

44TH TURBOMACHINERY & 31ST PUMP SYMPOSIA HOUSTON, TEXAS | SEPTEMBER 14 - 17 2015 GEORGE R. BROWN CONVENTION CENTER

Eliminating cavitation damage in high-energy water injection pumps by suction impeller redesign

Tim Bastiaansen¹, Nico van den Berg¹, Frank Visser^{1,3} Yousuf S. Al-Shuhail², Saad A. Al-Ali², Abdulaziz N. Al-Qahtani² ¹Flowserve, ²Saudi Aramco, ³Presenter

Contents

Introduction

- Project objective
- History
- Field experience
- Impeller Redesign
 - Approach
 - Outcome
- Verification
 - Flow visualization testing
- Conclusion
 - Project results
 - Lessons learned

Introduction – Project Objective

Problem statement:

First-stage/suction impeller of high-energy high-speed water injection pumps (WIP's) is experiencing cavitation damage, resulting in not making the 40,000 hours life criterion.

Objective:

Design a new first-stage/suction impeller using Computational Fluid Dynamics (CFD) that will minimize (eliminate?) cavitation, thus improving lifetime, and verify this with a flow visualization test.

Introduction – Pump Info/History

Three identical high-speed multistage pumps in water injection service (Pumps were ordered in 2001 and commissioned in 2005)

Some Details:

- Five stages (de-staged)
- Single suction first stage
- Between bearing
- Radial split barrel (API 610 BB5)
- Top-top nozzles
- High speed (5000 [RPM])
- Fluid: raw (formation) water
- Total Dissolved Solids (TDS): 11000 ppm

Introduction – Pump Info/History

	Design	Operating range		
Flow	1104 <mark>(4861)</mark>	820 <mark>(3610)</mark>	1000 <mark>(4403)</mark>	[m³/h] <mark>([USGPM])</mark>
Head	1966 <mark>(6451)</mark>	2303 <mark>(7556)</mark>	2060 <mark>(6759)</mark>	[m] <mark>([ft])</mark>
Temperature	74 <mark>(165)</mark>	79 <mark>(174)</mark>	79 <mark>(174)</mark>	[°C] (°F)
Power	8203 <mark>(11000)</mark>	6711 <mark>(9000)</mark>	7084 <mark>(9500)</mark>	[kW] <mark>([hp])</mark>
Speed	4964	4964	4964	[RPM]
U _{EYE}	54.5 <mark>(179)</mark>	54.5 <mark>(179)</mark>	54.5 <mark>(179)</mark>	[m/s] <mark>([ft/s])</mark>
NPSHA	98.8 <mark>(324)</mark>	106.7 <mark>(350)</mark>	121.9 <mark>(400)</mark>	[m] <mark>([ft])</mark>
NPSH3	33.5 <mark>(110)</mark>	15.2 <mark>(50)</mark>	22.7 <mark>(75)</mark>	[m] <mark>([ft])</mark>
NPSHA/NPSH3	2.95	7.0	5.33	[-]
NPSH _{40000hrs}	45.7 <mark>(150)</mark>	-	-	[m] <mark>([ft])</mark>

Introduction – Field Operating Data

Introduction – Field Experience

2003 (FAT):

Vane leading edge reworked to meet rated NPSH3.

2008 (28000 hrs of operation):

First stage impeller shows cavitation damage.

Introduction – Field Experience

2008 (First fix):

Upgrade impeller material from

316 stainless steel to Nitronic 50

2012 (13000 hrs operation): Nitronic 50 impeller shows same damage pattern

→ material upgrade did not work

First-stage impeller needs to be redesigned to remedy the problem

- Key indicator to drive the redesign process was the incipient cavitation Net Positive Suction Head characteristic (NPSHi)
 - NPSHi = level of NPSHA where the first vapor cavities appear (somewhere inside the pump/impeller)
- Key feature to implement was a so-called biased-wedge blade thickness distribution, shaping the blade leading edge like an airfoil in order to have minimum pressure drop at the nose

Conventional bladeBiased-wedge leading edge(symmetrical leading edge)

Improved incidence between W_1 and the camber line

New design:

- Based on same parent impeller hydraulic as original
- Five design iterations were performed using in-house design tools driven by (CFD) NPSHi calculations
- Design decision criteria:

BCP* near rated flow (BCP > Q_{rated})
NPSH3 < NPSHA @ max operating flow

 Rapid prototyping (3D printing) was used to produce the final design

*BCP = Best Cavitating Point

Results:

Original

Results @ rated flow and field NPSHA

Conclusion - Project results

- Impeller blade leading edge has been optimized to reduce (eliminate) cavitation.
- The improvement has been verified by flow visualization testing.
- Incorporating the **biased-wedge** design has resulted in:
 - No cavitation from 70% to 100%+ of rated flow @ field NPSHA
 - Only marginal cavitation ($L_{cav} < 5 \text{ mm}$) will be present between 60% - 70% of rated flow
 - Impeller life criterion of 40.000 hours will be (easily) met, and exceed by far
- Pump with new first stage impeller was commissioned successfully in Q1 2015

Conclusions – Lessons learned

- A biased-wedge design can improve cavitation characteristics significantly, and even eliminate the occurrence of cavitation, for a wide range of flow rates
- The classical 3% head drop criterion is inappropriate for high energy pumps in water applications when having high impeller-eye peripheral speed
- Despite operating well above NPSH3, with a rated NPSH3 margin of nearly 3 (!) cavitation damage can occur, limiting impeller life below acceptable.

Conclusions – Lessons learned

Revised customer standard:

Pump type	NPSH3 curve	40000 hrs curve	Visualization test	Acceptance criteria
All pumps		*	*	NPSH Margin MCSF [*] - 120% > 1 [m] (3.3 [ft])
High energy water injection pumps				Depth of penetration < 75% of vane thickness
Water injection pumps eye peripheral velocity > 47 [m/s] (154 [ft/s])			\checkmark	Depth of penetration < 75% of vane thickness

*Minimum Continuous Stable Flow

Thank you for your attention.

Questions?

For further reading:

Van den Berg, N., Bastiaansen, T., and Elebiary, K. 2015 "Predicting, improving and visualizing cavitation characteristics of first-stage impellers in high-speed, highenergy pumps." ASME-JSME-KSME Joint Fluids Engineering Conference, July 26-31, Seoul, Korea, Paper No. AJK2015-33420

