- There are other separation operations where a membrane is the responsible of the la selective separation of the compounds:

- Dialysis.
- Electrodialysis (ED).
- Pervaporation.

- Gas permeation (GP).
- Liquid membranes.
- In others, the membrane is not directly responsible for the separation but it actively participates:
 - Membrane extraction.
 - Membrane distillation.
 - Osmotic distillation.

Type of filtration.

Simple scheme of a membrane module.

- Synthetic membranes are solid barriers that allow preferentially to pass specific compounds due to some driving force.

(Very) Simple scheme for some mechanisms of selective separation on a porous membrane.

- The separation ability of a synthetic material depends on its physical, chemical properties.
 - Pore size and structure
 - Design
 - Chemical characteristics
 - Electrical charge

- The membranes can be roughly divided in two main groups: porous and non porous.

- Porous membranes give separation due to...
 - size
 - shape
 - charge
 - ... of the species.
- Non porous membranes give separation due to...
 - selective adsorption
 - diffusion

... of the species.

- Rejection, R, if there is just one component (RO)

$$R(\%) = 100 \cdot \left(\frac{C_{A,f} - C_{A,p}}{C_{A,f}}\right) = 100 \cdot \left(1 - \frac{C_{A,p}}{C_{A,f}}\right)$$

- Separation factor - Enrichment factor

$$\alpha_{A,B} = \frac{C_{A,p}/C_{B,p}}{C_{A,f}/C_{B,f}} = \frac{\beta_A}{\beta_B} \qquad \beta_A = \frac{C_{A,p}}{C_{A,f}}$$

for two or more component

- In RO, often we use the Recovery (Y)

$$Y(\%) = \frac{Q_p}{Q_f} \cdot 100$$

Q_p: Permeate flowrate (m³/s) Q_f: Feed flowrate (m³/s)

- Passive transport in membranes. The permeate flux is proportional to a given driving force (some difference in a property).

$$Flux(J) = Constant (A) \cdot \cdot Driving Force (X)$$

Driving forces:

- Pressure (total o partial)
- Concentration
- Electric Potential

Membrane processes and driving force.

Process	Feed phase	Permeate phase	Driving Force
Microfiltration	L	L	ΔP
Ultrafiltration	L	L	ΔP
Nanofiltration	L	L	ΔP
Reverse Osmosis	L	L	ΔP
Dialysis	L	L	Δc
Electrodialysis	L	L	ΔE
Pervaporation	L	G	ΔP
Gas Permeation	G	G	$\Delta \mathbf{P}$

Main parameters.

- Permeate flux.

In MF and UF, porous membrane model is assumed, where the a stream freely flows through the pore. Then, the transport law follows the Hagen-Poiseuille equation.

$$\mathbf{J}_{\mathrm{w}} = \frac{\mathbf{Q}_{\mathrm{w}}}{\mathbf{A}_{\mathrm{m}}} = \frac{\boldsymbol{\epsilon} \cdot \mathbf{r}^{2}}{8 \cdot \boldsymbol{\mu} \cdot \boldsymbol{\tau}} \cdot \frac{\Delta \mathbf{P}}{\mathbf{d}}$$

- J_w : Solvent flux (m³/s·m²)
- Q_w: Solvent flowrate (m³/s)
- A_m: Membrane area (m²)
- d: Membrane thickness (m)
- μ : Viscosity (Pa ·s)
- ΔP : Hydraulic pressure difference (Pa)

r: Pore radius (m)

- ε: Porosity
- τ : Tortuosity

- The above model is good for cylindrical pores. However, if the membrane is rather formed by a aggregated particles, then the Kozeny-Carman relation works much better.

$$J_{w} = \frac{Q_{w}}{A_{m}} = \frac{\varepsilon^{3}}{K \cdot \mu \cdot S^{2} \cdot (1 - \varepsilon)^{2}} \cdot \frac{\Delta P}{d}$$

J_W: Solvent flux $(m^3/s \cdot m^2)$ Q_W: Solvent flowrate (m^3/s) S: Particle surface area (m^2/m^3) K: Kozeny-Carman constant A_m: Membrane area (m^2)

d: Membrane thickness (m) μ: Viscosity (Pa ·s) - In the operations governed by the pressure, a phenomenon called <u>concentration polarisation</u> appears, which must be carefully controlled. This is due to the solute accumulation neighbouring the membrane surface.

Formation of the polarisation layer.

Flux vs. Pressure

(It is not fouling!!!)

- Fouling: Irreversible reduction of the flux throughout the time.

• Pore size reduction by irreversible adsorption of compounds.

- Pore plugging.
- Formation of a gel layer over the membrane surface (cake).

- Membrane can be classified in several ways, but always there are arbitrary classifications.

- Structure: symmetric, asymmetric
- Configuration: flat, tubular, hollow fiber
- Material: organic, inorganic
- Surface charge: positive, negative, neutral
- ...and even other divisions and subdivisions

- Structure:
 - Symmetric. Also called homogeneous. A cross section shows a uniform porous structure.
 - Asymmetric. In a cross section, one can see two different structures, a thin dense layer and below a porous support layer.
 - Integral: the layers are continuous.
 - Composites: the active layer (thickness 0.1-0.5 μ m) is supported over a highly porous layer (50-150 μ m), sometimes both layers are of different materials.

Symmetric UF membrane of $0.45 \ \mu m$ made of cellulose acetate (Millipore).

Surface

Cross section

Symmetric ceramic membrane of 0.2 μ m made of alumina (Al₂O₃) (AnoporeTM).

Asymmetric ceramic membrane made of γ -Al₂O₃ (Membralox).

