CEB2083 PROCESS INSTRUMENTATION & CONTROL MAY 2020 SEMESTER

Chapter 12: Process Instrumentation

BY

Assoc. Prof. Dr Marappagounder Ramasamy / Dr Serene Lock /

Dr Mohd Hilmi Noh / Dr Nurul Aini Amran

UNIVERSITI TEKNOLOGI PETRONAS (UTP)

Chapter Outcome:

End of the chapter, you should be able to:

- 1. Describe basic components of P & ID
- 2. Describe basic control instruments
 - Sensors and transmitters
 - > Controller
 - > Final control elements

Piping & Instrumentation Diagram (P&ID)

- A piping and instrumentation diagram/drawing (P&ID) is a diagram in the process industry which shows the piping of the process flow together with the installed equipment and instrumentation.
- □ P & ID shows the interconnection of process equipment and the instrumentation used to control the process.

Piping & Instrumentation Diagram (P&ID)

Each instrument may be represented on diagram by a symbol which follows specific standard representation

- 1. PETRONAS Technical Standard (PTS)
- 2. Standard ISA-5.1 (ISA stands for International Society of Automation)
- □ The symbol may be accompanied by a tag number

EXAMPLE – P&ID

EXAMPLE – P&ID zoom-in

Example of PFD

Example of PFD-Zoom in

POS.	1	1	2	2	2	3	4	F	5	5	6	i	7	7	8	}
COMP.	Nm?/h	MOL %	Nm?/h	MOL %	Nm?/h	MOL %	Nm?/h	MOL %	Nm?/h	MOL %	Nm?/h	MOL %	Nm?/h	MOL %	Nm?/h	MOL %
H? N? CH? NH? Ar+He	72871 24290 6	74.99 25.00 0.01	15290 4	99.97 0.03	45804	100.00	118676 39580 10	74.98 25.01 0.01	479968 159989 66 23965 11524	71.05 23.68 0.01 3.55 1.71	361575 120525 66 102894 11523	60.61 20.20 0.01 17.25 1.93	361282 120383 66 23906 11507	69.86 23.28 0.01 4.62 2.23	235 101 66 9	57.07 24.60 0.03 16.07 2.23
Σ DRY TOTAL Mole Weight	97167	100.00 8.52	15294	100.00 28.01	45804	2.02	158266	100.00 8.52	675512	100.00 9.04	596583	100.00	517144	100.00 9.19	411	100.00

List of P & ID Items

- $_{\circ}$ Instrumentation and designations
- $_{\circ}$ Mechanical equipment with names and numbers
- $_{\odot}\,$ All valves and their identifications
- Process piping, sizes and identification
- Miscellanea vents, drains, special fittings, sampling lines, reducers, increasers and swagers
- $_{\odot}~$ Permanent start-up and flush lines
- Flow directions
- Interconnections references
- Control inputs and outputs, interlocks
- Interfaces for class changes
- Computer control system input
- Identification of components and subsystems delivered by others

P & ID Components

Equipment symbols

Basic Instrument or Function Symbols

LOCATIONS

Equipment Symbols

The device is field mounted (located in the process area of the plant)

 \bigcirc

The device is located in the primary location normally accessible to the operator (the central control room).

The device is located in an auxiliary location, normally accessible to the operator (a local panel or on the starter cassette in the motor control centre).

The device is normally inaccessible to the operator (behind the panel). U

Instrument Line Symbols

- (1) INSTRUMENT SUPPLY * OR CONNECTION TO PROCESS
- (2) UNDEFINED SIGNAL
- (3) PNEUMATIC SIGNAL **
- (4) ELECTRIC SIGNAL
- (5) HYDRAULIC SIGNAL
- (6) CAPILLARY TUBE
- ELECTROMAGNETIC OR SONIC SIGNAL *** (GUIDED)
- (8) ELECTROMAGNETIC OR SONIC SIGNAL *** (NOT GUIDED)
- (9) INTERNAL SYSTEM LINK (30FTWARE OR DATA LINK)
- (10) MECHANICAL LINK

