WORLD-CLASS OUTSTANDING INTERNATIONAL PROGRAM | EXHIBITION | NETWORKING

CASE STUDY: IMPROVING PUMP RELIABILITY AND LONGEVITY BY RUNNING IN THE SWEET ZONE

By: Joseph A. Silvaggio, Jr. Siemens Demag Delaval Turbomachinery, Inc.

Carolyn B. Smith Siemens Demag Delaval Turbomachinery, Inc.

42nd Turbomachinery 29th Pump SYMPOSIA

Copyright © 2013 by Siemens Demag Delaval Turbomachinery, Inc.

Problem Statement

Current boiler feed pumps are reliably running 5 to 7 years. How can their reliable running time be extended to 10 to 14 or more years?

2nd Turbomachinery 9th Pump symposia

George R. brown convention center 9.30 - 10.3.2013

What is the "Sweet Zone"?

The "sweet zone" is the area or zone of pump performance curves which is not susceptible to hydrodynamic instabilities that can shorten the pump lifespan and therefore, permits long term, trouble free pump operation.

BROWN CONVENTION CENTER 9.30 - 10.3.2013

Case Study Outline

- Pump Description
- Background
- Test Curves
- Test Curve Interpretation
- Types of Failures to be Avoided
- Performance Curve Areas to Avoid
- Developing the "Sweet Zone"
- Conclusions

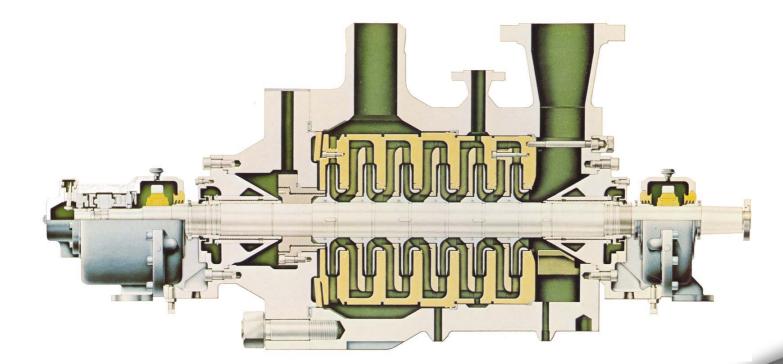
42nd Turbomachinery 29th Pump symposia

Pump Description - Pump Type

The type of pump for this case study is a high speed, turbine driven boiler feed pump in a 500 to 600 megawatt power plant using two 50% pumps to supply the boiler.

2nd Turbomachinery 9th Pump symposia

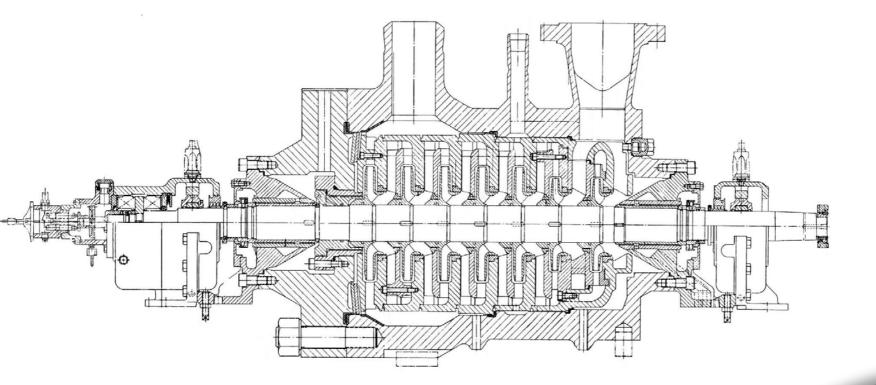
George R. brown convention center 9.30 - 10.3.2013


Pump Description - Design Parameters

- Double Case Barrel Type
- 4000 to 5000 GPM
- 5000 to 6000 RPM
- 7000 to 8000 FT Total Developed Head
- 10000 to14000 Horsepower
- Up to 5000 PSIG Discharge Pressure

42nd Turbomachinery 29th Pump symposia

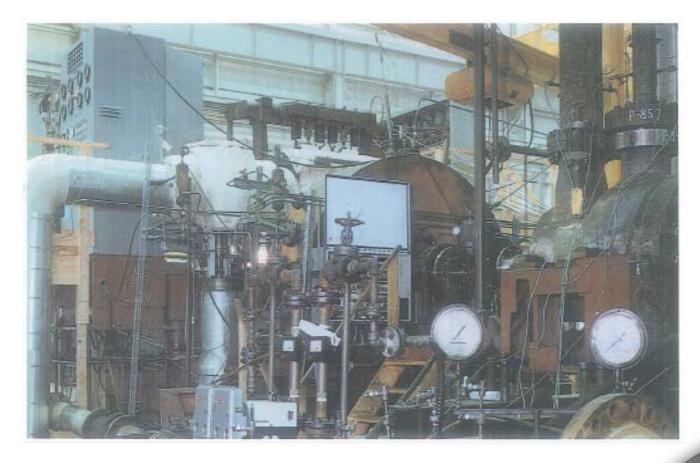
Background - Pump Assembly (high speed, multistage, turbine driven)



