
Bay Water SWRO Desalination: Challenges and Solutions

Val S. Frenkel, Ph.D.

All text, image and other materials contained or displayed in this document are proprietary to Kennedy/Jenks Consultants, Inc., constitute valuable intellectual property, and are protected by copyright laws. No part of this document may be transmitted, broadcast, reproduced distributed, displayed, published, or in any other way used or otherwise disseminated in any form to any person or entity, without the prior written permission of an officer of Kennedy/Jenks.

SWRO Provides New Water Sources

SWRO Provides New Water Sources

Water Resources

President John F. Kennedy, April 1961:

97%"If we could ever competitively, at a cheap rate, get freshwater from salt water, that would be in the long-range interest of humanity and would dwarf any other scientific accomplishments."

Seawater: The only long-term, completely reliable source of drinking water.

Ice at the Polar Caps Atmosphere

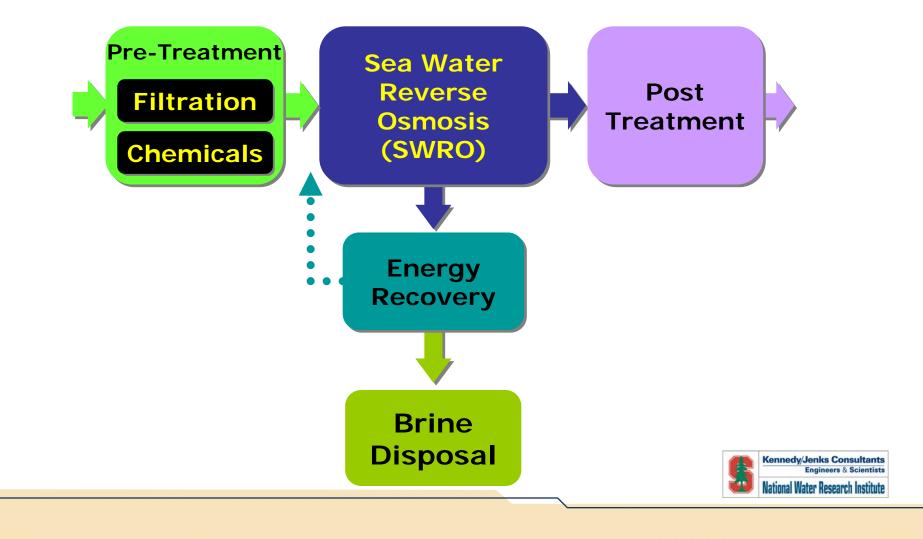
Rivers and Lakes

2% -0.3%

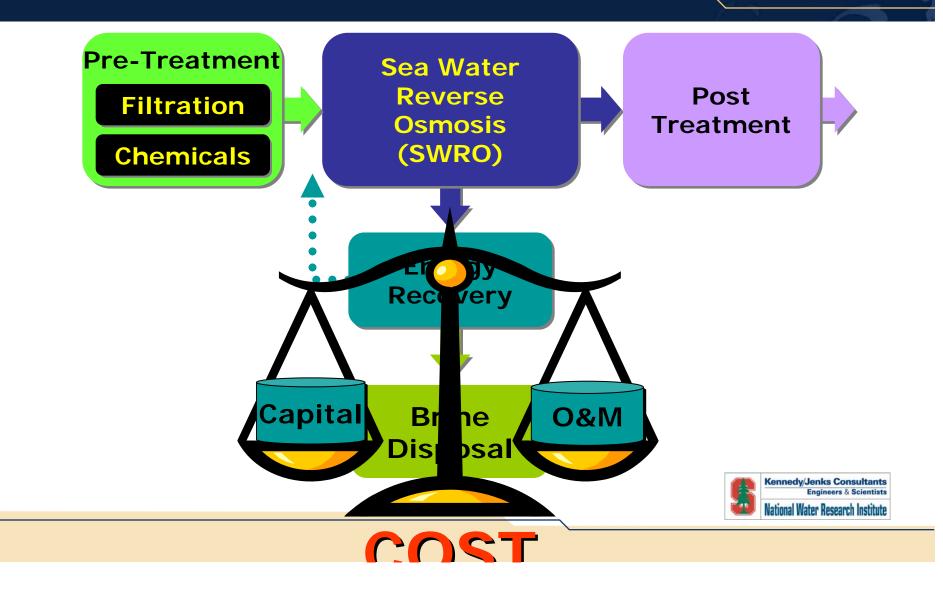
0.1%

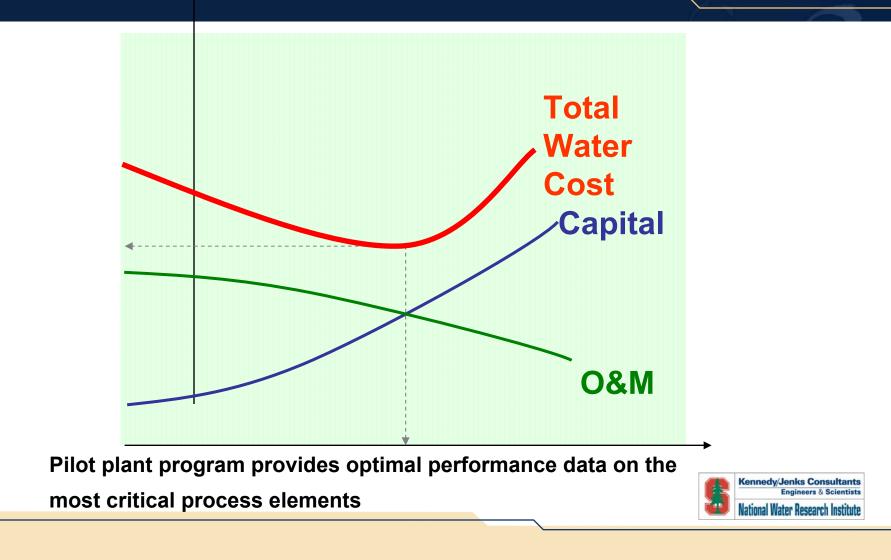
Groundwater Aquifers (A half at depth > 2,600 ft)

Oceans (Salinity > 35,000 ppm)

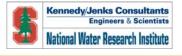

Desalination in 1990 and today

SWRO Advances:


- New commercial membrane pre-treatment MF and UF
- Energy Recovery Devices from 30% energy savings up to 45%
- New SWRO membrane elements materials (TFC): higher porosity, more uniform pores, salt rejection up to 99.8%, 30% less energy
- New generation of chemicals, including Antiscalents, Dispersants and others, allowing operate SWRO at much higher recovery from 30% to 50% depending on chemistry and TDS
- SWRO membrane elements became commodity which led to reducing 8" x 40" element cost from ~ \$ 2,000 to ~ \$ 500.
- Overall reduction in capital cost and O&M makes SWRO acceptable standard in water desalination
- Number of SWRO plants overcomes thermal desalination

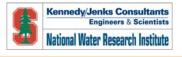

The Technical Desalting Process...

