تكفي للقضاء على الكائنات الحية، وينتج عنها كلور متبقي في حدود معينة (٢.٠ ملجم/ لتر ماء).

ويتم تحديد الجرعة المثلي للكلور عن طريق تجارب معملية حسب نوعية المياه المراد معالجتها.

ويمكن القول أنه: إذا أضفنا كمية الكلورين اللازمة لحد الطلب + كمية الكلورين اللازمة للتطهير فإننا نحصل على ما يسمي بجرعة الكلور.

الكلور المتبقى:

هناك نوعان من الكلور المتبقى:

١ الكلور المتبقى المتحد:

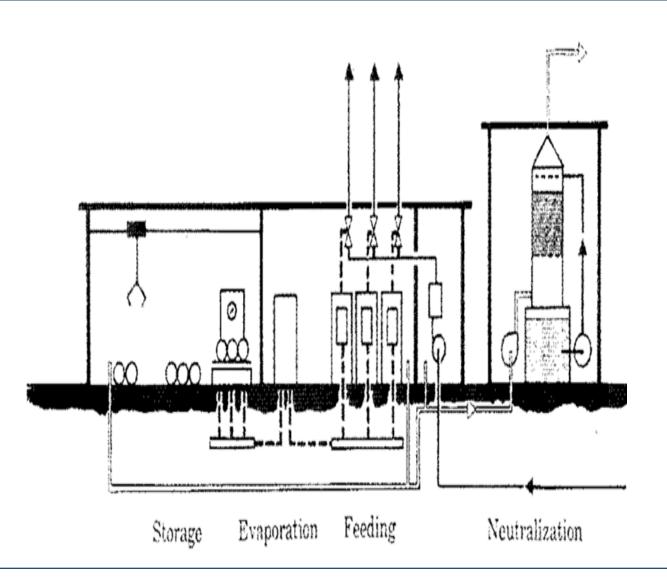
ينتج عن إضافة قدر من الكلور يكفي فقط للاتحاد مع الأمونيا الموجودة بالماء وعلى الرغم من أن تلك البقايا المتحدة لها قدرة أكسدة تفوق قدرة الكلور الحر، إلا أن فعاليتها كمادة مطهرة تقل عن فعالية الكلور الحر

٢ الكلور المتبقى الحر:

ينتج عن إضافة الكلور إلى الماء بالقدر الذي يزيد عن الكلور المتحد وهو أكثر فعالية كمادة مطهرة.

وتتوقف كمية الكلور المتبقي على عدة عوامل أهمها:

١ درجة الحرارة.


٢ الزمن الذي مضي بعد إضافة الكلور.

٣ جرعة الكلور.

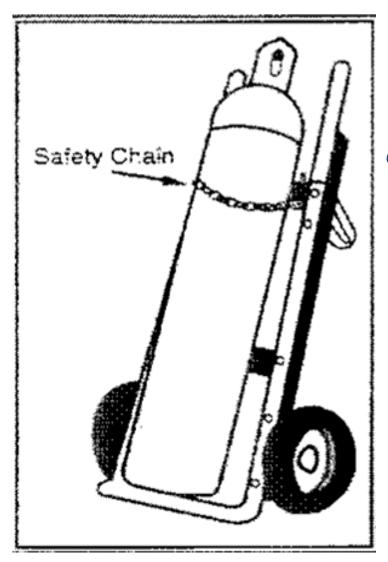
٤ درجة تركيز الأس الهيدروجيني.

٥ كمية المواد والشوائب التي قد تتواجد في الماء.

منظومة الكلور

نظام الكلور: نظام التعقيم والأمان الموجود في معظم محطات تنقية المياه والذي يبدأ من الأسطوانة حتي نقطة الحقن والشكل يوضح الرسم التخطيطي لأجزاء النظام ومحتوياته.

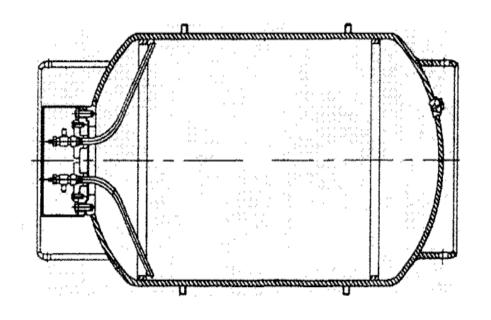
وكما هو واضح من الرسم التخطيطي أن مكونات النظام كما يلى:


١ مخزن أسطوانات الكلور

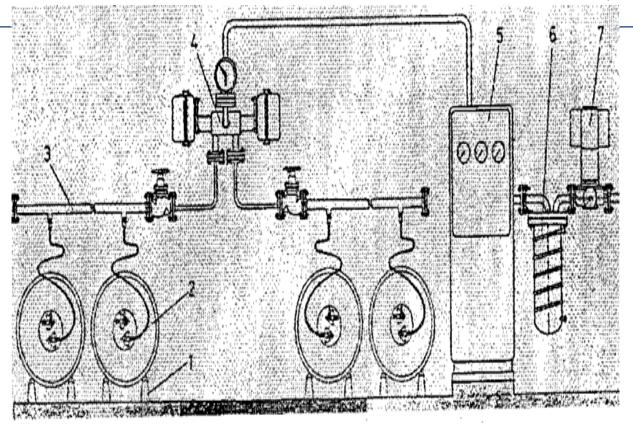
٢ غرفة الأجهزة

٣ غرفة التعادل

خطوط الكلور حتى نقاط الحقن.


تداول وتخزين الأسطوانات سعة ٥٠ كجم:

عند نقل أو تحميل أسطوانات الكلور سعة ، ٥ كجم ينبغي تأمينها وعدم تركها تسقط أو تصطدم بالأسطوانات الأخرى ويستخدم لذلك عربة جريدوية بعجل وسلسلة أمان شكل رقم (٥٤). ويفضل إن أمكن تواجد اثنين من العمال المدربين معاً عند تداول أسطوانات الكلور لتحريكها بأمان بتدويرها (لفها) على حافتها السفلية. هذا ولا ينبغي نزع الغطاء الواقي للأسطوانة إلا عندما تكون معدة لتوصيلها بجهاز إضافة الكلور


تخزن أسطوانات الكلور سعة ، ٥ كجم في وضع رأسي، وترتب بحيث يتطلب تحريك الأسطوانات أقل قدر من التداول ويراعي في مكان التخزين أن يكون جيد التهوية، ومحميا من الأشعة المباشرة للشمس أو من البرودة الزائدة ولحماية الأسطوانات من السقوط تستخدم سلاسل أمان تثبت في الجدار وتوضع حول الجسم الخارجي للأسطوانة وتوضع حول الجسم الخارجي للأسطوانة وتوضع حول الجسم الخارجي للأسطوانة والمحار

الأسطوانات سعة واحد طن:

تصنع الأسطوانة سعة واحد طن من الصلب سمك ٣ مم وملحومة طوليا من الداخل والخارج بلحام كهربي، وتحاط الأسطوانة بإطارين من الحديد لحماية جسم الأسطوانة من الارتطام بالأرض. كما يوجد إطار آخر حول بلفى الأسطوانة للحفاظ عليهما أثناء النقل والتداول، وعدد ٦ طبقات أمان (ثلاث بكل جانب)، ولها صمامان. والفرق الوُحيد بين صمامات ثلك الأسطوانة وصمامات الأسطوانة سعة ٥٠ كجم هو عدم وجود الطبة القابلة للانصهار والطبة مصنوعة من مادة تنصهر عند درجة حرارة ٧٠ ـ ٥٧ م لتحرير الضغط الزائد عند الارتفاع الشديد لدرجة الحرارة. عند وضع الأسطوانات سعة ١ طن في أماكنها، يتم ضبط ومحاذاة الصمامات بحيث يكونا على خط رأسى أحدهما فوق الآخر، وبذلك يكون الصمام العلوى جاهزا لسحب غاز الكلور والسفلى لسحب الكلور السائل

خطوط التغذية وملحقاتها

خطوط التغذية العامة هي خطوط نقل الكلور بدأية من محبس أسطوانة الكلور، حتى نقطة حقن الكلور بخظ المياه (الحاقن)، مارة بكل من (جهاز التحويل ألأوتوماتيكي، المبخرات، الفلتر، مصيدة الرطوية، محبس تخفيض الضغط).

- ١. دعامة حاملة للأسطوانة. ٥. المبخر (في حالة استخدام سائل الكلور).
 - ٢. أسطوانة الكلور ١ طن. ٦. الفلتر ومصيدة الرطوبة.
 - ٣. خط التغذية الرئيسي. ٧. محبس تخفيض الضغط
 - ٤. جهاز التحويل الأتوماتيكي.

تعليمات التشغيل والأمان الخاصة بمخزن الكلور:

أولاً تخزين الأسطوانات:

١. عند تخزين الأسطوانات أو استخدامها يجب عدم تعرضها لأشعة الشمس المباشرة لأنها تعمل على

ارتفاع درجة حرارة جسم الأسطوانة وبالتالي رفع ضغط الغاز داخلها مما قد يؤدي إلى انفجار الأسطوانة.