Tag Number

TIC 103

Т

- T 103 Loop identification
 - 103 Loop number
- TIC Functional Identification
 - First letter
 - IC Succeeding Letters

Identification Letters

TABLE A.1 Identification Letters

	First Letter	Succeeding Letters
A	Analyzer	Alarm
C	Concentration	Control
D	Density	
E	Voltage	н. С
F	Flow	. •
H	•	High
I		Indicating
L	Level	Low
Р	Pressure	
O		Totalize
s	Speed, slide gate	Switch
Т	Temperature	Transmitter
v		Valve
Х	Discrete (on-off)	Motor
Y		Compute, convert
Z	Position	

53

8

TABLE 2 **TYPICAL LETTER COMBINATIONS**

[Control	lers																
	Initiating or				Self- Actuated	Readout I	Devices	Sv Ata	vitches a rm Devic	nd :es*	Trai	nsmitters		Solenoids, Relays.			Well	Viewina		
First- Letters	Measured Variable	Recording I	Indicating	Blind	Control Valves	Recording	Indicating	High	Low	Comb	Recording	Indicating	g Blind	Computing Devices	Primary Element	Test Point	or Prob e	Device, Glass	Safety Device	Final Element
A B C D	Analysis Burner/ Combustion User's Choice User's Choice	ARC BRC	AIC BIC	AC BC		AR BR	Al Bl	ASH ,BSH	ASL BSL	ASHL BSHL	ART BRT		AT BT	AY By	AE BE	AP	AW BW	BG	7	AV BZ
		500	510		501		E,	5011	COC		Entr	C.T.	<u>–</u>			6		50		
FQ	Flow Quantity	FQRC	FQIC	FFC	FICV.	FQR FQR FFB	FOI	FOSH	FOSL	,		FOIT	FOT	FQY	FQE	, FF				FQV FGV
G Н	User's Choice Hand		HIC	нс						HS				- -				· · .		нν
L J K L M	Current Power Time Level User's Choice	IRC JRC KRC LRC	IIC JIC KIC LIC	KC LC	KCV	IR JR KR LR	li Ji Ki Li	ISH JSH KSH LSH	ISL JSL KSL LSL	ISHL JSHL KSHL LSHL	irt Jrt Krt Lrt	HT JIT KIT LIT	IT JT KT LT	IY JY KY LY	IE JE KE LE		LW	LG		IZ JV KV LV
N O P	User's Choice User's Choice Pressure	PRC	PIC	PC	PCV	PR	PI	PSH	PSL	PSHL	PRT	PIT	PŤ	PY	PE	PP			PSV.	PV
PD	Vacuum Pressure.	PDRC	PDIC	PDC	PDCV	PDR	PDI	PDSH	PDSL		PDRT	PDIT	PDT	PDY	PE	PP			PSE	PDV
a	Differential Quantity	ORC	QIC			QR	QI	QSH	QSL	QSHL	ORT	QIT	QT	QY	QE					az
R S	Radiation Speed	RRC SRC	RIC SIC	RC SC	scv	RA SR	RI SI	ASH SSH	RSL SSL	RSHL SSHL	RRT SRT	RIT SIT	AT ST	RY SY	RE SE		RW	· .		RZ SV
T TD	Temperature Temperature	TRC TDRC	TIC TDIC	TC TDC	TCV TDCV	TR TDR	TI TDI	TSH TDSH	TSL TDSL	TSHL	TRT TORT	TIT TDIT	TT TDT	TY TDY	TE TE	TP TP	TW TW		TSE	TV TDV
U	Multivariable					UR	U							UΥ						υv
v	Vibration					VR	v	VSH	VSL	VSHL	VRT	VIT	VT	VY	VE					vz
wo	Weight Force Weight Force, Differential	WRC WDRC	WIC WDIC	WC WDC	WCV WDCV	WR WDR	WI WDI	WSH WDSH	WSL WDSL	WSHL	WRT WORT	WIT WDIT	WT WDT	WY WDY	WE WE					WZ WDZ
Ŷ	Event State Presence		YIC	YC		YR	YI,	YSH	YSL				ΥT	YY	YE					ΥZ
Z ·	Position	ZRC	ZIC	zc	ZCV	ZR	ZI	ZSH	ZSL	ZSHL	ZRT	ZIT	ZΤ	ZY	ZE		1			zv
ZD	Gauging Deviation	ZDRC	ZDIC	ZDC	ZDCV	ZDR	ZDI	ZDSH	ZDSL		ZDRT	ZDIT	ZDT	ZDY	ZDE					ZDV

