DCS Controller Tuning

- Process Dynamics
- Feedback Control
- Controller Tuning Procedure
- Initial Tuning from Design Data

Process Dynamics

Two Main Types of Processes

- Stable Processes
- Unstable Processes
 - Ramp Processes
 - Exothermic Chemical Reactions

- First Order
 - Process Heaters
 - Flash Drums
 - Flow Controllers
- Second Order / Higher Order
 - Distillation Columns
 - Feed / Effluent Exchangers

Defined by 3 Parameters

- Process Gain Kp
 - Change in Process Variable (% of Scale) Steady State per 1% Change in Controller Output
- Dead Time θ (Theta)
 - Elapsed Time Before Process Reacts to Change in Controller Output
- First Order Time Constant τ (Tau)
 - Time for Process to Reach 63.2% of its Steady State Process Gain

Stable Process

Time

Unstable (Ramp) Processes

- Levels
- Pressures

Time

Time

Time

$$Ay + \frac{dy}{dt} + C = 0 \qquad (1)$$

$$A, C = Constant$$

$$y = y_0 + Kp \cdot \Delta x \left[1 - e^{-\left\{ \frac{t - \theta}{\tau} \right\}} \right] \qquad (2)$$

IF, Kp = 1,
$$\Delta x = 1$$
, then
a) [for t < θ]y = y₀
b) [for t = $\theta + \tau$]y = y₀ + 1 - e1 = y₀ + 0.632
c) [for t = ∞]y = y₀ + 1

Second Order and Higher Order Dynamics

Summation of Two or More

First Order Processes

Can be Approximated by First Order
 Dynamics for Purposes of Controller
 Tuning

Second Order Dynamics

Ramp Process Mathematics

Ramp Process Dynamics

Defined by 2 Parameters

- Process Gain Kr
 - Change of Slope of Process Variable (% of Scale/Minute) (per 1% Change in Controller Output)
- Dead Time θ

Inflow, Outflow, and Accumulation

Calculation of Model Parameters

A) Stable Process

Identifying Process Dynamics

- 1) Determine Whether Process is Stable or Unstable
- 2) Conduct Response Test
 - a) Put Controller in Manual
 - b) Make Small Change in Controller Output
 - c) Use Trend Recorder to Plot Change in Process Variable
 - d) Move Controller Output Back to Original Position
- 3) Calculate Model Parameters
 - a) Kp, θ , τ for Stable Process
 - b) Kr, θ , for Ramp Processes

Feedback Control

Types of Feedback Control

- Manual Operation (Human Controller)
- On/Off Control (e.g. Thermostat)
- Proportional
- Integral
- Derivative
- PID

Feedback Control Elements

- Measurement
- Setpoint Mechanism
- Controller
 Final Control Elements

On/Off Control

- Size of gap is only tuning parameter.
- Small adjustments impossible without frequently switching on/off.
- Air cooler is a common refinery example of on/off control.
- Sump pump another example.

Objectives of Proportional Control

- React to disturbances (regulatory).
- Move process toward new setpoint

entered by operator.

Proportional Control Parameters

PID Tuning Parameters are Defined Differently by Different Manufacturers Proportional Control Parameters

Kc = Controller Gain Increase Kc To Speed Up Action

PB = Proportional Band Decrease PB to Speed Up Action

$$\mathbf{Kc} = \frac{\mathbf{100}}{\mathbf{PB}}$$

Proportional Control

Effect of Tuning Constant on Control Action

Question: Why does the process variable not return to setpoint?

Proportional Control Example

Kc = 1.0 Error = SP-PV (% of Scale)

Proportional Control Example

a)T = 0: E = +2 b)T = 1: $E = +2, \Delta E = (2-2) = 0, \Delta OP = (1.0) (0) = 0$ E = +3, $\Delta E = (3-2) = 1$, $\Delta OP = (1.0) (1) = +1.0$ c)T = 2: d)T = 3: E = +4, $\Delta E = (4-3) = 1$, $\Delta OP = (1.0) (1) = +1.0$ $E = +3.5, \Delta E = (3.5-4) = -0.5, \Delta OP = (1.0) (-0.5) = -0.5$ e)T = 4: $E = +2.0, \Delta E = (2.0-3.5) = -1.5, \Delta OP = (1.0) (-1.5) = -1.5$ f)T = 5: $E = +1.0, \Delta E = (1.0-2.0) = -1.0, \Delta OP = (1.0) (-1.0) = -1.0$ g)T = 6: $E = +1.0, \Delta E = (1.0-1.0) = 0.0, \Delta OP = (1.0) (0) = -0.0$ h)T = 7:

Proportional Control

- Change in controller output proportional to change in error.
- Proportional-only controller stops moving when error is constant.
- Proportional-only controllers have steady-state offset.