... Is Balanced On Cost Considerations


Optimal Design Parameters Ensure the Lowest Cost of Water

SWRO Pilot Study

Desalination Pilot Study Major Generic Objectives:


- Evaluate and pilot pre-treatment (local issues) for the DESALINATION process saves capital and O&M
- Evaluate and prove product water quality including emerging contaminants
- Evaluate quality and discharge criteria for the brine
- Provide public outreach and educate residents on desalination technology and quality of the produced water

SWRO Pilot Study

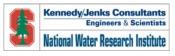
Desalination Pilot Study Benefits:

- Pilot study can save 5-10% of the <u>Capital investment</u> and up to 20% of the <u>O&M</u> for the DESALINATION project
- Piloting technology provides smooth <u>startup, operation and</u>
 <u>commissioning</u> of the full scale system.
- Piloting provides complete picture on the product water quality major components and emerging contaminants, as well as on the discharged brine.

MMWD SWRO Pilot Plant Objectives:

- Establish optimum operating conditions for both conventional and membrane pretreatment
- Determine which pretreatment system is best-suited for the SWRO process
- Demonstrate that SWRO can reliably desalt San Francisco Bay water
- Demonstrate that desalted seawater meets or exceeds state and federal drinking water standards
- Demonstrate the efficacy of the membrane process in removing trace compounds of concern
- **Establish operating parameters for a 56,575 m3/d (15 mgd) full-scale facility**
- Demonstrate that the desalinated water compares favorably with the low-TDS, low-sodium drinking water that MMWD customers currently supplied
- Conduct testing of pretreatment residuals to determine design of full-scale plant residuals handling and disposal
- Conduct a public outreach program to acquaint the public and media with the technology employed and the quality of the water produced

SWRO Pilot Plant Treated Water Quality Objectives:


The treated water quality objectives for the SWRO Pilot plant are based on:

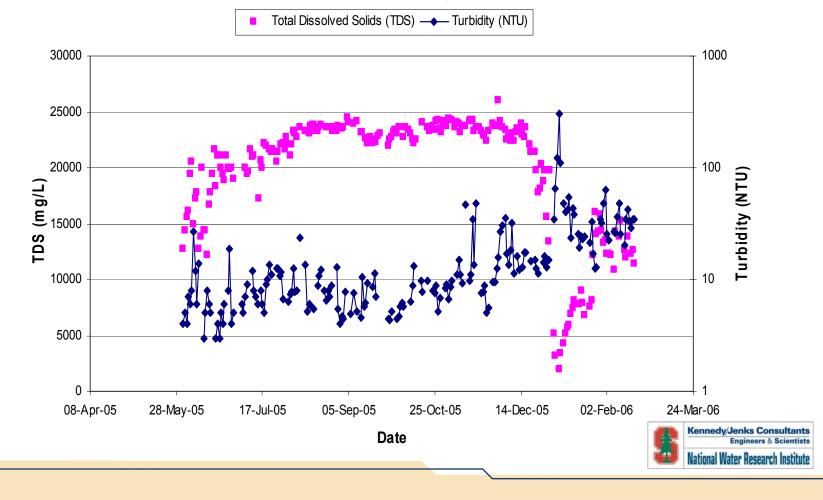
- Compliance with Federal and State regulatory requirements,
- Meeting MMWD's additional requirements for dissolved minerals (e.g., Sodium),
- Ensuring the treatment process can remove unregulated emerging contaminants, and
- **Customer acceptance**, i.e., taste.

The treated water objectives to ensure compliance with the current and upcoming water quality regulations include the requirements of the following:

- Surface Water Treatment Rule (SWTR),
- Interim Enhanced SWTR and Long-Term 2 Enhanced SWTR,
- Stage 1 and 2 Disinfectants and Disinfection By-Product Rules,
- Lead and Copper Rule,
- Boron Action Level,
- Total Coliform Rule, and
- ► The California Cryptosporidium Action Plan.

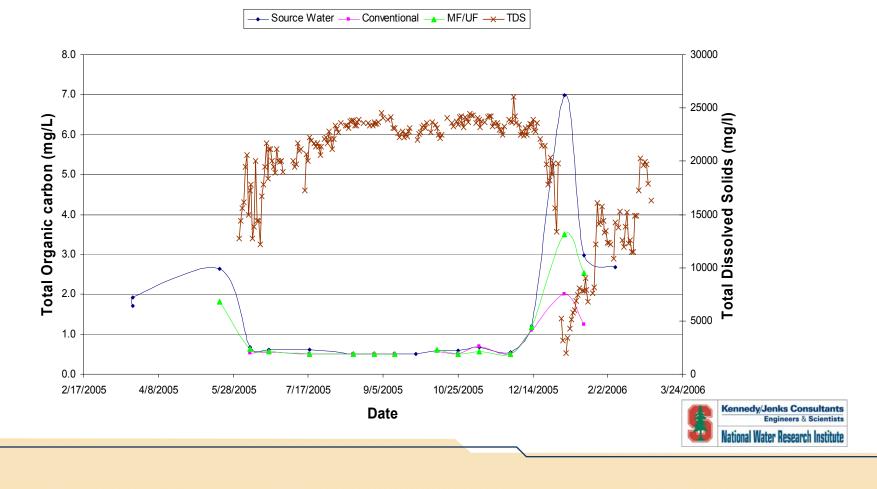
MMWD has additional requirements to ensure that the water from the SWRO plant is chemically compatible with and comparable in quality to the District's other water sources.

