
CE 356: Fundamentals of **Environmental Engineering** Microbiology and **Activated Sludge Design** Ricardo B. Jacquez Professor, CAGE Department **New Mexico State University**

Teaching Assistant: M. T. Myint

Significant Microorganisms

- Bacteria single cell microorganisms that reproduce by binary fission.
- Fungi yeasts and molds.
- Protozoa Single cell animals
 - Bacteria consume soluble (dissolved) BOD (organic substrate) and are aggregated into biofilm and floc to which suspended solids attach.

(from Viessman, Jr. and Hammer, 1998, pp. 521-522)

Biomass General Formulas

- C₆₀H₈₇O₂₃N₁₂P
- $C_5H_7O_2N_2$
 - C = 50% O = 20% N = 14% H = 8% P = 3%Total = 95%

How does this information relate to the characteristics of wastewater?

Growth of Heterotrophic Cultures

- Cultures:
 - Continuous Growth: substrate (BOD) fed continuously
 - Batch Growth:
 - Single dose of substrate (BOD)
 - Single inoculation of biomass (mixed liquor suspended solids, MLSS)
 - > Growth not limited by O₂, N, or P
 - Monitor change of substrate level (COD or BOD) and MLSS with time

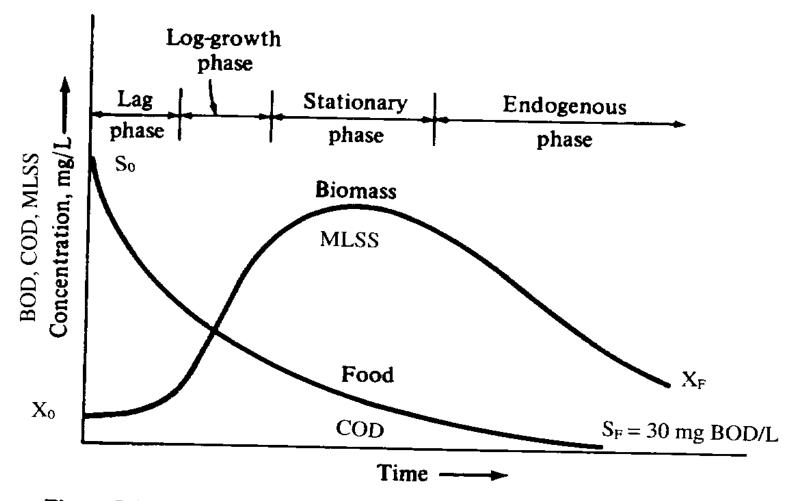


Figure 5-14 Biomass growth and food utilization.

 $X_F - X_O = Sludge \ Production$ $S_0 - S_F = Substrate \ removal \ (BOD \ reduction)$ (from Peavy, Rowe, and Tchobanoglous, 1985, p.231)

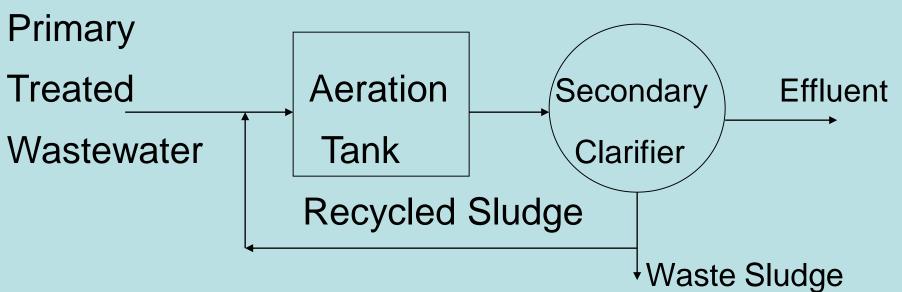
Growth of Heterotrophic Cultures

- Lag phase: acclimation to new substrate, could be short lived
- Log Growth: active reproduction by binary fission
- Stationary: Growth = Death
- Endogenous: Death > Growth
- In lag and log growth phases sufficient substrate is available
- In stationary and endogenous phases substrate is limited

$$\frac{X_F - X_0}{S_0 - S_e} = Y = biomass \ yield = \frac{mg \ MLSS \ produced}{mg \ BOD \ or \ COD \ removed}$$