42nd Turbomachinery 29th Pump symposia

George R. Brown convention center 9.30 - 10.3.2013

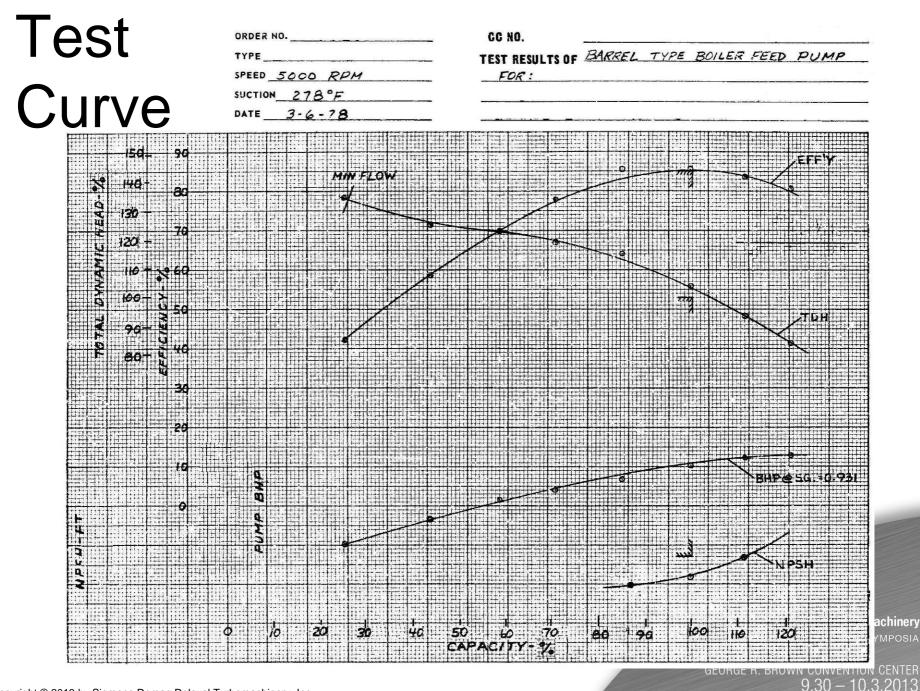
Background - Pump Assembly (high speed, multistage, turbine driven)



42nd Turbomachinery 29th Pump SYMPOSIA

GEORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013

Copyright © 2013 by Siemens Demag Delaval Turbomachinery, Inc.


Background - Pump Under Test

42nd Turbomachinery 29th Pump symposia

 $\begin{array}{l} \text{George r. Brown convention center} \\ 9.30-10.3.2013 \end{array}$

Test Curve Interpretation

- Test curve shape can indicate potential low flow issues.
- Usually, the test curve does not indicate high flow issues within test data for this type of pump.
- Although not observed on this particular pump, an example of a curve shape effect at high flow will be shown.

42nd Turbomachinery 29th Pump SYMPOSIA

George R. brown convention center 9.30 - 10.3.2013

Example Of Another Test Curve Of A Different Pump With Both High Flow And Low Flow Issues.

Copyright © 2013 by Siemens Demag Delaval Turbomachinery, Inc.

Types of Failures to be Avoided

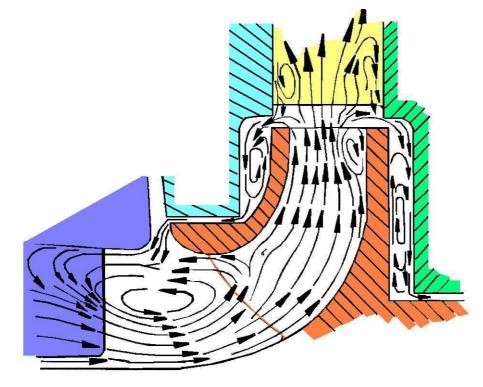
- Performance issues due to increased seal clearance (observed reduced discharge pressure while running at the same speed, reduced efficiency, pressure pulsation, increased vibration).
- Catastrophically failed parts (impellers).

2nd Turbomachinery 29th Pump symposia

An Example Of Failed Impeller (With A & B Gap Modification) That Was Run At Low Flow.

