
FUNDAMENTALS OF **ENVIRONMENTAL** ENGINEERING **CE 356** The Safe Drinking Water Act

Adopted from Dr. Fernando Cadena ©1997

Learning Objectives

1 Comprehend the roles of the parties responsible for implementing the SDWA.

2 As a civil engineer: comprehend, interpret, and apply requirements of the SDWA in the context of designing a municipal water system.

SDWA Legislation

 Congress passed SDWA in 1974
 Revised several times

3

Impact of the SDWA

Goal: ensures potable water for U.S. Applies to communities: -15 or more connections, or -25 or more people

Legislative Authority

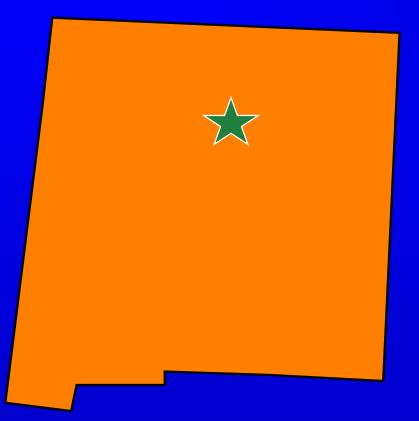
Congress authorized the Act Congress appoints the EPA to enforce the Act at a Federal Level **EPA** makes sure States comply

EPA's Role

EPA grants NM primacy

Responsibilities:

- Set national standards to protect against health risks considering available technology and costs
- Establish Primary drinking water regulations: enforceable maximum contaminant levels
- Set requirements for ways to treat water
- Set requirements for testing for contaminants
- Provide guidance, assistance, and public information
- Collects drinking water data
- Oversee state drinking water programs


State's Role

NM, a State with primacy

Primacy:

- State enforces SDWA
- Make sure water systems test for contaminants
- Review water system plans
- Conduct on-site inspections and sanitary surveys
- Provide training and technical assistance
- Take action against violators

State's Privileges

Abide by the **SDWA** May impose more stringent, or broader, standards

NM communities comply with NMED requirements

- Treat water
- Test for specified contaminants
- Report testing results to states
- Notify customers of violations
- Annual report to municipalities

Public's Role

NM citizens provide input

- Responsibilities:
 - Help local water suppliers set priorities
 - Make decisions on funding and system improvements
 - Establish programs to protect drinking water sources
 - Examples of citizen groups: advisory committees, rate boards, volunteers, civic leaders

Civil Engineer's Role • Responsibilities:

Represent client in all facets of design

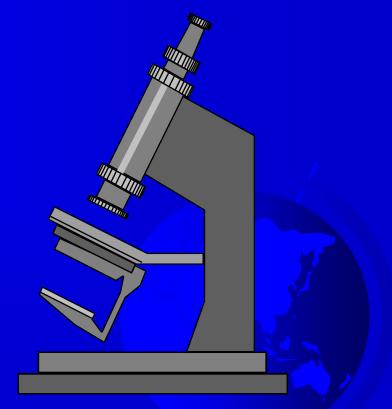
- Comprehensive knowledge of SDWA: standards & technology
- Establish community's water demand
- Match and design technologies for water quality
- Assist client in obtaining funding for: planning, design, construction, operation of the water treatment plant

History of the SDWA

Adopted in 1974
Frequently updated
Each amendment is subject to congressional approval

Requirements of the SDWA

- EPA must set standards for a number of pollutants.
 - -The standards include a list of 80+ pollutants written into the law.
 - Advances in technology contribute to need for updating the list


Requirements of the SDWA

Water utilities must provide the results of water analysis to its customers.

See Las Cruces report

SDWA Pollutant Categories

- 1. Organics
- 2. Inorganics
- 3. Radionuclides
- 4. Microorganisms
- 5. Disinfectant
- 6. Disinfection byproducts

Let's Visit the Office of Water at USEPA

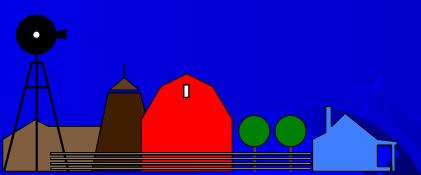
Primary
 <u>Standards</u>
 Secondary
 <u>Standards</u>

Primary and Secondary Standards Comparison Primary: Secondary: – not enforceable – enforceable by law and and - refer to aesthetics - related to health (i.e., cosmetic effects of water characteristics of water)

Types of Primary Standards Maximum Concentration Level (MCL) - Intended to protect public health - Enforceable Maximum Concentration Level Goal (MCLG) – No know or expected health risk - Not enforceable

EPA Sets Primary Standards

Identify contaminants that occur in drinking water and may affect public health


Determine a Maximum Concentration Level Goal (MCLG)
Specify a Maximum Concentration Level (MCL)

MCL vs Treatment Technique

Not economically or technically feasible to set an MCL No reliable economic method to detect contaminants Set a treatment technique (TT) -Specify a way (technology) to treat water to remove contaminants

Organics

50+ parameters
Includes:
- solvents
- pesticides
- petrochemicals

Organic Chemicals Synthetic organic chemicals Trihalomethanes (THMs) Volatile organic chemicals (VOCs)

Synthetic Organics

Man-made chemicals
 Discharged in industrial wastewater

More than 1,000 different SOCs have been detected in drinking water

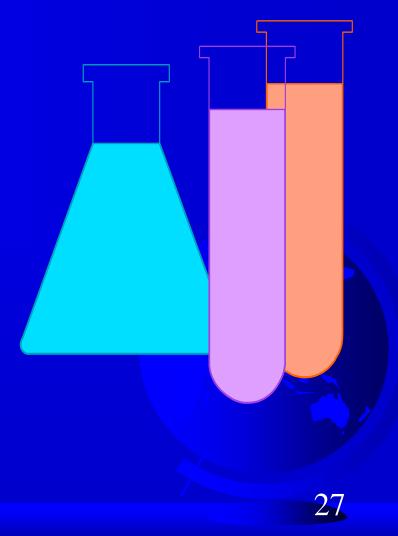
Trihalomethanes (THMs)

By-products of chlorine disinfectant

- THMs may cause or contribute to cancer

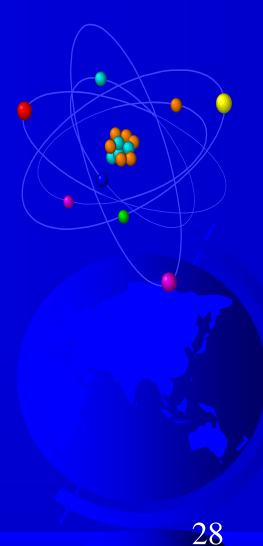
THMs can be prevented by good control of the chlorination process

VOCs


Volatile organic chemicals
Volatile = evaporates readily
Often used as solvents
Most common contaminant of groundwater at Superfund sites

VOCs

 Many VOCs are known or suspected carcinogens
 Expensive to treat, especially in groundwater


Inorganics

☞ 10+ pollutants Includes: -Heavy metals -Fluoride -Cyanide -Asbestos -Nitrates and nitrites

Radionuclides

Current standards for: -Radium -Alpha emitters (total) Proposed standards for: -Radon -Uranium

Microorganisms

Includes:
Giardia
Legionella
Coliforms
Viruses

