Absorption Spectroscopy

Absorption Spectroscopy

Why Absorption Spectroscopy?

- Color is ubiquitous to humans
- 1000 x more sensitive than NMR
- Qualitative technique (what is in the solution)
- Quantitative technique (concentrations, ratios, etc.)
- Its easy
- It is inexpensive
- Numerous applications

Absorption Spectroscopy in Action

<u>HPLC</u>

Fig. 3. HPLC chromatogram and UV-vis spectra (inset) of Bromo-Dragonfly. The HPLC trace was detected at 210 nm.

Yellow (pH > 4.4)

Red (pH > 3.2)

Outline

- 1) Absorption
- 2) Spectrum Beer's Law
- 3) Instrument Components
 - Light sources
 - Monochrometers
 - Detectors
 - Other components
 - •The sample
- 4) Instrument Architectures5) UV-Vis in Action
- 6) Potential Complications

Absorption by the Numbers

We don't measure absorbance. We measure transmittance.

• Transmittanc

e:

• Absorbance:

A = -log T = log P_0/P

Beer's Law

The Beer-Lambert Law (λ specific):

Α = ε c l

- A = absorbance (unitless, A = $\log_{10} P_0/P$)
- ε = molar absorptivity (L mol⁻¹ cm⁻¹)
- I = path length of the sample (cm)
- c = concentration (mol/L or M)

Absorption Spectrum

Beer's Law

The Beer-Lambert Law:

A = absorbance (unitless, A = $\log_{10} P_0/P$)

- ε = molar absorbtivity (L mol⁻¹ cm⁻¹)
- = path length of the sample (cm)
- c = concentration (mol/L or M)

Find ε

- 1) Make a solution of know concentration (C)
- 2) Put in a cell of known length (I)
- 3) Measure A by UV-Vis
- 4) Calculate ϵ

Find Concentrations

- 1) Know ε
- 2) Put sample in a cell of known length (I)
- 3) Measure A by UV-Vis
- 4) Calculate C

Beer's Law Applied to Mixtures

$$A_{1} = \varepsilon_{1} C_{1} I$$

$$A_{\text{total}} = A_{1} + A_{2} + A_{3}...$$

$$A_{\text{total}} = \varepsilon_{1} C_{1} I + \varepsilon_{2} C_{2} I + \varepsilon_{3} C_{3} I$$

$$A_{\text{total}} = I(\varepsilon_{1} C_{1} + \varepsilon_{2} C_{2} + \varepsilon_{3} C_{3})$$

Limitations to Bear's Law

The Beer-Lambert Law:

A = ε **c I**

Reflection/Scattering Loss Reflection losses at interfaces Seattle log losses it solution peam, P,

Secttoring Insses Ab

Reflection lesses at mostfaces

- Aggregates

Lamp effects

- Temperature (line broadening)
- Light source changes
- Solvent lensing

Absorbance too high (above 2)

- Local environment effects
- Dimerization
- Refractive index change (ionic strength)

Sample changes

- Photoreaction/decomposition
- Side of the cuvette
- Hydrogen bonding
- Non-uniform through length

$A = -\log T = \log P_0/P$

Absorption Spectroscopy

!)

Instrumentation

Full spectra detection

Single λ detection

Instrumentation

Full spectra detection

- Source
- Sample
- Monochrometer
- Area detector

Single λ detection

- Source
- Monochrometer
- Sample
- "Point" detector
- 1. Light sources
- 2. Monochrometer
- 3. Detectors
- 4. Samples

Light Sources, Ideal

Light Sources: The Sun

Pros:

It's free!

Does not die

Relatively uniform from 400-800 nm

Cons:

Inconsistent

Minimal UV-light

Intense absorption lines

Light Sources: Xe Lamp

Electricity through Xe gas

Pros:

Mimics the sun (solar simulator) It's simple

Cons:

Relatively Expensive Minimal UV-light (<300 nm) Potential Instability

Light Sources: Xe Lamp

Light Sources: Tungsten Halogen Lamp

Halogen gas and the tungsten filament Higher pressure (7-8 ATM)

Pros:

Compact size

High intensity

Low cost

Long lifetime

Fast turn on

Stable

Cons:

Very hot Bulb can explode Minimal UV-light (<300 nm)

"White" Light

Other Light Sources

Separating the Light

Prism

Monochromator: Prism

Monochromator: Prism

Monochromator: Grating

- $\lambda = 2d(\sin \theta_i + \sin \theta_r)$
- λ = wavelength
- d = grating spacing
- θ_i = incident angle
- θ_r = diffracted angle