42nd Turbomachinery 29th Pump symposia

 $\begin{array}{l} \text{George r. Brown convention center} \\ 9.30-10.3.2013 \end{array}$


Performance Curve Areas to Avoid

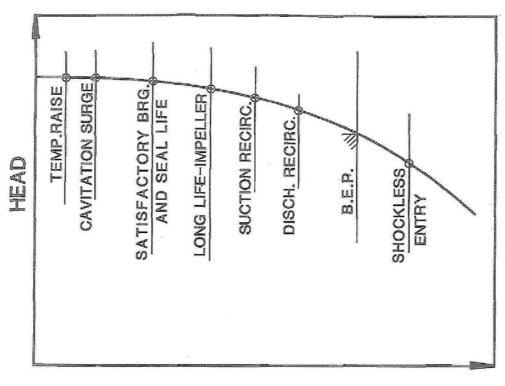
- Low and minimum flow that may cause potential issues.
- Suction and discharge recirculation.
- Resulting pump operation effects from recirculation flows, (pressure pulsations and vibration).

BROWN CONVENTION CENTER 9.30 - 10.3.2013

Artist Representation of Suction and Discharge Recirculation.

Recirculating Flow Pattern in the Meridional Plane of a Centrifugal Impeller.

Gopalakrishnan, S., "A New Method for Computing Minimum Flow", presented at 5th International Pump Users Symposium, (1988)



42nd Turbomachinery 29th Pump symposia

 $\begin{array}{l} \text{George r. brown convention center} \\ 9.30-10.3.2013 \end{array}$

Copyright © 2013 by Siemens Demag Delaval Turbomachinery, Inc.

Where Is Minimum Flow?

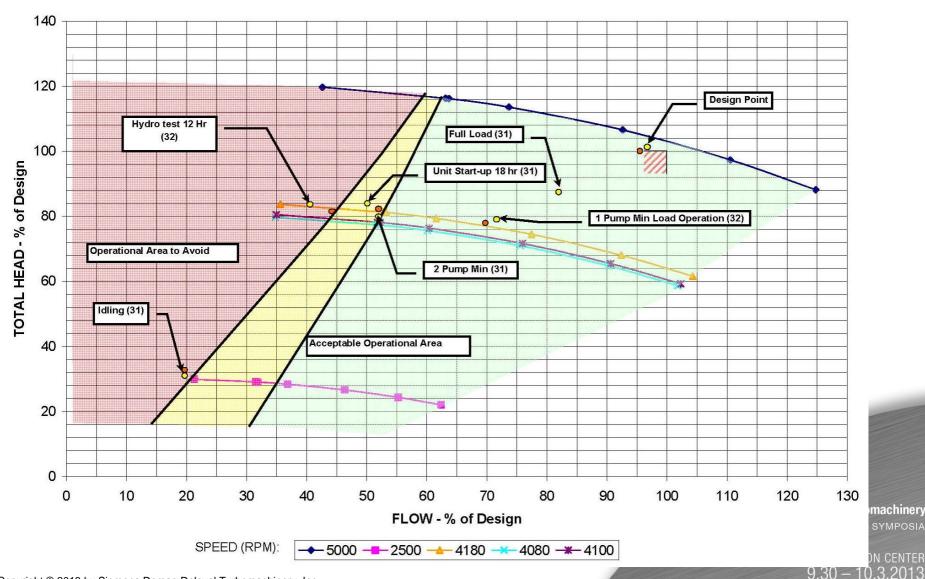
FLOW

Typical Head-Flow Characteristic of a Centrifugal Pump Indicating Several Important Flow Rates.

42nd Turbomachinery 29th Pump symposia

Gopalakrishnan, S., "A New Method for Computing Minimum Flow", presented at 5th International Pump Users Symposium, (1988)

 $\begin{array}{l} \text{George r. Brown convention center} \\ 9.30-10.3.2013 \end{array}$


Developing the "Sweet Zone"

The "sweet zone" is the area or zone of pump performance curves which is not susceptible to hydrodynamic instabilities that can shorten the pump lifespan and therefore, permits long term, trouble free pump operation.

BROWN CONVENTION CENTER 9.30 - 10.3.2013

Developing the "Sweet" Zone

Copyright © 2013 by Siemens Demag Delaval Turbomachinery, Inc.

Conclusions

- Shop tests can provide insight on areas to avoid.
- The "Sweet Zone" of operation is being successfully applied to boiler feed pumps.
- Although this case study is for a high speed, multistage boiler feed pump, the principles can be applied to many centrifugal pumps.

42nd Turbomachinery 29th Pump symposia