Note: This table is not all-inclusive.

"A, alarm, the annunciating device, may be used in the same lashion as S, switch, the actualing device.

"The letters H and L may be omitted in the undefined case.

Other Possible Combinations:

- FO (Restriction Orifice) FRK, HIK (Control Stations)
- FX

(Accessories) (Scanning Recorder) (Pilot Light) TJR

LLH

- PFR (Ratio) KQI (Running Time Indicator) QQI (Indicating Counter) WKIC (Rate-of-Weight-Loss Controller) HMS (Hand Momentary Switch)

S5.1

•

3

Control-Loops

Control Instrumentation

Control Instrumentation includes

5 Final Control Element

Sensors

Sensors are the first element in the control loop to measure the process variable, they are also called *primary elements*.

Process Variable	Sensor
Pressure	Diaphragms, strain gauges, capacitance cells
Temperature	
Flow Rate	

Signal Transmission

Signal Transmission in Feedback Control System

Standard Transmission range

- The advantage of having a standard range or using digital signals is that all equipment may be purchased ready calibrated.
- For analogue systems the minimum signal (Temperature, speed, force, pressure and so on) is represented by 4 mA or 0.2 bar and the maximum signal is represented by 20 mA or 1.0 bar.

Transmitter

A *transmitter is a device that converts a reading from a sensor* or a transducer into a **standard signal** and **transmits** that signal to a monitor or controller.

Transmitter types include:

- Pressure transmitters
- Flow transmitters
- Temperature transmitters
- Level transmitters
- Analytic (O₂, CO, and pH) transmitters

Transmitters

Transmitters are specified by their zero, range, span and gain:

- Zero : The minimum input of the transmitter
- Range : The range of the input of a transmitter as identified by its minimum and maximum value.

Example. The range of a temperature transmitter is 10°C to 100°C

- Span : The maximum input(output) minus minimum input (output)
- Gain : Output span divided by input span

$$Gain = \frac{Output \, Span}{Input \, Span}$$

Transmitted Standard Signals

Gain = K_m = span of output/ span of input

$$K_m = \frac{20 - 4 \text{ mA}}{150 - 50 \text{ °C}} = 0.16 \text{ mA/°C}$$
$$T_m(\text{mA}) = K_m(T - 50^{\circ}\text{ C}) + 4\text{mA}$$

 $T(^{o}C)$

PID Controller

The controllers will have knobs/buttons to adjust

- Set point
- Control Mode (Automatic/manual)
- Proportional gain (Proportional band)
- Derivative time (Rate time)
- Integral time (Reset rate)
- It will display
 - current values of CV, MV and set point
 - trend of the CV and MV

Controller action

Reverse or Direct Action:

Controller Action: Example

For the temperature control system shown below. Determine, the controller action if the valve is air-to-open (ATO).

Controller Action: Example

Solution

- > Overall action: When the temperature inside the tank increases the steam flow rate should be decreased.
- Control Valve: It is given that the control valve is direct acting. This means, to get a decreased steam flow rate the control output should also decrease.
- Controller action: The controller action should be reverse since increase in measured output requires decrease in controller output.

