# CE 356 Fundamentals of Environmental Engineering 

## Population Projection and Water Demand

Ricardo B. Jacquez
Professor, CE Dept
New Mexico State University

Teaching Assistant: M.T. Myint

## Learning Objectives

- Identify sources for conducting research on historical population and water use and other general characteristics of a community.
- Analyze historical population data to predict a community's future growth trends.
- Comprehend and explain general categories and quantities for water demand in a typical community.
- Evaluate characteristics, population growth, and water use to synthesize a planning document projecting future water demand for a community.


## Overview of Topics

- Objectives of Population Projections
- Period of Design (Service)
- Sources of Information
- Water Consumption Purposes
- Fire Fighting Needs
- Variations in Water Demand
- Forecasting Models


## Objectives of Population Projections

- Establish a period of design/service (years) for the treatment system
- Design water and wastewater systems to adequately and economically serve the present and future population of the community.


## Period of Design

- Public Water Sources:
- Ground water 25-50 years.
- Surface water 50+ years.
- Pipelines from source: 20-25 years.
- Water treatment plant: 15-25 years.
- Pumping plant: 10-15 years.
- Storage tanks: 30-50 years.
- Distribution system: indefinite (30-50years)


## Sources of Population Information

- U.S. Census Bureau.
- City Planning Offices.
- County Planning Offices.
- Chamber of Commerce.
- UNM Bureau of Business and Economic Research.


## Forecasting Models: Estimate the future growth based on historical data and trends.

- Arithmetic Method.
- Uniform Percentage Method.
- Declining Growth Method.
- Logistic Method.
- (Detailed information is provided in the class handout).


## Data Analysis Guidelines

- Plot all data to identify the "trend line" that best matches the model.
- Use a broad range of "good fit" data to determine growth rates and coefficients.
- Use the model to predict a line through "good fit" historical population points and future growth.
- Look for evidence of change in growth rate and therefore more than one phase of growth


## Model 1. Arithmetic Method

$$
\begin{aligned}
K & =\frac{\Delta P}{\Delta t} \\
K & =\frac{56000-8000}{22} \\
K & =2182 \text { People / year }
\end{aligned}
$$

$$
P_{t}=P_{0}+K t
$$

Fig 1. Linear Growth Method


## Model 2. Uniform Percentage Method

$$
\text { Initial } K^{\prime}=\frac{\ln P_{1}-\ln P_{0}}{\Delta t}=
$$

$$
\operatorname{Ln} P_{t}=\operatorname{Ln} P_{0}+K^{\prime} \Delta t
$$

$$
P_{t}=e^{\operatorname{Ln} P_{0}+K^{\prime} \Delta t}
$$

Fig. 2 Uniform Percentage Method


## Model 3. Declining Growth method

$$
\begin{aligned}
& K^{\prime \prime}=-\frac{1}{\Delta t} \ln \frac{P_{\text {sat }}-p_{1}}{P_{\text {sat }}-P_{0}} \\
& P_{t}=P_{0}+\left(P_{\text {sat }}-P_{0}\right)\left(1-e^{-k^{\prime \prime} \Delta t}\right)
\end{aligned}
$$

Fig. 3 Decline Growth Method

## Model 4. Logistic Method

$$
\begin{aligned}
& P_{\text {sat }}=\frac{2 P_{0} P_{1} P_{2}-P_{1}^{2}\left(P_{0}+P_{2}\right)}{P_{0} P_{2}-P_{1}^{2}} \\
& a=L N\left(\frac{P_{s a t}-P_{0}}{P_{0}}\right) \\
& b=\frac{1}{n} L N\left(\frac{P_{0}\left(P_{s a t}-P_{1}\right)}{P_{1}\left(P_{s a t}-P_{0}\right)}\right) \\
& P_{t}=\frac{P_{s a t}}{1+e^{a+b^{*} n}} \\
& \text { Fig. } 4 \text { Logstic Method }
\end{aligned}
$$

## Domestic Water Demand

- Water used for drinking, washing and flushing toilet ----- 40 gallons per person.
- Water use per capita in suburban Australia (including lawn sprinklers, swimming pools etc.) ----- 90 gallons. Same water use in the United States ----- 100 gallons.