Design Equation: Identify, define (units), and describe the "design parameters" vs "typical known" conditions. Which parameter(s) does the design engineer control?

$$\frac{1}{\theta_c} = Y \frac{(S_0 - S_e)Q}{XV} - k_d$$


Sludge Age

- Sludge age is the length of time (days) the sludge (bacteria) is retained within the secondary treatment process.
 - Activated sludge: 10 days $Y_{net} = 0.4 0.6$
 - Trickling filter: 100 days $Y_{net} = 0.1 0.3$ $Y_{net} = \frac{lb \ sludge \ produced}{lb \ BOD \ removed}$
- Trickling filters also produce a more dense (thicker) sludge:
 - -TF = 1.5% solids
 - -AS=0.8% solids

Activated Sludge

- Definition: A process in which wastewater continuously flows into an aerated tank in which a culture of suspended microorganisms biologically flocculate and metabolize colloidal and soluble organic material (BOD).
 - Primary organisms bacteria, consume soluble and colloidal organics.
 - Secondary organisms protozoa, consume suspended organics and dispersed bacteria.
 - Aeration provides:
 - Mixing necessary to keep microorganisms in contact with the organics.
 - Oxygen for metabolism.

Biological Principles

Aeration Tank – the content of the aeration tank is referred to as the **mixed liquor**. In the aeration tank, the microorganisms come in contact with the waste material. As the organic material is being decomposed synthesis of the microorganisms occurs.

Biological Principles

- Secondary Clarifier mixed liquor is allowed to separate, the supernatant becomes the effluent.
- Wasted Sludge sludge must be wasted to prevent excessive buildup of the microorganisms decreasing the F/M.
- Recycled Sludge sludge is recycled to maintain the F/M ratio. If the sludge is not recycled the microorganism concentration will be diluted.

Design and Operational Parameter

- Food to Microorganism Ratio (F/M)
- $\frac{F}{M} = \frac{Total \ BOD \ applied \ in \ one \ day}{Total \ mass \ of \ sludge \ in \ aeration \ tank}$ $\frac{F}{M} = \frac{lbs \ BOD \ applied}{lbs \ sludge}$
- Common range for F/M ratio = 0.05 to 0.6 day⁻¹ (0.05 for extended aeration, 1.0 for pure oxygen)

Example: Determine the F/M ratio for an activated sludge process operating under the following conditions: BOD = 200 mg/L, Q = 1MGD, $t_d = 4$ hrs (0.167day), MLVSS = 2,550 mg/L

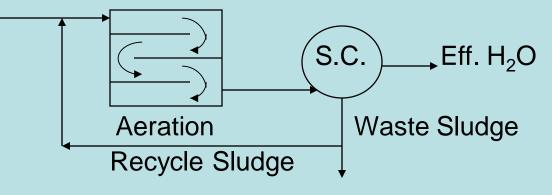
 $M_{BOD} = 1 MGD \times 200 mg/L \times 8.34 lb/(MG-mg/L)$ $M_{BOD} = 1,668 lbs/day$

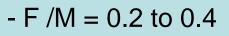
 $V = Q \times t_d = 1 MGD \times 0.167 day = 0.167 MG$

M_{sludge} = 0.167 MG x 2,550 mg/L x 8.34 lb/(MGmg/L)

 $M_{sludge} = 3,552 \text{ lbs (in aeration tank)}$ F/M = 1,669 lbs/day / 3,552 lbs = 0.47 day⁻¹