Monochromator: Grating

Detectors

- high sensitivity
- high signal/noise
- constant response for

λs

fast response time

Single λ detection

Diode

PMT

Full spectra detection

CCD Diode Array

Detectors: Diode

Pigure 15-27 Quantitative Chemical Analysis, Seventh Edition © 2007 W. H. Freeman and Company

n-type (extra electrons)- P or As doped *p*-type (extra holes)- Al or B doped

Forward Bias:

Apply a positive potential holes + e^- = exciton = light Light Emitting Diode

Zero Bias:

Apply 0 potential exciton = holes + e⁻ = current silicon solar cell

Negative Bias:

Apply a negative potential exciton = holes + e⁻ = more current photodetector

Detectors: Diode

0.025 mm wide

Pros:

Long Lifetime Small/Compact Inexpensive Linear response 190-1000 nm

Cons:

No wavelength discrimination Minimal internal gain Much lower sensitivity Small active area Slow (>50 ns) Low dynamic range

- Cathode: 1 photon = 5-20 electrons
- More positive potential with each dynode
- Operated at -1000 to -2000 V

Architectures

D1

D2

D3

D4

D5

 \sim

LOAD

Pros:

Extremely sensitive UV-Vis-nIR 100,000,000x current amplifier (single photons) Low Noise Compact Inexpensive (\$175-500)

Cons:

- No wavelength discrimination
- Wavelength dependent T

Saturation

Magnetic Field Effects

Super-Kamiokande Experiment

- 1 km underground
- h = 40 m, d = 40 m
- 50,000 tons of water
- 11,000 PMTs
- neutrino + water = Cherenkov
 Radiation

Instrumentation

Single λ detection

Full Spectrum Detection

Diode Array

Detectors: Diode Array

Diode

Diode Array

Pros:

Quick measurement

Full spectra in "real time"

Inexpensive

Less moving parts

<u>Cons:</u>

Lower resolution (~1 nm) Slow (>50 ns)

More expensive than a single λ

Detectors: Charge-Coupled Device

Detectors: CCD

Anatomy of a Charge Coupled Device (CCD)

Pros:

Fast

Efficient (~80 % quantum yield)

Full visible spectrum

Wins you the 2006 Nobel Prize (Smith and Boyle)

<u>Cons:</u>

Lower dynamic range Fast (<50 ns) Gaps between pixels Expensive (~\$10,000-20,000)

Area Detector Calibration

Instrumentation

Single λ detection

Other Components

Mirrors

Entrance/Exit Slits

Shutter

Other Components

Polarizer

Beam Splitter

DOI: 10.1021/ja406020r

DOI: 10.1021/ja406020r

Hemoglobin Absorption

Plasmonic Heating

Photo Drug Delivery

Solutions

Solids

The Sample: Cuvette for Solutions

The Sample: Cuvette

Transmission Window

The Sample: Specialty Cuvettes

<u>Path</u> A <u>length</u> - € C I

Dilute Samples

Concentrated Samples

0.2 cm 0.5 cm

Flow Cell

Specechem

<u>Air-free</u>

Gas Cell

Type 34 50mm 100mm

The Sample: Solvent

- Concentration (typically <50 µM)
- Solubility
- Ionic strength
- Hydrogen bonding
- Aggregation
- π-stacking
- Solvent absorption

Common solvent cutoffs in nm:

190

water	
acetonitrile	190
isooctane	195
cyclohexane	200
n-hexane	200
ethanol	205
methanol	210
ether	210
1,4-dioxane	215
THF	220
	235
Chloroform	240
CCl	265
benzene	280
toluene	285
acetone	340

The Sample: Solvent

190

The Sample: Solvent

Vibrational Structure

Solvatochromism

1,2,4,5-Tetrazine

Correcting for background

A = $-\log T = \log P_0/P$

We want to know A (log P_0/P) for only our sample!

cuvette + solvent + sample

 $A_{all} = A_{cuvette} + A_{solvent} + A_{sample}$

 $A_{all} - A_{background} = A_{sample}$

How do we measure background (reference) and sample?