Proportional Control

Proportional - Only Calculation

Output Change = Kc x [Error - Old Error]

 $\Delta OP = Kc \times \Delta E$

Kc = Controller Gain (Tuning Parameter)

Proportional Control - Dead Time

Time

Controller Output

Proportional Control - Dead Time

Process Variable #1 Dead Time = 0.0 Input Disturbance at Time T=0

Proportional Control - Dead Time

Process Variable #3 Dead Time = 2.0 Input Disturbance at Time T=0

Objectives of Integral Control

- Eliminate Controller Offset
- Bring Controlled Variable to New

Setpoint

Integral Control Parameters

- T₁ = Reset Time or Integral Time (Minutes) Decrease Reset Time to Speed Up Action
- R = Reset Rate (Repeats per Minute) Increase Reset Rate to Speed Up Action

T,	=	1
		R

Integral Control

- Change in controller output proportional to current error.
- Integral control is used to eliminate steady state offset.

Integral - Only Calculation Output Change = [Kc/T_i] x [ERROR] $\Delta OP = [Kc/T_i] x E$ T_i = Integral (Reset) Time

Integral Control Example

Question: The process variable changes direction at T=3 and begins to return to setpoint. Why does the controller output continue to increase?

Derivative Control

```
Error = SP-PV

\Delta Error = Error - Old Error

\Delta (\Delta Error) = \Delta Error - Old \Delta Error
```

- Change in controller output proportional to change of slope in error.
- Derivative control is used to give the controller a slight kick when the process variable begins to change, or when it changes direction.
- Implementation of derivative control requires in-depth knowledge. Noisy signals can cause derivative controllers to become oscillatory.
- Details of derivative control are beyond the scope of this course.

Proportional - Integral - Derivative Control (PID)

PI CONTROL CALCULATION

$\Delta \mathbf{OP} = \mathbf{K}_{c} \left[\Delta \mathbf{ERROR} + \frac{1}{\mathbf{T}_{l}} \left(\mathbf{ERROR} \right) \right]$

$K_{c} = Controller Gain$ $T_{I} = Integral (Reset) Time$

Proportional - Integral - Derivative Control (PID)

- PID is the Most Commonly Used Control Algorithm in the Refining / Petrochemical Industry
- PID Control is the Sum of the Individual Elements, Proportional + Integral + Derivative Control
- PID Control Reduces to PI (Proportional + Integral) Control, if Derivative Control is not Used

- Proportional action dominates when the PV is changing rapidly, but is close to SP.
- Integral action dominates when the PV is flat, but far away from SP.

PID Control Example

Controller Tuning Procedure

Controller Tuning Define Process Objectives

- Minimize Error Between PV and SP
- Minimize Movement of Controller Output
- Eliminate Swinging
- Respond to Upstream Disturbances
- Objectives must be Prioritized for each Controller; no Single Rule Applies for all Situations

Controller Tuning Procedure

- Define Process Control Objectives
- Determine Type of Process: Pressure, Flow, Temperature, or Level
- Identify Process Dynamics with Response Test
- Use Tuning Formulas for First Guess
- Evaluate Performance
- Adjust as Necessary

Controller Tuning - Flow Controllers

- First Order Dynamics
- Very Small Dead Time
- · Generally Tune as Fast as Possible Without Swinging

Outside Disturbances Affecting Flow Controllers

- Change in Upstream/Downstream Pressure
- Change in Phase (Vapor/Liquid) Due to Composition or Temperature Change

Controller Tuning - Flow Controller

Controller Tuning - Flow Controller

- · Use Same Response Test and Tuning Formula as Flow Controller
- Allow Response Test to Run to Completion (Sometimes more than 1/2 Hour for Columns)
- Use Trend System for Additional Data

Bypass Controllers

Fastest of all Temperature Controllers
 Can be One or Two-Valve System

· Rangeability and Windup can be Problems

- Which Valve are we Operating On?
- Are we Having Problems when one of the Valves Begins to Open or Close?

Does this controller wind up?

Objectives of Level Control

- Reject Normal Feed Rate Disturbances
- Prevent Level From Exceeding High or Low Limit
- Use Vessel Volume to Minimize Flow Change to Downstream Units
- Restore Level to Setpoint in Controlled Fashion After Disturbance Has Passed

Controller Tuning - Level Controllers

- Objectives different in each case.
 Outside disturbances different in each case.
- Know the process.

