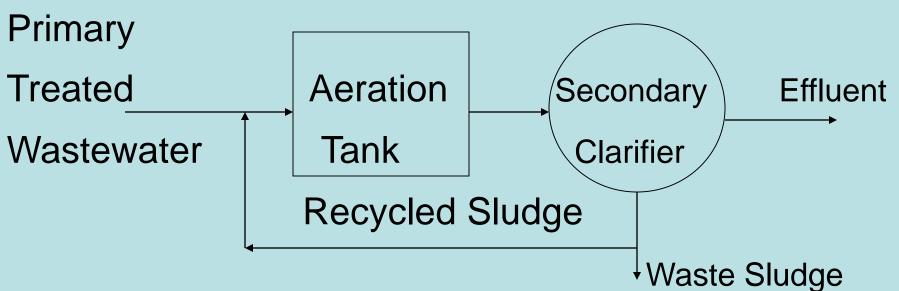
CE 356: Fundamentals of Environmental Engineering


Activated Sludge Design Ricardo B. Jacquez Professor, CAGE Department New Mexico State University

Teaching Assistant: M. T. Myint

Activated Sludge

- Definition: A process in which wastewater continuously flows into an aerated tank in which a culture of suspended microorganisms biologically flocculate and metabolize colloidal and soluble organic material (BOD).
 - Primary organisms bacteria, consume soluble and colloidal organics.
 - Secondary organisms protozoa, consume suspended organics and dispersed bacteria.
 - Aeration provides:
 - Mixing necessary to keep microorganisms in contact with the organics.
 - Oxygen for metabolism.

Biological Principles

Aeration Tank – the content of the aeration tank is referred to as the **mixed liquor**. In the aeration tank, the microorganisms come in contact with the waste material. As the organic material is being decomposed synthesis of the microorganisms occurs.

Biological Principles

- Secondary Clarifier mixed liquor is allowed to separate, the supernatant becomes the effluent.
- Wasted Sludge sludge must be wasted to prevent excessive buildup of the microorganisms decreasing the F/M.
- Recycled Sludge sludge is recycled to maintain the F/M ratio. If the sludge is not recycled the microorganism concentration will be diluted.

Design and Operational Parameter

- Food to Microorganism Ratio (F/M)
- $\frac{F}{M} = \frac{Total \ BOD \ applied \ in \ one \ day}{Total \ mass \ of \ sludge \ in \ aeration \ tank}$ $\frac{F}{M} = \frac{lbs \ BOD \ applied}{lbs \ sludge}$
- Common range for F/M ratio = 0.05 to 0.6 day⁻¹ (0.05 for extended aeration, 1.0 for pure oxygen)

F/M Calculation

Problem: Determine the F/M ratio for an activated sludge process operating under the following conditions: BOD = 200 mg/L, Q = 1MGD, t_d = 4 hrs, MLVSS = 2,550 mg/L Example: Determine the F/M ratio for an activated sludge process operating under the following conditions: BOD = 200 mg/L, Q = 1MGD, $t_d = 4$ hrs (0.167day), MLVSS = 2,550 mg/L

 $M_{BOD} = 1 MGD \times 200 mg/L \times 8.34 lb/(MG-mg/L)$ $M_{BOD} = 1,668 lbs/day$

 $V = Q \times t_d = 1 MGD \times 0.167 day = 0.167 MG$

M_{sludge} = 0.167 MG x 2,550 mg/L x 8.34 lb/(MGmg/L)

 $M_{sludge} = 3,552 \text{ lbs (in aeration tank)}$ F/M = 1,669 lbs/day / 3,552 lbs = 0.47 day⁻¹