Variable Nature of Francisco Bay Water


There are daily and seasonal variations in salinity, suspended solids, and productivity levels in the North SF Bay

Kennedy/Jenks Consultants Engineers & Scientists National Water Research Institute

Salinity and Turbidity Vary Diurnally and Seasonally

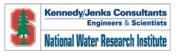

MWD Seawater Desalination Pilot Progra

Source Water Turbidity and TDS

Source Water Organics Vary with Freshwater Runoff in Bay

MMWD Seawater Desalination Pilot Program Source Water and Filtrate Total Organic Carbon (TOC)

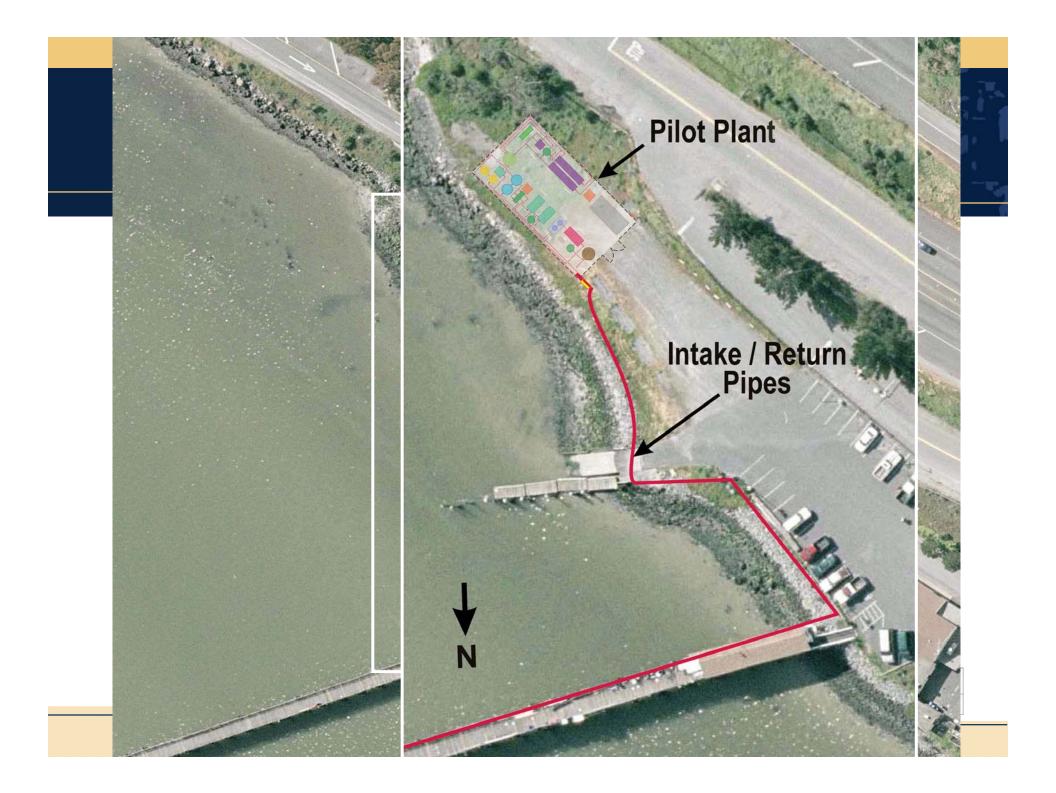
Demonstrating SWRO is a Viable, Reliable Water Supply Solution



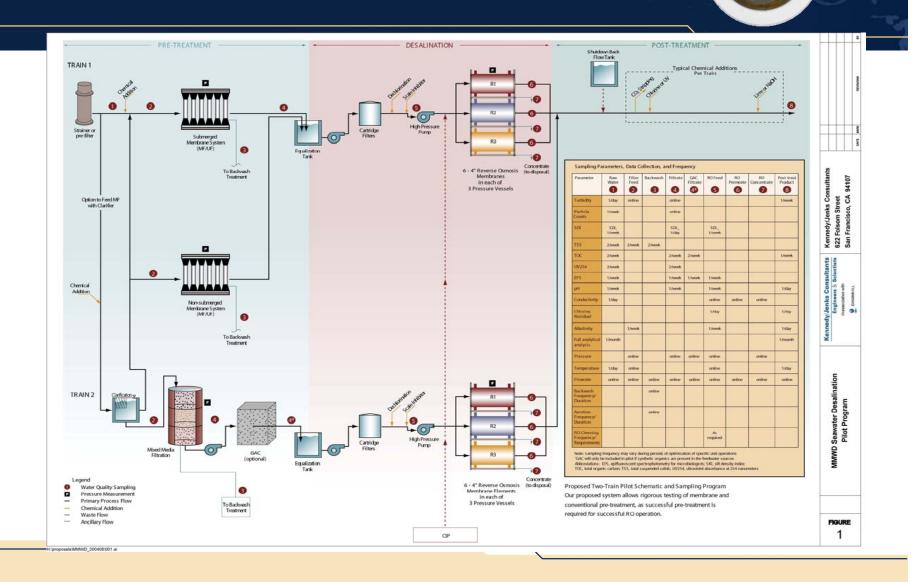
Team When Project Started.....

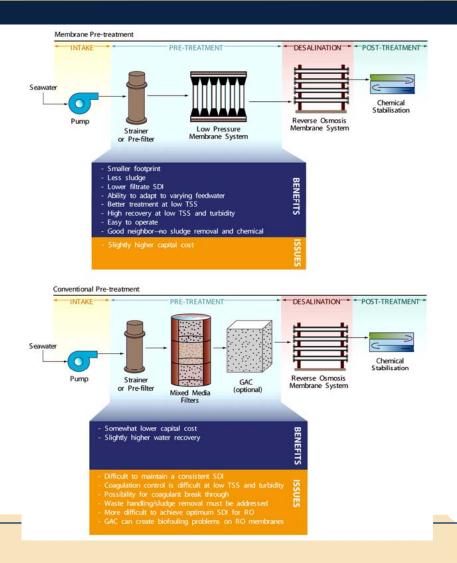
Team When Project Started.....