Controller Tuning - Level Controllers

Understanding How Ramp Processes Differ from Stable Processes

Controller Tuning Level Controller

- Level Control Consists of Two Distinct Events:
 - Turning the Level When a Disturbance Causes It to Change (Proportional)
 - Bringing the Level Back to Setpoint After It Has Been

Turned (Integral)

Controller Tuning Level Controller

- In Order to Tune a Level Controller, We Must
- Decide (Process Decision) How Quickly We Want
- **These Events to Occur**
- Limits to Consider
 - Dead Time/oscillations
 - Rate of Change of Controller Output
 - High/low Level Limit

Simple Method Controller Tuning - Level Controller

1) Turn the Level

$$Kc = \frac{1}{4} \cdot \left(\frac{\theta + 1}{2\theta \cdot 5^{+}}\right) \cdot \left[Speed Factor\right]$$
Speed Factor

- 2) Bring Level Back to Setpoint
 T₁ = 20 min (Average)
 T₁ = 10 min (Fast)
 - **T₁ = 40 min (Slow)**

Controller Tuning: Level Controllers (Simple Method)

Effect of Magnitude of Inflow Disturbance

Effect of Desired High or Low Level Limit

TIME

Level Control Tuning, Example Problem

Determination of Controller Gain, K, for Level Control Applications

- Assume 'D%', magnitude of inflow disturbance, % level/min.
 (Largest disturbance that occurs in normal operations without failure of process equipment).
- 2. Calculate 'M', mass of liquid contained in 1% of level.
- 3. Calculate mass magnitude of inflow disturbance = D% x M.
- 4. Define approximate 'upper level limit'. Calculate maximum accumulation, 'A', mass of liquid contained between upper limit and setpoint.

A = M x (Upper limit-setpoint)

5. Calculate average flow imbalance = (D% x M) / 2.

Determination of Controller Gain, K, for Level Control Applications

6. Calculate time available to equalize inflow with outflow,

T, min = (2 x A) / (D % x M) = 2 x (% lim - % SP) / D (%/min)

- 7. Calc. Req'd mass flow change per minute, F=(D% x M) /T.
- 8. Convert required mass flow change to percent of scale,
 F % per minute = (D x M) x 100 / Flowmeter range.
- 9. Estimate controller gain K = F% / D%.
- 10. Set reset time as follows: 8 min, rapid return to setpoint
 12 min, avg return to setpoint
 20 min, slow return to setpoint

Level Control Tuning, Example Problem

- 1. CROSS SECTION AREA = 3.4 m X (9.7 m + 1.7 m) = 38.9 m2
- 2. M = MASS OF LIQUID IN 1% LEVEL = 38.9 m2 X 0.031 m X 467 kg / m3 = 563 kg / % level
- 3. PREDICTED DISTURBANCE = D % = 0.1 % level / min
- 4. MASS FLOW DISTURBANCE = 0.1 % X 563 kg / % = 56.3 kg / min
- 5. AVERAGE FLOW IMBALANCE = 56.3 kg / min X 60 min / hr / 2 = 1689 kg / hr
- 6. UPPER LEVEL LIMIT = 55% thus A = 563 kg / % level X 5% = 2815 kg
- 7. TIME AVAILABLE = 2815 kg / 1689 kg / hr = 1.67 hr = 100 min.
- 8. AVG FLOW CHANGE = 56.3 kg / min * 60 min / hr / 100 min = 33.8 kg/hr / min
- 9. % SCALE FLOW CHANGE = 33.8 kg / hr X 100 / 26000 kg/hr = 0.13 % / min
- 10. CONTROLLER GAIN K = 0.13 % / 0.1 % = 1.3

Controller Tuning Pressure Controllers

- Pressure Control is a Ramp Process Similar to Level Control
- Pressure Measures Vapor Inventory; Level Measures Liquid Inventory
- In General, Pressure Needs to be Controlled Tightly, Because Vapor/Liquid Equilibrium is Affected
- This is Accomplished by Increasing Controller Gain

$$\mathbf{Kc} = \frac{1}{\mathbf{Kr}} \cdot \left(\frac{\theta + 1}{2\theta + 1}\right) \cdot \left[\mathbf{Speed Factor}\right]$$

0.5< Speed Factor <0.8

- Why Use Cascade Control?
- To Reject Measurable Disturbances That Have Faster Dynamics Than The Primary Controller

- The FC responds to a change in downstream pressure sooner than the LC.
- The FC can be tuned fast because flow control has faster dynamics than level control.

CONTROL SYSTEM WHERE OUTPUT OF PRIMARY CONTROLLER BECOMES SETPOINT OF SECONDARY CONTROLLER

Requirements

- Secondary (inner) loop dynamics must be at least 3-5 times faster than primary loop.
- Sensors and control hardware for the secondary loop must be installed/maintained.
- The PV scale of the secondary loop must have wide enough range so that the primary loop does not wind up prematurely.