Architectures

- 1) Single Beam
- 2) Double Beam
 - Spatially Separated
 - Temporally
 Separated

Single Beam Instrument

- 1) Light Source On
- 2) Reference in holder
- 3) Open Shutter
- 4) Measure light (P_0)
- 5) Raster λ and repeat 4
- 6) Close Shutter
- 7) Sample cell in holder
- 8) Open Shutter
- 9) Measure intensity (F
- 10) Raster λ and repeat 9
- 11) Close Shutter

$$A = -\log T = \log P_0 / P$$

Pros:

- Simple Less expensive Less optics Less moving parts Higher light intensity
- Can use the same cuvette

<u>Cons:</u>

Changes over time Better for short term experiments Manually move samples

Double Beam Instrument

Spatially Separated

Temporally Separated

<u>Compensates for:</u> 1) Lamp Fluctuations

Sources of Instability in Metal Halide Arc Discharge Lamps

- 2) Temperature changes
- 3) Amplifier changes
- 4) Electromagnetic noise
- 5) Voltage spikes
- 6) Continuous recording

Double Beam Instrument: Spatial

Sequence of Events

- Light Source On
- Reference and sample in holder
- 3) **Open Shutter**
- Measure detector 1 (P_0) and 2 (P) Cons: 4)
- Raster λ and repeat 4 5)
- 6) Close Shutter

$$A = -\log T = \log P_0/P$$

Pros:

Both samples simultaneously Less moving parts (than temporal)

Two different cuvettes Two different detectors ¹/₂ the intensity More expensive

Double Beam Instrument: Temporal

Open Shutter 4)

2)

3)

Monitor detector 5)

- 6) Raster λ and repeat 4
- 7) Close Shutter

$$A = -\log T = \log P_0/P$$

Pros:

Both samples "simultaneously" Same Detector

Cons:

Two different cuvettes $\frac{1}{2}$ the intensity rotating mirrors not really simultaneous

Single Beam

Double Beam

Agilent 8453: Single Beam, Diode Array Detector

Ocean Optics: Single Beam, CCD Detector

Cary 50: Single Beam, PMT detector

Hitachi U-2900: Double Beam, 2 x PMT detector

Cary 300: Double Beam, PMT detector

Cary 5000: Double Beam, PMT detector

Single Beam Instrument

DIY Spectrometer

http://publiclab.org/wiki/spectrometer

Other Sampling Accessories

Probe-type

Cryostat

Microplate Spectrometer

The Sample: Solids

Solids/Films

• More scatter, more reflectance

No reference

The Sample: Solids

A = $-\log T = \log P_0/P$

The Sample: Solids

Integrating Sphere

Solid Sample

A = $-\log T = \log P_0/P$

$$\begin{split} P_{0} &\approx T_{t(without \ sample)} - R_{d(with \ sample)} \\ P &\approx T_{t(with \ sample)} \\ A &\approx log \left(T_{t(without \ sample)} - R_{d(with \ sample)} \right) / T_{t(with \ sample)} \end{split}$$

Outline

- 1) Beer's Law
- 2) Absorption Spectrum
- 3) Instrument Components
 - Light sources
 - Monochrometers
 - Detectors
 - Other components
 - •The sample
- 4) Instrument Architectures
- 5) Applications
- 6) Limitations

Fig. 3. HPLC chromatogram and UV-vis spectra (inset) of Bromo-Dragonfly. The HPLC trace was detected at 210 nm.

Titration of bromocresol

- 1) BromochesofGreen in H_2O
- 2) Titrate with base
- 3) Monitor pH
- 4) Monitor Absorption Change
- 5) Graph absorbance vs pH

yellow

blue

Reaction Kinetics

Real Time Monitoring

3mL of 40 μM RuBP in pH 1, atm

Monitor: Every 5 min for 180 min Every 30 min for 180 min Every 60 min for 3420 min

Spectral Fitting

Spectral Fitting

Table 1. Reaction rate constants for thephotodecomposition of RuBP (error in parentheses).^a

Solvent	k _{A→B} (10 ⁻⁴ s ⁻¹)	k _{B→C} (10 ⁻⁴ s ⁻¹)	k _{c→D} (10 ⁻⁵ s ⁻¹)	k _{D→E} (10 ⁻⁶ s ⁻¹)
H_2O	2.8 (0.06)	1.3 (0.07)	3.4 (0.07)	4.0 (0.6)
D_2O	8.3 (0.08)	1.1 (0.02)	2.9 (0.07)	4.8 (1.1)
0.1 M HClO ₄	3.2 (0.3)	1.5 (0.06)	2.9 (0.09)	1.6 (0.4)
0.1 M HClO ₄ ^b	16.4 (1.4)	2.9 (0.02)	4.9 (0.04)	2.9 (0.3)

a) In atmosphere with 455 nm (50 mW/cm²) irradiation unless otherwise noted. b) Bubbled with pure O_2 .

Potential Complications

With the Sample

- Photo Reaction/Decomposition
- Concentration to high
 - non-linear (A > 2)
 - Aggregation
 - Refractive index change
- Air bubble generation

With the Cuvette + Solvent

- Cuvette non-uniformity
- Sample holder mobility
- Lensing (abs + heat)
- Temperature (line broadening)

With the Instrument

- Lamp Stability
- Room Lighting
- Noise

Any Questions?