- ٢. يجب ترك الأسطوانات بعد وضعها على قواعدها أثناء التغيير أو التخزين لمدة زمنية قد تصل إلى ٨
 ساعات قبل استخدامها حتى تستقر درجة حرارة الأسطوانة.
 - ٣. يجب وضع الأسطوانة في مكانها الصحيح بحيث يكون محبس الأسطوانة في وضع رأسي لسهولة التشغيل والصيانة.
- ٤. ينبغي العلم أن الأسطوانة التي تحتوي على أي كمية من الكلور سواء في حالته الغازية أو السائلة. تمثل خطراً دائماً ويجب التعامل معها في حذر وعناية فلا تدع الأسطوانات تسقط على الأرض ولا تجعلها تتخبط في بعضها البعض وكذلك لا تستعمل مغناطيسا حاملاً في نقلها ولا تحاول استخدام حبل أو جنزير لهذا الغرض.
- ه. عند إعادة الأسطوانات الفارغة فلابد من غلق الصمامات وإجراء اختبارات تسرب الكلور عليها والتأكد من أن أغطية محابس الأسطوانات وكذلك الصواميل في مكانها قبل إرسال هذه الأسطوانات الفارغة لاعادة ملئها.
 - آ. يجب مراعاة أن تكون أغطية حماية الصمامات للأسطوانات دائماً في مكانها إلا إذا كانت الأسطوانة في حالة الاستعمال بالفعل وبمجرد أن تفرغ الأسطوانة فلابد من غلق الصمامات فوراً لمنع دخول الماء والمواد الغريبة. ولا ينبغي دحرجة الأسطوانات أو الاعتماد عليها كدعامات أو مساند للأجسام التقيلة أو استخدامها في أي غرض يختلف عن الغرض الأصلي.

ثانياً تشغيل الأسطوانات:

ا يستخدم المحبس العلوي لسحب غاز الكلور والمحبس السفلي لسحب سائل الكلور قبل مروره إلى المبخر ((Evaporator حتي يتحول إلى غاز وإزالة أي نسبة رطوبة في الغاز قبل دخوله لجهاز حقن الكلور المعارات

٢ في حالة استخدام الكلور في حالته الغازية يجب عدم تفريغ الأسطوانة بالكامل حتى لا يتم سحب هواء رطب إلى جهاز حقن الكلور مما يسبب مشاكل بالجهاز.

٣ في حالة استخدام الكلور في حالته السائلة يجب عدم تفريغ الأسطوانة بالكامل أيضاً حتى لا يتم سحب الشوائب المترسبة بقاع الأسطوانة فيؤدي إلى انسداد الأجهزة وخطوط المواسير.

٤ يجب مراعاة أن تفتح صمامات الأسطوانات ببطء ويحظر استخدام أي عدد أو مفاتيح أخري غير تلك التي وردها أو يعتمدها منتجو الأسطوانات.

م يجب توفر معدات طوارئ لإصلاح أماكن تسرب الغاز وتشتمل هذه المعدات على كلابات (أفيزات) وجوانات تسد أماكن التسرب والصمامات التالفة ووسائل أخرى تؤدي نفس المهمة.

آيجب على الفني المسئول عن مراقبة أجهزة الكلور أن يحتفظ في جيبه بزجاجة بلاستيكية صغيرة بها محلول النشادر وهي تشبه زجاجة القطرة فعند رش المحلول على مكان التسرب تتكون سحب بيضاء من كلوريد الأمونيوم فتساعده على اكتشاف مكان التسريب وعلاج الموقف قبل أن يتطور

ثالثاً تجنب ظاهرة الصقيع:

ا. يبقى أن نعلم أن الكلور يوجد في حالته السائلة داخل الأسطوانة نتيجة للضغط، وعندما يفتح ويسمح بمرور الغاز من الصمام العلوي لها يخف الضغط في الأسطوانة ويتحول بعض الكلور السائل إلى الحالة الغازية، ويندفع إلى الخارج خلال الصمامات والوصلات إلى الماسورة المجمعة، أي أن الكلور يؤخذ من الأسطوانات على هيئة غاز يمر خلال الأنابيب ثم يصل إلى جهاز الحقن.

٢. عندما يتحول السائل إلى غاز نتيجة لفتح صمام الأسطوانة، ينخفض الضغط داخل الأسطوانة وتنخفض حرارة السائل نتيجة لذلك، وإذا سحب الغاز بسرعة كبيرة فسوف يقل الضغط بسرعة أيضاً وبناء عليه تنخفض درجة الحرارة بسرعة ولدرجة ظهور الجليد على الجدار الخارجي للأسطوانة وحول الصمام، وقد يؤدي هذا التجمد إلى تعطيل تدفق الكلور من الأسطوانة.