Site Location Map

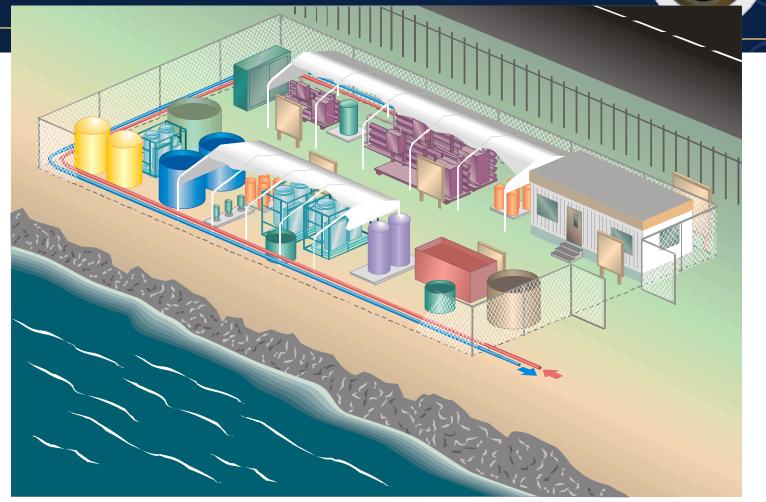


Kennedy/Jenks Consultants Engineers & Scientists National Water Research Institute

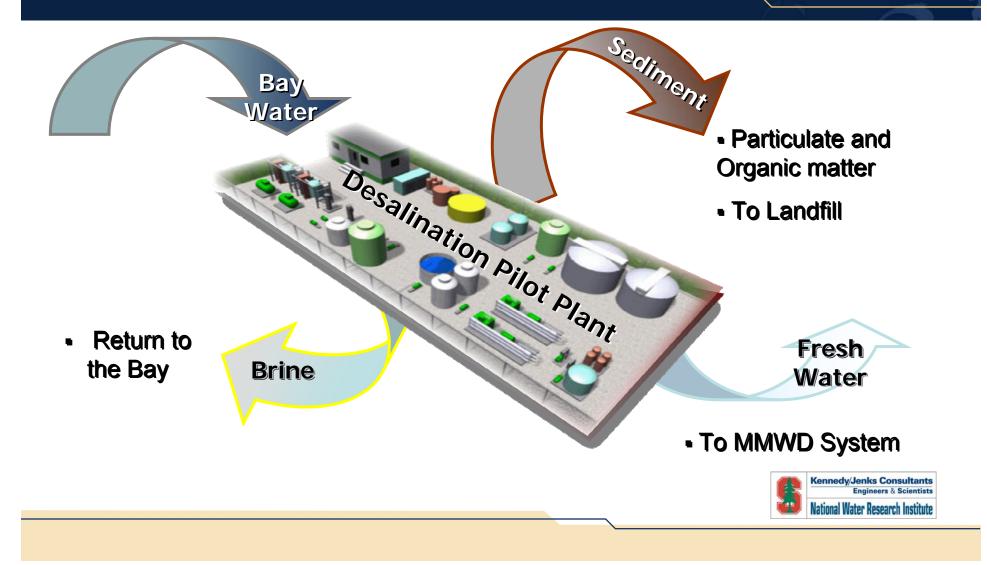

Site Location Map



Pilot Process Flow Diagram - PFD


SWRO Pilot Program Configuration

- To ensure optimum data for comparison and design, we have two SWRO trains fed by three pretreatment units.
- This approach successfully demonstrated similar pretreatment for SWRO at many places around the world.



Pilot Plant General Layout

MMWD Desalination: From Bay Water to Drinking Water

SWRO Pilot Intake 2,000 ft / 600 meters

Intake Screening

- Designed to meet Federal and State criteria (316b) for fish protection
 - 3/32-inch openings
 - <0.3 fps velocity</p>
 - airburst cleaning
- Removes large particles and debris

Feed Strainers Reduce Solids Loading and Protect MF/UF Systems

- Bollfilter 100 micron
 Wedgewire Strainer
 - Stainless steel
 - Water backwash
- Arkal 100 micron Disk Strainer
 - Plastic disks and body
 - Air or water backwash

Disk strainer provides better water quality with easier maintenance

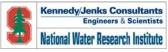
100 micron Wedgewire Strainer

100 micron Disk Strainer

- Parallel 2-hr clogging capacity test of strainer effluent
- Disk Strainer effluent contained fewer solids
- Disk strainer permitted easy access to strainer elements
- Plastic materials for corrosion resistance

Membrane Pre-Treatment: MF & UF

Conventional Pre-Treatment


SWRO: 1st and 2nd Passes

2nd Pass RO

Post Treatment

^{*} Illarin Independent Journal

PIPE: Extension is sought

empage A1 t the project has been put on hack burner as the water distrumme desclination. If MMWD does not renew the states, the pipeling project is the states and the

attady down test top syster, solar to a categoria, "I attanta that, "general down the series that attanta that, "general down the series that, "general down the series that attanta that, "general down the series that attanta that attantanta that at

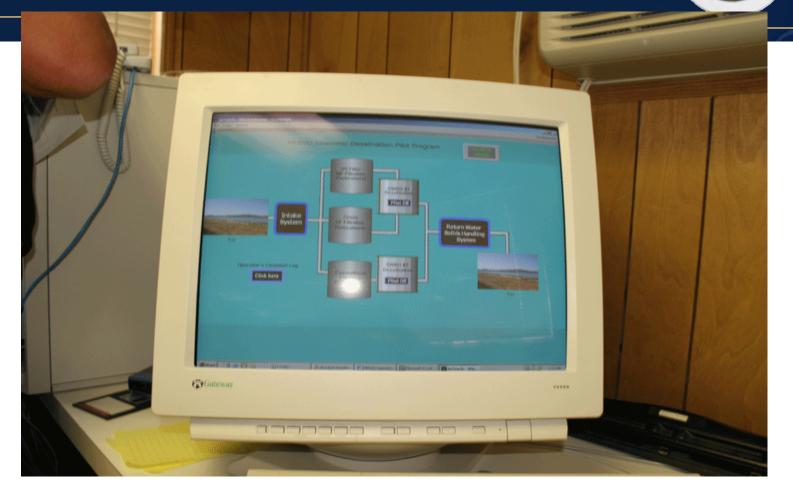
anong very terry was approved. A bits with A bits and Elinabeth metal, speakersent. Die Menie water district board Die Menie water district board then hold a special metalen andel.

and 2D. Simply renewing the contract solids' mean the water from so to Russian Rover would be avail the overnight, Huffman noted. First, Marin would have to first, Marin would have to the solution of the solution of the solution of the solution of the contract Mark Prode via e-mail of First, Marin would have to solution of the solutio

TASTE: Desalinated water win

age A1 The desailnated water v sensets, that's feightenwey surgeded. It million pilot desails to pilot at 11 million pilot desails that is a 11 million pilot desail that heidge.