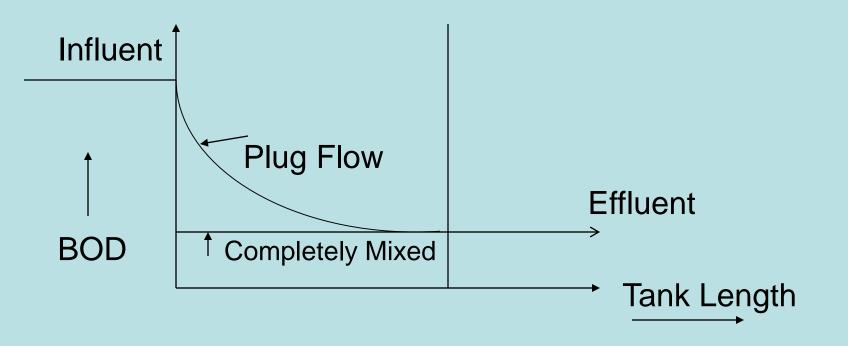
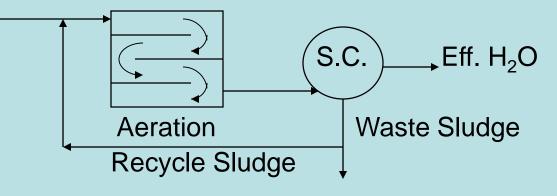
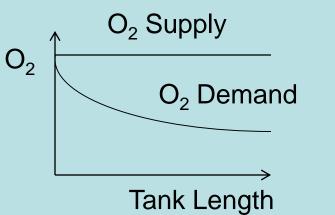

TYPE OF PROCESS	MEAN CELL RESIDENCE TIME, $\theta_{\rm c}$, days	FOOD-TO- MICROBE RATIO	SPACE LOADING		HYDRAULIC RETENTION TIME IN	MIXED- LIQUOR SUSPENDED			BOD
			lb BOD ₅ day-1000 ft ³	kg BODs day-m ³	AERATION BASIN Ø, hr	SOLIDS (MLSS), mg/ℓ	RECYCLE RATIO, R/Q	FLOW REGIME®	REMOVAL EFFICIENCY, %
Conventional	5-15	0.2-0.4	20-40	0.3-0.6	4-8	1500-3000	0.25-1.0	PF. DPF	85-95
Tapered aeration	5-15	0.2-0.4	20-40	0.3-0.6	4-8	1500-3000	0.25-1.0	PF, DPF	85-95
Completely mixed	5-30	0.1-0.6	50-120	0.8-2.0	3-6	2500-4000	0.25-1.5	СМ	85-95
Step acration	5-15	0.2-0.4	40-60	0.6-1.0	3-5	2000-3500	0.25-0.75	PF, DPF	85-95
Modified aeration	0.2-0.5	1.5 - 5.0	75-150	1.2-2.4	1.5-3	200-500	0.05-0.15	PF, DPF	60-75
Contact stabilization	5-15	0.2-0.6	60-75	1.0-1.2			0.50-1.5		
Contact basin					0.5-1.0	1000-3000		PF, DPF	80-90
Stabilization basin					3-6	4000-10,000		PF, DPF	
High-rate acration	5-10	0.4-1.5	100 - 1000	1.6-16	2-4	4000-10,000	1.0-5.0	СМ	75-90
Extended acration	20-30	0.05-0.15	10-25	0.16-0.4	18-36	3000-6000	0.75-1.50	PF, DPF	75-95
Pure oxygen	8-20	0.25-1.0	100-200	1.6-3.2	1-3	3000-8000	0.25-0.5	СМ	85-95

TABLE 15.4 Design and Operational Parameters for Activated Sludge Treatment of Municipal Wastewaters