Final Control Elements

□ Final control elements: Part of the control system that receives decision from the controller and adjusts the manipulated variable.

□ Examples of final control elements

- $_{\circ}$ Control valves
- $_{\circ}$ Variable speed motors
- Variable resistance heater

Control valve is the most common final control element in process industries.

Types of Control Valves

Types of Control Valves

Direction of shaft movement

Sliding shaft valve

Rotating shaft valve

Rotating Shaft Valves

Ball Valve

Butterfly valve

Sliding Shaft Valves

Control Valve - Schematic

Types of Control Valves: Comparison

□Rotary valves (butterfly valves) are generally cheaper than linear valves in sizes above 2 in (50 mm) and globe valves are the most effective for control purpose in sizes < 4 in.</p>

- □Bodies require minimum space for installation (small face to face dimension).
- □They provide high capacity with low pressure loss through the valves.
- □ The most economical for larger pipe-size applications.

Essential Features of a Control Valve

The following are the most essential features of a valve related to control

- **I** Valve action/ fail safe position
- **₩** Valve size
- **I ⊘** Valve characteristics
- Rangeability
- Cavitation

- □Valve fail safe position is the position of the valve in the emergency situation of no compressed air to the valve.
- □ Fail Closed (Air to open) valve is a valve that is completely closed when the compressed air to the valve fails.
- □ Fail open (Air to close) valve is a valve that is completely open when the compressed air to the valve fails.

- □ Fail closed valves are direct acting since increase in air pressure causes the valve to open more.
- □ Fail open valves are reverse acting since increase in air pressure causes the valve to close.
- □ The main consideration in selecting the valve fail position (action of valve) is safety.
- □ When the safest position of the valve is open, we order Fail Open (FO)/ Air to Close valve (ATC).
- □When the safest position of the valve is closed, we order Fail closed (FC)/ Air to Open (ATO) valve.

Examples:

Specify the appropriate fail safe position of the valve in the following services:

- A flammable solvent is heated by steam in a heat exchanger. The valve manipulates the flow of steam.
- A stirred tank heater contains a liquid polymer that is heated by steam. When the temperature is low in the tank the polymer solidifies and damages the tank, the stirrer and pump and other components.

- □ The inherent characteristic is the relationship between the valve flow capacity and the valve travel when the differential pressure drop across the valve is held constant.
- Since valve flow is a function of both the valve travel and the pressure drop across the valve, it is traditional to conduct inherent valve characteristic tests at a constant pressure drop.

Typical inherent valve characteristics

- equal percentage
- quick opening

Approximating Equations Linear f(x) = xEqual percentage

 $f(x) = \alpha^{x-1}$

Quick opening

 $f(x) = 1 - \alpha^{-2.5x}$

 $\alpha = 20$ to 50

Under the specific conditions of constant pressure drop, the valve flow becomes only a function of the valve travel and the inherent design of the valve trim.

W0958/IL

WD959/IL

QUICK OPENING

LINEAR

W0957/IL

EQUAL PERCENTAGE

Linear Flow Characteristic

- A valve with an ideal linear inherent flow characteristic produces flow rate directly proportional to the amount of valve plug travel, throughout the travel range.
- Select a valve with linear characteristic when variation in the systems pressure drop is fairly constant

Equal-Percentage Flow Characteristic

For equal increments of valve plug travel, the change in flow rate is expressed as a constant percent of the flow rate at the time of the change.

Example :- The following percent flow rates are given below for an equal percentage valve. Determine the flow rate when the valve moves to 30%.

x [%]	f	$p = \frac{(9.1 - 6.75)}{100\%} = 34.81\%$
10	6.75	6.75
20	9.10	$f = 1.3/81 \times 0.1 = 12.27$
30	f_3	$J_3 = 1.3401 \times 9.1 = 12.27$

Use a valve with equal percentage characteristics for systems that have significant variation in the systems pressure drop.