٣. يراعي عند التشغيل أن لا تزيد كمية سحب الكلور من الأسطوانات سعة ٨٠٠ كجم عن ٩ كجم/ ساعة وذلك عندما يكون السحب مستمراً، وللحصول على درجات أعلى من السحب فيمكن توصيل أسطوانات اضافية حسب الطلب، ولا ينبغي تحت أي ظرف من الظروف أن توضع أسطوانات الكلور في حمام مائي ساخن أو تتم تدفئتها بأي طريقة بهدف زيادة السحب من غاز الكلور.

يمكن سحب كميات أكبر من الغاز عندما تستخدم الأسطوانات لفترات تشغيل قصيرة متقطعة بدون التعرض لخطر التجميد وكثيراً ما يمكن الحصول بهذه الطريقة على ثلاث أو أربعة أضعاف الكمية العادية تبعاً لطول فترة التشغيل التي تتم فيها معالجة المياه.

م. يجب مراعاة أنه إذا كانت درجة الحرارة داخل أسطوانات الكلور مرتفعة والكلور في داخلها يتعرض لضغط مرتفع نتيجة لذلك، بناء عليه فسوف يخرج الغاز إلى خط المواسير تحت الضغط المرتفع بينما تكون حرارة خط المواسير ووحدة التحكم أقل من حرارة الغاز في الأسطوانات، لذا فإن غاز الكلور سوف يتحول مرة أخرى إلى سائل بفعل انخفاض درجة الحرارة ولهذا ينبغي مراعاة أن تكون درجة الحرارة في أسطوانات الكلور دائماً أقل منها في المواسير المجمعة وفي وحدة التحكم على الأقل أو تعادلها وتكون في حدود ١٨-٢٠ درجة مئوية ويجب المحافظة على ثباتها.

٦. العلاقة بين الضغط ودرجة الحرارة وكمية الكلور المسحوبة:

مادام هناك كلور في صورة سائلة بالأسطوانة فالضغط داخل الأسطوانة يعتمد فقط على درجة حرارة الوسط المحيط (ولا تعتمد على كمية السائل بالأسطوانة)، حتى يستهلك السائل بالأسطوانة وعندئذ يبدأ الضغط في الانخفاض حتى الدرجة التي يجب أن يستبدل عندها الاسطوانات (غالباً عند ١ بار يتم التغيير بأخري مملوءة).

نظام الحماية والأمان

أولاً أجهزة الحماية الشخصية:

لابد أن يزود الأفراد الذين يعملون في حقل الكلور بنوع مناسب من أقنعة الوقاية والملابس الواقية وأجهزة التنفس الصناعي.

أ) القناع الواقي:

تركيبه:

١ قطعة الوجه

٢ الخرطوم.

٣ المرشح (الفلتر).

٤ الشنطة

الملابس الواقية:

تشمل: ١- القفاز.

٢- المريلة أو البالطو.

جهاز الأوكسجين:

يستخدم للتنفس بدلاً من القناع عند العمل لفترة زمنية طويلة أو في الحالات الحرجة والخطرة جدا والتي لا يستطيع أي إنسان أن يغامر بحياته في عمليات الإنقاذ من خطر غاز الكلور الداهم وهذا الجهاز هو شبيه لجهاز الغطس تماما حيث يمد الإنسان بالأكسجين للتنفس طوال مدة عمله التي تحدد بسعة أسطوانتي الأوكسجين (الهواء).

الإسعافات الأولية لمصاب غاز الكلور

العلاج	الحالة	م
يبعد المصاب عن منطقة التلوث واستلقاؤه في	اختناق في البلعوم أو الزور	1
وضع مريح وليكن على ظهره في مكان دافئ،		
وجعله يتنفس من جهاز الأكسجين إذا كان		
هناك مشاكل في التنفس، ثم محاولة إعطائه		
مشروب ساخن (لبن)، ويتقيؤه بعد ذلك		
لمحاولة ذوبان الكلور من منطقة الزور.		
ينقل إلى المستشفى لأخذ حقن وتوضع له	الكحة الشديدة المستمرة والتنفس	۲
أجهزة تنفس حتي يمكن أن يتنفس بسهولة	السريع (الحالات ٤، ٥ بالجدول	
وتقل الكحة.	السابق)	
إذا أمكن نقل المصاب قبل وفاته كان ذلك	حالات الوفاة (الحالات ٦، ٧	٣
أفضل كمحاولة أخيرة فقد يكتب له النجاة.	بالجدول السابق)	