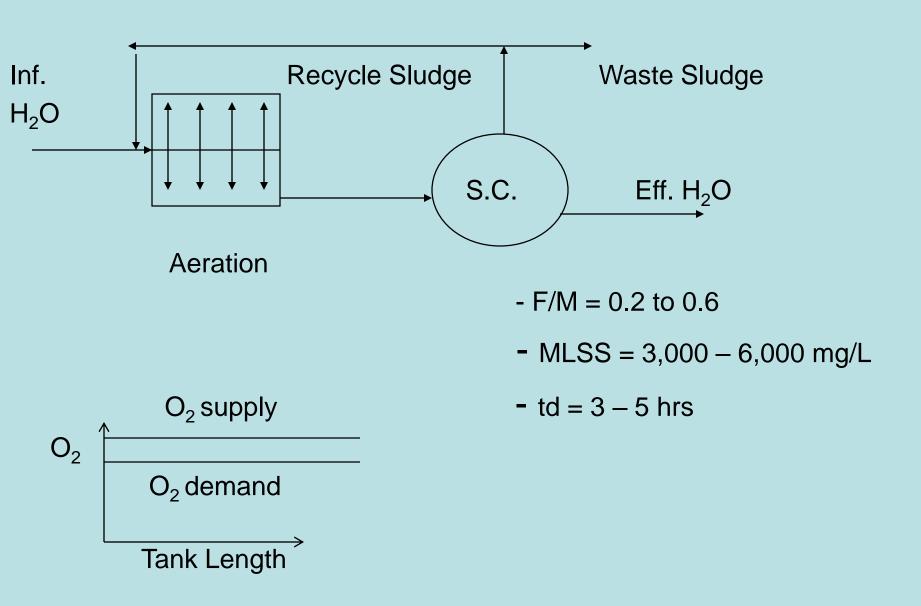
"PF = plug flow, DPF = dispersed plug flow, CM = completely mixed.

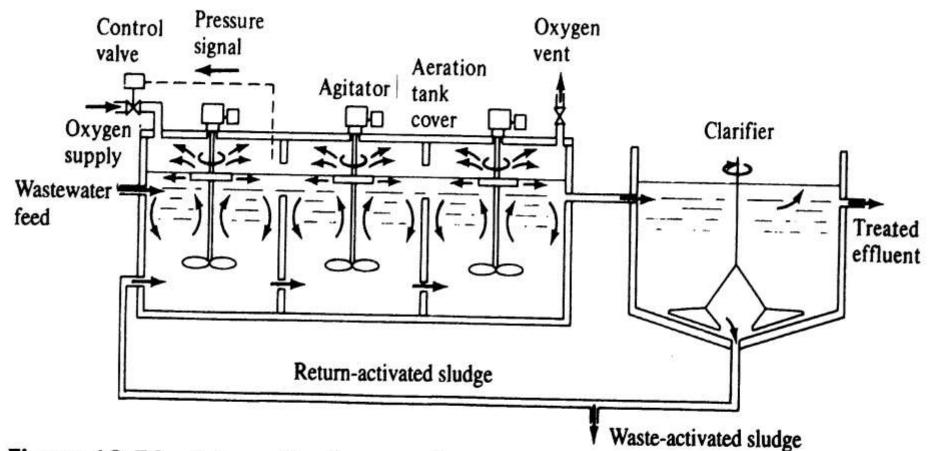

Adapted from Wastewater Engineering: Treatment, Disposal and Reuse by Metcalf & Eddy, Inc., 3rd ed. Copyright © 1991 by McGraw-Hill, Inc.; and from Design of Municipal Wastewater Treatment Plants, Vol. 1, WEF Manual of Practice No. 8 and ASCE Manual and Report on Engineering Practice No. 76. Copyright © 1991 by Water Environment Federation and American Society of Civil Engineers. Reprinted by permission.

Completely Mixed vs Plug Flow


Conventional Treatment

Inf. H₂O




- MLSS = 1,500 to 3,000 mg/L
- td = 4 to 8 hrs
- F/M is decreasing across the length of the tank.

S.C.= secondary clarifier

Completely Mixed

Figure 12.39 Schematic diagram of a high-purity-oxygen activated-sludge process with surface aerators in three stages. (Courtesy of UNOX System, Lotepro Corp.)

(from Viessman, Jr. and Hammer, 1998)

Field Data

- Aeration Tank Volume 120,000 ft³
- Influent Flow 3.67 MGD
- Return Sludge Flow 1.27 MGD
- Waste Sludge Flow 18,900 gpd
- MLSS 2,350 mg/L
- Sludge Underflow 11,000 mg/L
- Influent BOD 128 mg/L
- Effluent BOD 22 mg/L
- Effluent SS 26 mg/L

Evaluate:

- F/M Ratio, day⁻¹
- Volumetric BOD Loading, lb BOD/1,000 ft³/day
- Sludge Age, days
- Aeration Detention Time, hr
- Return Sludge Rate, %
- BOD Efficiency, %
- Sludge Yield, Ib SS/Ib BOD Applied

Solution

- See pgs 576 577
- Example 12.9