Tuning Cascade Controllers

- Tune from the inside out
- Put primary (outer) loop in manual
- Tune secondary (inner) loop
- Tune primary (outer) loop
- Note: reset time of primary loop (T), must be at least 3-5 times as great as secondary loop, otherwise, primary loop may 'chase' secondary

DCS Controller Tuning

Introduction to Multivariable Control

Multivariable Control

- Simultaneous manipulation of multiple independent variables in order to control multiple dependent variables.
- The primary advantage of multivariable control is that interactions between variables are accounted for in the simultaneous move calculation.

Multivariable Control Example

Variable Interaction

Variable Interaction

MULTIVARIABLE GAIN MATRIX

	PROCESS TEMP.	EXCESS OXYGEN
FUEL FLOW	G11	G12
AIR FLOW	G21	G22

Multivariable Control Strategy Degrees of Freedom

<u>Definition</u> Degrees of freedom = # independent manipulated variables

controlled variables

If D.F. = 0, then there is a unique steady state solution
If D.F. < 0, then the problem is constrained
If D.F. > 0, then the problem has infinite steady state solutions and optimization is possible

Using the Multivariable Controller To Control Constrained Systems

- Controlled variables must be prioritized by some method
- Prioritization of variables is the primary method of enforcing multivariable control strategy
- APC engineer must consider all constraint scenarios when defining priorities
- Degrees of freedom can change as manipulated variables reach their maximum or minimum limits
- This means that a given APC problem can change among the 3 types
 - Optimizing
 - Square
 - Constrained

STONE & WEBSTE

Using the Multivariable Controller to Optimize Unit Operation

- Optimization is used to drive manipulated variables towards an economic or operational optimum.
- The optimum point is often at either the maximum or minimum end of the operating range.
- Optimization strategies must be prioritized relative to constraint priorities.
- More complicated optimization strategies require a more rigorous, model-based optimization system.

Optimizing System

Constrained System

Multivariable Controller Calculation

- Calculation of Current Error
 Ej = (SP-PV) j for Each Controlled Variable (j)
- Calculation of Predicted Future Error Ej (Future)
 - where $G_{ij} = Process Gain_{MV}$ - $\mathbf{X}_{i} = \mathbf{F}_{ij} \left(\mathbf{G}_{ij} \in \mathbf{M}_{ij} \right)$
- Calculation of Multivariable Solution $G_{11} X_1 + G_{12} X_2 + ... G_{1n} X_n - E_1 = 0$ $G_{21} X_1 + G_{22} X_2 + ... G_{2n} X_n - E_2 = 0$ $G_{n1} X_1 + G_{n2} X_2 + ... G_{nn} X_n - E_n = 0$

Solve for Xi by Mathematical Technique

Controller Tuning - Benefits

- Simplifies reconciliation of test data
- Increases credibility of conclusions
- Permits operation at higher capacity
- Allows more precise identification of limits for expansion planning
- Generates good will with client

Use of Controller Tuning Skills

- Generate "first guess" tuning constants from design data only
- Make adjustments during operation
- Solve operating problems

Initial Tuning from Design Data

- Flow Controllers
- Temperature Controllers
- Level Controllers
- Pressure Controllers

Initial Tuning - Flow Controller

- Estimate process gain Kp
 - Kp ~ 1.0 % flow / % valve for flow controllers
- Controller gain Kc ~ 0.6 / Kp
- Reset time ~ 0.5 min for flow control

Initial Tuning - Temp Controller

- Use design data to estimate incremental energy for 1 ° change
- Convert 1 ° to % scale
- Use design data to calculate change in heat medium flow required
- Assume 1% valve = 1% design flow
- Calculate Kp % / %

Initial Tuning - Temp Controller

- Kc ~ 0.5 / Kp
- Reset time depends on system inventory
 - About 2 3 min for once through exchanger
 - About 5 7 min for tower bottoms
 - About 10 min for large recirculated system

Controller Tuning Etiquette

- Get permission from Client engineer
- Share tuning strategy with operator
- Make sure operator has time to monitor performance
- Make sure you have time to monitor performance
- Keep records of changes

Controller Tuning Efficiency

- Minimize impact on schedule
- Be prepared to take advantage of opportunity windows
- Plan other tasks that can be performed while monitoring tuning
- Establish partnership with operator

Controller Tuning as Deliverable

- Identify controller tuning as project deliverable
- Add hours to budget as necessary
- Include in lump sum estimates
- Submit change order if not in original scope of work
- Don't give away what can be sold