Quick-Opening Flow Characteristic

- □ A valve with a quick opening flow characteristic provides a maximum change in flow rate at low travels.
- □ The curve is basically linear through the first 40 percent of valve plug travel.
- Use control valves with quick-opening flow characteristics for applications where valve dynamics is not essential, they are cheaper.

Essential Features: Rangeability

- Rangeability (turn-down ratio) is the ratio of the maximum controllable flow to the minimum controllable flow.
- □ It is the measure of the width of the operating flows the valve can control.
- □ Commonly used relation

 $Rangeability = \frac{Flow \ at \ 95\% \ valve \ stem \ position}{Flow \ at \ 5\% \ valve \ stem \ position}$

Valves with high rangeability allow wide range of flow adjustment

Essential Features: Rangeability

Example: For constant pressure drop across the valve estimate the rangeability of linear, equal percentage and quick opening valve use $\alpha = 25$, 50 and 100 for equal percentage and quick opening valve.

Linear
$$Rangeability = \frac{0.95}{0.05} = 19$$

Quick opening $Rangeability = \frac{1 - 25^{-2.5 \times 0.95}}{1 - 25^{-2.5 \times 0.05}} = 3.0$

Equal percentage Rangeability = $\frac{25^{(0.95-1)}}{25^{(0.05-1)}} = 18$

α	25	50	100
Quick opening	3	2.6	2.3
Equal percentage	18	33.8	63

- □ Valve sizing is a compromise between two important factors: pumping cost and control performance.
 - small valves cause high pressure drop resulting in high pumping cost but are good for control performance.
 - Larger valves cause less pressure drop resulting in less pumping cost, however, control performance is poor.
- □ Note that if the pump is already selected, smaller valves means they can not deliver the required flow rate.

The valve sizing equation for liquids

The Bernoulli equation between point 1 and 2

$$\frac{P_1}{\rho g} + \frac{v_1^{2}}{2g} + h_1 = \frac{P_2}{\rho g} + \frac{v_2^{2}}{2g} + h_2 + f \frac{v_2^2}{2g}$$

Simplifying and rearranging

$$\frac{P_1 - P_2}{\rho g} = f \frac{v^2}{2g}$$

Using continuity equation Q = vA and $\rho = \rho_w sg$ and rearranging

$$\frac{\Delta P}{sg} = \frac{\rho_w f}{2A^2} Q^2$$

Q = flow rate (gpm) sg = specific gravity DP =pressure drop (psi)

Collecting constant terms for a given value of a given geometry as C_V and rearranging we get the Value Sizing Equation.

$$Q = C_v \sqrt{\frac{\Delta P}{sg}} \qquad \qquad C_v = Q \sqrt{\frac{sg}{\Delta P}}$$

 C_{v} is the number of US gallons per minute of water at 60°F with a pressure drop of 1 psi across the valve

Steps for Selecting Control Valve

- STEP 1 : Determine the design flow rate and pressure drop across the valve
- \Box STEP 2: Calculate C_V

For liquid service:

$$Cv = Q_{\sqrt{\frac{sg}{\Delta P}}}$$

Q - flow rate (gpm) sg - specific gravity DP - pressure drop (psi)

For gas and steam services:

formula varies from manufacturer to manufacturer. Consult control valve manufacturer.

□ STEP 3: Select the appropriate value size from manufacturers catalogue using C_v in consultation with the manufacturer.

Control Valve sizing

FLOW COEFFICIENTS

For additional body information see Bulletin 51.1:EB(10)