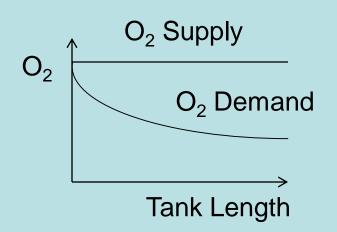
TYPE OF PROCESS	$\begin{array}{l} \textbf{MEAN CELL} \\ \textbf{RESIDENCE} \\ \textbf{TIME,} \\ \theta_{c}, \ \textbf{days} \end{array}$	FOOD-TO- MICROBE RATIO	SPACE LOADING		HYDRAULIC RETENTION TIME IN	MIXED- LIQUOR SUSPENDED			BOD
			lb BOD ₅ day-1000 ft ³	kg BODs day-m ³	AERATION BASIN Ø, hr	SOLIDS (MLSS), mg/ℓ	RECYCLE RATIO, R/Q	FLOW REGIME®	REMOVAL EFFICIENCY, %
Conventional	5-15	0.2-0.4	20-40	0.3-0.6	4-8	1500-3000	0.25-1.0	PF. DPF	85-95
Tapered aeration	5-15	0.2-0.4	20-40	0.3-0.6	4-8	1500-3000	0.25-1.0	PF, DPF	85-95
Completely mixed	5-30	0.1-0.6	50-120	0.8-2.0	3-6	2500-4000	0.25-1.5	СМ	85-95
Step acration	5-15	0.2-0.4	40-60	0.6-1.0	3-5	2000-3500	0.25-0.75	PF, DPF	85-95
Modified aeration	0.2-0.5	1.5-5.0	75-150	1.2-2.4	1.5-3	200-500	0.05-0.15	PF, DPF	60-75
Contact stabilization	5-15	0.2-0.6	60-75	1.0-1.2			0.50-1.5		
Contact basin					0.5-1.0	1000-3000		PF, DPF	80-90
Stabilization basin					3-6	4000-10,000		PF, DPF	
High-rate acration	5-10	0.4-1.5	100 - 1000	1.6-16	2-4	4000-10,000	1.0-5.0	СМ	75-90
Extended acration	20-30	0.05-0.15	10-25	0.16-0.4	18-36	3000-6000	0.75-1.50	PF, DPF	75-95
Pure oxygen	8-20	0.25-1.0	100-200	1.6-3.2	1-3	3000-8000	0.25-0.5	СМ	85-95

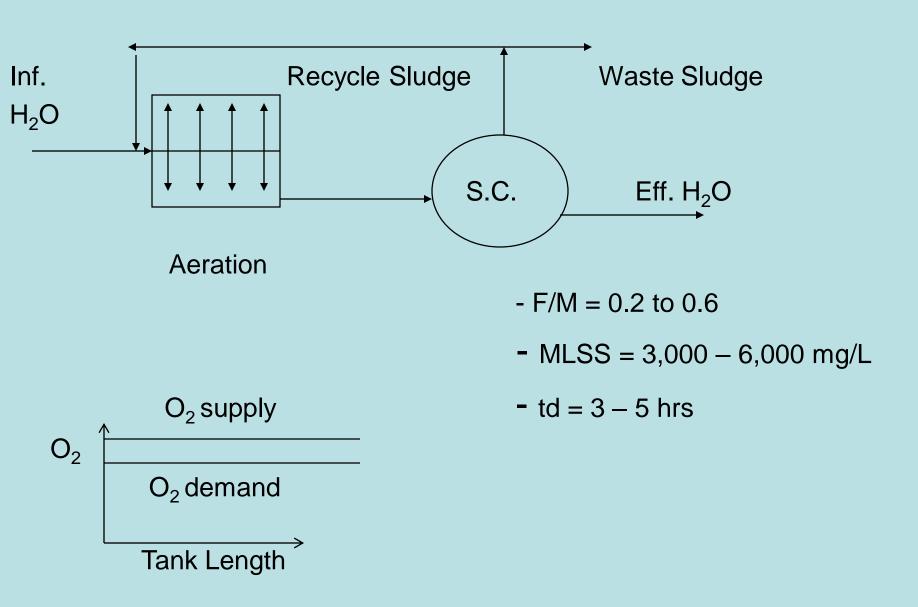

TABLE 15.4 Design and Operational Parameters for Activated Sludge Treatment of Municipal Wastewaters


"PF = plug flow, DPF = dispersed plug flow, CM = completely mixed.

Adapted from Wastewater Engineering: Treatment, Disposal and Reuse by Metcalf & Eddy, Inc., 3rd ed. Copyright © 1991 by McGraw-Hill, Inc.; and from Design of Municipal Wastewater Treatment Plants, Vol. 1, WEF Manual of Practice No. 8 and ASCE Manual and Report on Engineering Practice No. 76. Copyright © 1991 by Water Environment Federation and American Society of Civil Engineers. Reprinted by permission.

Conventional Treatment


Inf. H₂O



- MLSS = 1,500 to 3,000 mg/L
- td = 4 to 8 hrs
- F/M is decreasing across the length of the tank.

S.C.= secondary clarifier

Completely Mixed

Example for Review

- See pgs 576 577
- Example 12.9