rou sampler Fred Conner Journal test indicated deallance is "chemical and chierine stand forcend North Marin" Arab Marenk favored the de-Para Marenk favored the deverter that lines"


dy one to have a taste. "There was a flavor; the other to tasted like nothing," she said. mpradolinarisij con

Calcium and bicarbonate added to match stability and taste of current MMWD water

- Disinfection similar to current MMWD practices
- MMWD customers find taste of Desal water as good as water from local reservoirs

Pilot Automation: Master PLC Screen

SWRO Pilot Site First Visitor

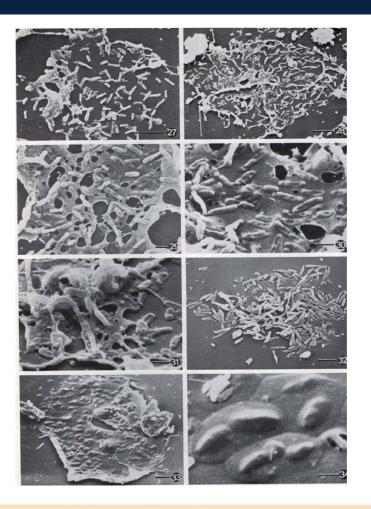
Proper Pretreatment Meets Challenges of SF Bay Water Quality Fluctuations

550389 Marin DM - Turbidity

Prepared by ZenoTrac™ ©ZENON Environmental Inc.


COMMENTS:

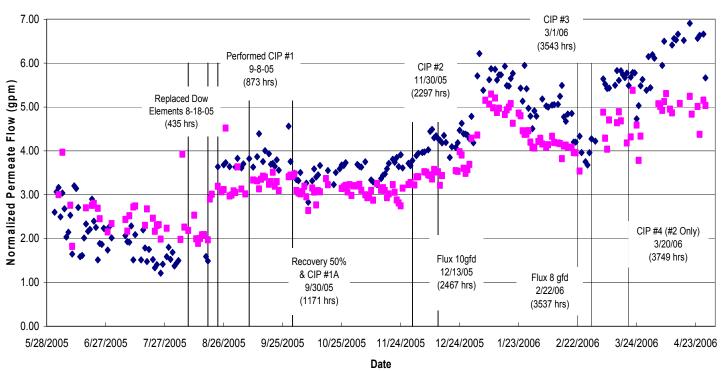
- BeforeBPFeedTurbidity
- BeforeBPPermeateTurbidity



MF/UF Provides Better Solids Removal and lower SDI

	Conventional Filtered Water	MF Filtrate	UF Filtrate
Average Turbidity	0.09	0.06	0.05
Average SDI	3.88	2.64	2.57
SDI Standard Deviation	0.55	0.51	0.49

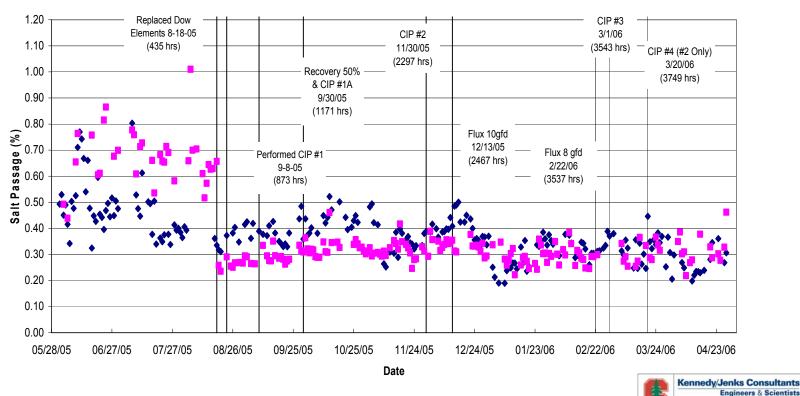
Types of SWRO membrane fouling



- Inorganic scale control with antiscalant, system recovery
- Particulate fouling minimize feed water turbidity and SDI
- Organic fouling minimize feed water dissolved organics
- Biofouling control with flux rate, shock Cl

MF/UF SWRO has better permeate flow

MMWD Seawater Desalination Pilot Program SWRO #1 and SWRO #2 Normalized Permeate Flow



◆ Dow #1 ■ Dow #2

Both systems show similar salt passage

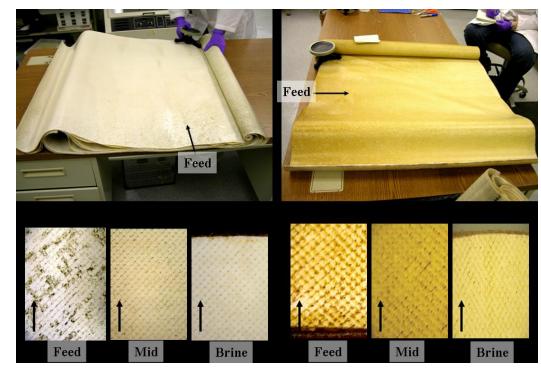
MMWD Seawater Desalination Pilot Program SWRO #1 and SWRO #2 Normalized Salt Passage

National Water Research Institute

◆ Dow #1 ■ Dow #2

MF/UF SWRO has less fouling

60.00 Replaced Filmtec Flux 10gfd CIP #3 Performed CIP CIP #2 Flux 8 gfd 12/13/05 Elements 8-18-#1 11/30/05 2/22/06 3/1/06 (2467 hrs) 05 9-8-05 (3537 hrs) (3543 hrs) (2297 hrs) (435 hrs) 50.00 (873 hrs) CIP #4 (#2 Only) Recovery 50% 3/20/06 & CIP #1A Differential Pressure (psi) 00007 00000 00007 (3749 hrs) 9/30/05 (1171 hrs) 10.00 0.00 9/25/2005 5/28/2005 6/27/2005 7/27/2005 8/26/2005 10/25/2005 11/24/2005 12/24/2005 1/23/2006 2/22/2006 3/24/2006 4/23/2006