## Agricultural Water Demand

| GALLONS OF <br> WATER | TO PRODUCE |
| :---: | :---: |
| 250 to 650 gallons | One pound of rice |
| 130 gallons | One pound of wheat |
| 65 gallons | One pound of potatoes |

## Agricultural Water Demand

| GALLONS OF <br> WATER | TO PRODUCE |
| :---: | :---: |
| 3,000 gallons | A quarter-pound <br> hamburger |
| From 500 to 1,000 <br> gallons | A quart of milk |
| 650 gallons | A pound of cheddar or <br> brie or camembert |

## Agricultural Water Demand

| GALLONS OF <br> WATER | TO PRODUCE |
| :---: | :---: |
| 400 gallons | A pound of sugar |
| 2,650 gallons | One-pound of coffee |
| 265 gallons | A glass of milk |
| 40 gallons | The bread in a <br> sandwich |
| 400 gallons | An ice cream |

## Virtual Water

- Virtual water - an economical term for water used in growing and manufacture of products traded around the world.
- The global virtual-water trade is estimated to be around 800 million acre-feet a year, or twenty Nile Rivers.
- Nearly a tenth of all water used in raising crops goes into the international virtualwater trade.


## Virtual Water

- The biggest net exporter of virtual water is the US: exports one third of all water withdrawn from the natural environment (grains, either directly or via meat).
- Other major exporters of virtual water: Canada (grain), Australia (cotton, sugar), Argentina (beef), Thailand (rice).
- Major importers of virtual water include Japan, EU, middle east, and others.


## Water Consumption Categories

| Purpose | gal/capita/day | \% of Total |
| :---: | :---: | :---: |
| Domestic | 80 | 45 |
| Commercial | 25 | 15 |
| Industrial | 50 | 25 |
| Public Use | 20 | 10 |
| Loss \& Waste | 15 | 5 |
| Total | 190 gpcd | 100 |

## Water Consumption Categories Continued

- Average day (treatment plant) $=150-200$ gpcd
- Maximum day (treatment plant) $=180 \%$ average day
- Maximum hour (distribution system) $=150 \%$ max day
- Use historical metering data kept by the municipality to determine the specific demand.
- Consider variations:
- Seasonal:Winter =80 \% Avg vs. Summer =125 \% Avg
- Diurnal variation.


## Domestic, Commercial and Public Water Uses:

- Drinking
- Cooking
- Sanitary needs: bathing, washing, flushing, cleaning
- Lawn watering
- Swimming pools
- Street cleaning
- Fire fighting
- City and park maintenance


## Community vs Household Water Use

- Public water use withdraw $=11 \%$ nations fresh water
- $1975=170 \mathrm{gpcd}$
- $1990=185 \mathrm{gpcd}$

Household (family of 4)=90gpcd
Household (family of 4 ) $=105 \mathrm{gpcd}$

## Fire Fighting Needs: National Board of Fire Underwriters

- Annual requirements - small
- During fire - heavy demand
- Rate: $500-3,000 \mathrm{gpm}$ depending on population, surface area, and material of construction (see Table 2.3 in handout, Eqns $4.1 \& 4.2$ in text).
- Pressure in the distribution system: 20-100 psi (pumper vs no pumper).
- Duration: up to 10 hours.
- Coincident draft : maximum day occurs at the same time.


## Variations in Water Demand

- Hourly: see Figs 4.2 \& 4.3 (two peaks at $7 \mathrm{am}-1 \mathrm{pm}$ and 5-9 pm).
- Day to day: Avg day, Max day, Min day
- Seasonal: Summer vs. Winter (see Fig 4.2)
- Impact of lawn sprinkling in the evening.
- Weather: Rainfall (see Fig 4.3)