Coeffi- cients	Body Size,	Port	Total	Valve Opening—Percent of Total Travel										
		Diameter, In.	Travel, In.	10	20	30	40	50	60	70	80	90	100	and C,
	1 1-1/2 2 3 4	1 1.1/2 2 3 4	3/4 3/4 1-1/8 1-1/2 2	2.01 4.20 5.96 16.7 20.5	3.52 7.93 11.7 32.2 38.2	4.81 11.7 17.6 47.2 55.3	5.96 15.6 23.6 63.4 60.3	7.46 19.7 29.5 78.0 96.5	8.93 23.7 35.7 91.2 124	10.1 27.1 42.0 102 151	11.0 30.7 48.6 112 173	11.8 32.8 51.0 117 191	12.4 33.6 51.4 120 201	.90 .87 .96 .85 .84
C,	1.1/2	1	3/4	1.90	3.32	4.80	5.93	7.58	9.00	10.6	12.6	14.7	16.2	.90
(Liquid)	2 .	1 1-1/2	3/4 3/4	1.81 4.39	3.28 7.93	4.76 11.7	6.24 15.5	7.75 19.3	9.30 22.9	10.8 27.0	12.3 30.2	13.8 33.0	15.1 35.1	.90
	3.	1-1/2	3/4 1-1/8	4.24 5.63	7.97 11.4	11.7 17.7	15.4 24.0	19.3 30.8	23.2 37.6	27.2 47.5	31.3 57.7	35.1 65.1	38.5 68.7	.80
	4.	2 3	1-1/8 1-1/2	5.45 14.8	11.3 30.1	17.7 44.9	24.6 59.8	31.9 75.3	39.9 91.9	52.0 109	59.7 125	69.7 133	76.8 136	.81 .87
	1 1.1/2 2 3 4	1 1.1/2 2 3 4	3/4 3/4 1-1/8 1-1/2 2	66.6 131 173 512 610	113 251 365 999 1210	159 371 553 1520 1830	197 507 753 2040 2490	247 633 960 2510 3150	294 762 1180 3000 3870	334 888 1440 3440 4970	376 1010 1660 3850 6290	430 1120 1840 4150 7090	469 1190 1920 4380 7480	37.8 35.4 37.4 36.4 37.1
C,	1.1/2	1	3/4	51.6	99.7	147	195	242	289	335	395	492	573	35.4
(Gas)	2.	1 1.1/2	3/4 3/4	55.9 129	99.8 249	146 367	195 497	242 614	291 739	343 864	388 980	473 1110	570 1240	37.7
	3.	1·1/2 2	3/4 1-1/8	122 172	247 327	362 520	489 763	614 951	742 1180	864 1450	986 1790	1130 2180	1280 2420	33.2 35.2
	4.	23	1-1/8	184 482	357 963	557 1470	761 1960	974 2440	1220 2920	1520 3460	1840 4060	2200 4710	2590 5150	33.7
	1 1-1/2 2 3 4	1 1-1/2 2 3 4	3/4 3/4 1·1/8 1·1/2 2	3.33 6.55 8.65 25.6 30.5	5.65 12.6 18.3 50.0 60.5	7.95 18.6 27.7 76.0 91.5	9.85 25.4 37.7 102 125	12.4 31.7 48.0 126 158	14.7 38.1 59.0 150 194	17.2 44.4 72.0 172 249	18.8 50.5 83.0 193 315	21.5 56.0 92.0 208 355	23.5 59.5 96.0 219 374	37.8 35.4 37.4 36.4 37.1
C _s	1.1/2	1	3/4	2.58	4.99	7.35	9.75	12.1	14.5	16.8	19.8	24.6	28.7	35.4
(Steam)	2 .	1 1-1/2	3/4 3/4	2.80 6.45	4.99 12.5	7.30 18.4	9.75 24.9	12.1 30.7	14.6 37.0	17.2 43.2	19.4 49.0	23.7 55.5	28.5 62.0	37.7
	3.	1-1/2 2	3/4 1-1/8	6.10 8.60	12.4 16.4	18.1 26.0	24.5 38.2	30.7 47.6	37.1 59.0	43.2 72.5	49.3 89.5	56.5 109	64.0 121	33.2 35.2
	4.	23	1-1/8	9.20 24.1	17.9	27.9 73.5	38.1 98.0	48.7 122	61.0 146	76.0 173	92.0 203	110 236	130 258	33.7