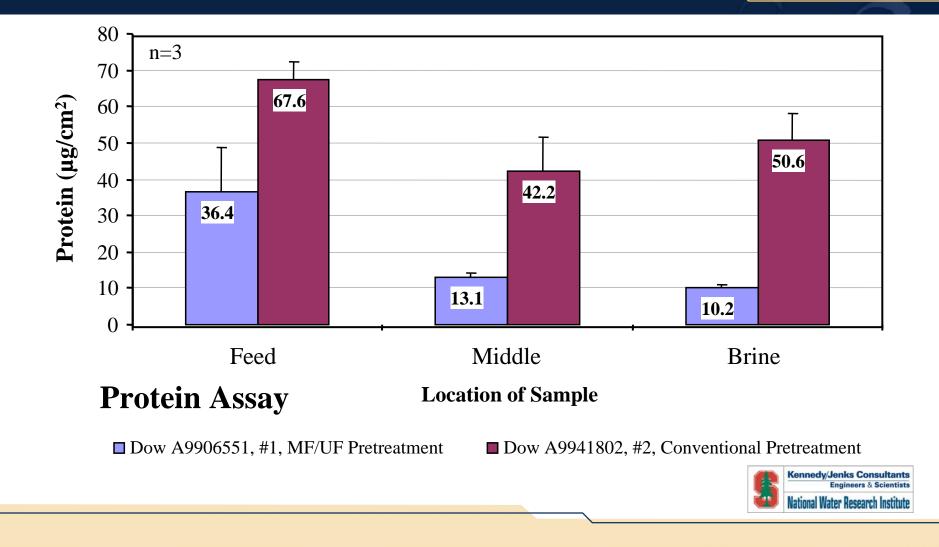

MMWD Seawater Desalination Pilot Program SWRO #1 and SWRO #2 Normalized Differential Pressure

◆ Dow #1 ■ Dow #2

Date

Kennedy/Jenks Consultants Engineers & Scientists National Water Research Institute

Autopsy confirmed MF/UF SWRO has less fouling



MF/UF Pretreatment

Conventional Pretreatment

MF/UF SWRO had lower particulate and organic fouling

MF/UF requires less area than conventional pretreatment

- For 10 MGD MMWD Desal Facility
- Conventional Pretreatment

Flocculation	~ 3,000 sf
Clarifiers	~7,000 sf
Filters	~14,000 sf
WW Recovery	~7,000 sf
 Total Area 	~31,000 sf

MF/UF Pretreatment

- Strainers ~2,000 sf
- Flocculation ~2,000 sf
- Membrane Bldg ~8,000 sf
- WW Recovery ~2,000 sf
- Total Area

~14,000 sf

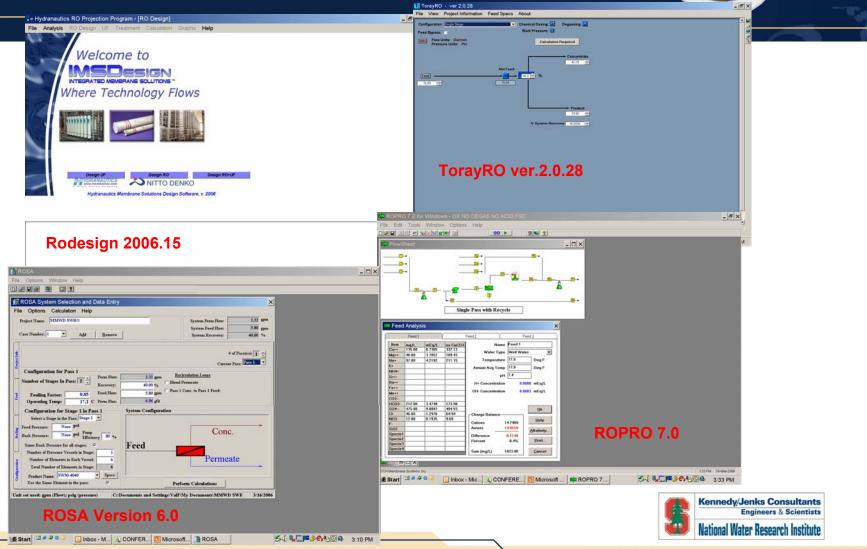
SWRO: Pre-Treatment Performance

In Fly

Membrane Pre-Treatment: MF, UF

Conventional Pre-Treatment: Clarifier, 2 stage Filtration

05

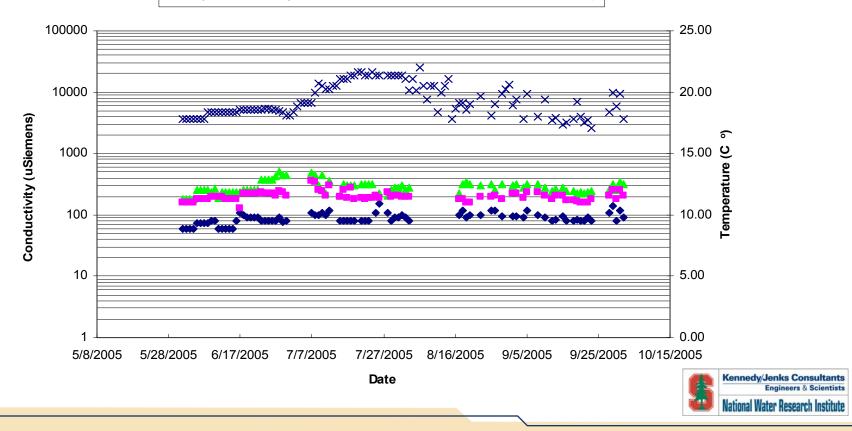

1 - Jun -05

SWRO Membrane in Pressure Vessel

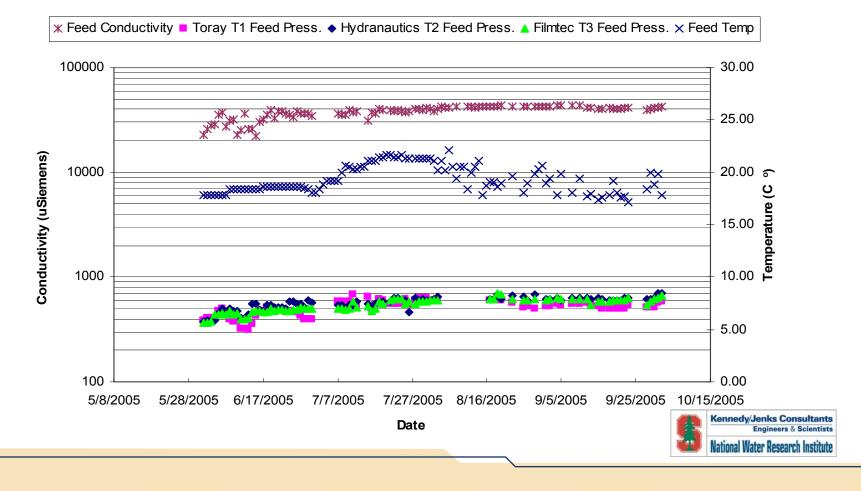
SWRO Elements Performance Evaluation:

-Salt Rejection, % -Net Driving Pressure (Normalized), PSI -Bio-Fouling/Scaling Rate -Specific Ions Rejection (Boron, Emerging Contaminants), %

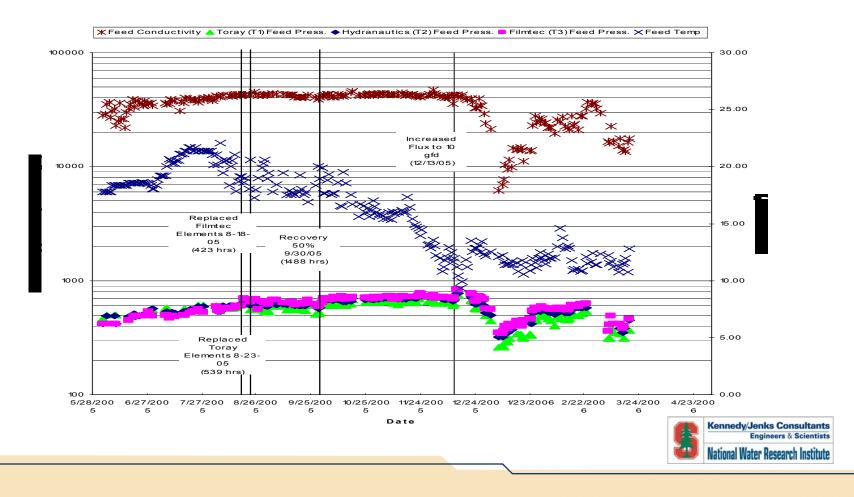
MMWD SWR	O Pilot Project	1	I			1		Kenned	y/Jenks Co	nsultants	
Membran	nes Information	n List									
Train #	Membrane Brand		Standard Salt Rejection, %	Active area of 1 element, ft2	Element per	Total Membrane area per train, ft2	FLUX, GFD	Recovery %	Permeate Flow, gpm	Feed Flow, gpm	Brine Flow, gpm
1	TORAY	TM-810	99.80%	65	6	390	8	40	2.167	5.42	3.25
2	HYDRANAUTICS	SWC4+	99.80%	80	6	480	8	40	2.667	6.67	4.00
3	DOW Filmtec	SW30HR LE-4040	99.75%	85	6	510	8	40	2.833	7.08	4.25
TOTAL					18	1380			7.667	19.167	11.5

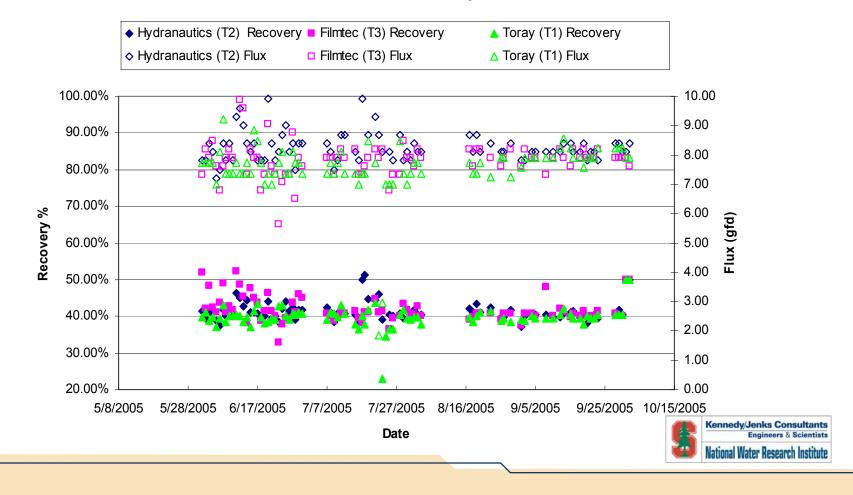


Contaminant	% nominal rejection	Contaminant	% nominal rejection
Aluminum	96-98	Ammonium	80-90
Bacteria	99+		
Boron	80-90 (up to 94)	Bromide	90-95
Cadmium	93-97	Calcium	93-98
Chloride	92-95	Chromate	85-95
Copper	96-98	Cyanide	85-95
Fluoride	92-95	Hardness Ca & Mg	93-97
Iron	96-98	Lead	95-98
Manganese	96-98	Magnesium	93-98
Mercury	94-97	Nickel	96-98
Nitrate	90-95	Orthophosphate	96-98
Phosphate	95-98	Polyphosphate	96-98
Potassium	93-97	Radioactivity	93-97
Silica	80-90	Silicate	92-95
Silver	93-96	Sodium	92-98
Sulfate	96-98	Thoisulfate	96-98
Zinc	96-98		



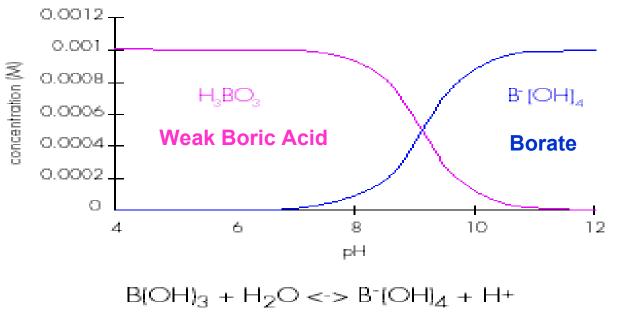
MMWD Seawater Desalination Pilot Program SWRO #1 Daily Permeate Conductivity and Feed Temp.


▲ Toray SWRO 1 ◆ Hydrunautics SWRO 1 ■ Filmtec SWRO 1 × Feed Temp


MMWD Seawater Desalination Pilot Program SWRO #1 Daily Feed Conductivity, Feed Pressure and Feed Temp.

MMWD Seawater Desalination Pilot Program SWRO #2 Daily Feed Conductivity, Feed Pressure and Feed Temp.

MMWD Seawater Desalination Pilot Program SWRO #1 Flux and Recovery


SWRO Elements Performance Boron

World Health Organization (WHO) recommended guideline level of 0.5 mg/L

California Drinking Water Action Level for boron is 1.0 mg/L

SWRO Elements Performance -Boron

 $B(OH)_3 + NaOH \longrightarrow [B(OH)_4] - + Na^+$

2 B(OH)₃ + [B(OH)₄]- (B₃O₃(OH)₄]- + 3 H₂O

1 mM boric acid behavior in aqueous solutions

SWRO Monitoring

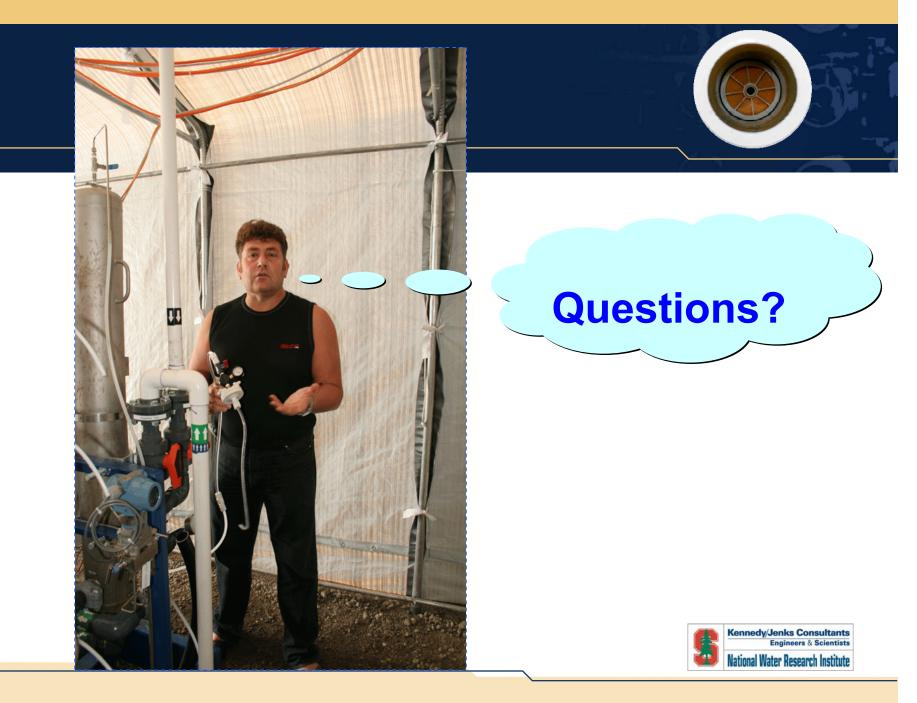
SWRO Probing by Catheters

SWRO Probing by Catheters

ct:	MMWD SW		. og. am										1		
	21-Jun-05				SWF	2 O	ondu	ictivi	ty Pr	ofile					
take	n by: VF														
											Feed Tem	p- 65.8 F	Feed Con	d - 33,480	µS/cm
											Perm Tem	p- 73.2 F			
											Recovery		Flux - 8_G	FD	
						SWRO	#1	Train	# 3 - D	OW Fi	Imtec				
	480 µS/cm		Element #		450 µS/cm		Element #		390 µS/cm		Element #			00000 μS 340 μS/cr	
		Calc	00000 µS			Calc	00000 µS/			Calc	00000 µS/		Measur	340 µS/cr	n
		Measur	500 µS/cr			Measur	400 µS/cm			Measur	360 µS/cr			-	
		Measur		1		Measur	400 µ0/cm			Measur					
	End 6				Conn. 5-6				Conn 4-5						
	100.001				440.001				100						
	100 µS/cm		Element #		110 µS/cm		Element #		130 µS/cm		Element #	4.2		00000 μS 150 μS/cr	
		Calc	00000 µS			Calc	00000 µS/			Calc	00000 µS/			150 µS/cr	
	/	Measur	110 µS/cr				120 µS/cm			Measur	140 µS/cr				
		modota	110 10.0.				120 10/01			mouou	1.10 1.0.0.		End 3		
					Conn. 1-2				Conn 2-3						
	COMMENT	S:												00000 μS	
													Measur	220 µS/cr	n
											Feed Tem		Feed Con	d - 34,310	µS/cm
											Perm Tem				
											Recovery	- 40%	Flux - 8-G	FD *	
						-		-	# 0 D				-		
						SWRO	#2	I rain	# 3 - D		Imtec				
	760 µS/cm			Measur	780 µS/cm			Measur	660 µS/cm				Calc	00000 µS	/cm
			Element #				Element #				Element #	<i>‡</i> 4		600 µS/cr	
		Calc	00000 μS			Calc	00000 µS/			Calc	00000 μS/			- · ·	
		Measur	780 µS/cr	<u>n</u>		Measur	700 µS/cm	1		Measur	600 µS/cr	n			
												· · · · ·			
	E								Conn 4-5						
	End 6				Conn. 5-6										
	End 6				Conn. 5-6										
	End 6 140 µS/cm			Measur	Conn. 5-6 160 µS/cm			Measur	180 µS/cm					00000 μS	cm
			Element #				Element #		180 µS/cm		Element #	# 3		00000 μS 200 μS/cr	
	140 µS/cm	Calc	00000 µS	# 1 /cm	160 µS/cm	Calc	00000 µS/	2 cm		Calc	00000 µS/	cm			
	140 µS/cm	Calc Measur		# 1 /cm	160 µS/cm	Calc		2 cm				cm			
	140 µS/cm		00000 µS	# 1 /cm	160 µS/ст	Calc	00000 µS/	2 cm		Calc	00000 µS/	cm	End 3		
	140 µS/cm		00000 µS	# 1 /cm	160 µS/cm	Calc	00000 µS/	2 cm		Calc	00000 µS/	cm			

SF Bay and Treated Water





SUMMARY:

A well-designed pilot testing program is a valuable tool to answer questions on the performance of the technology, to confirm the high quality of the water produced, and to conduct environmental studies to ensure the viability of desalination. The pilot program described herein provided the following valuable benefits:

- · Confirmed that desalinated water is safe to drink
- Educated customers and showed that desalinated water tastes good
- Conducted environmental studies to support the EIR process
- Evaluated the best available treatment technologies
- Determined design criteria and costs for a full scale facility

