Membrane Separations

Processes (problems).

- 1.A cellulose acetate membrane shows a water permeability coefficient of $2 \cdot 10^{-5}$ g cm⁻² s⁻¹ bar⁻¹ and a NaCl permeability coefficient of $4 \cdot 10^{-6}$ cm s⁻¹. In a desalination experiment, the feed has 35 g L⁻¹ of salt and 60 bar of pressure are applied. Calculate the fluxes for water and salt, the rejection and the salt concentration in the permeate.
- 2. The synthetic rubber is mainly used to make tires, among different reasons, due to the low air permeability. A bicycle tire contains 2400 cm³ STP d'aire at 2 bar, how much time is required to deflate it? The tire thickness is 1.0 mm, its surface is 2400 cm² and the air permeability coefficient is 0.90 Barrer*.

* 1 Barrer = 10^{-10} cm³(STP).cm.cm⁻².s⁻¹.cmHg⁻¹

Membrane Separations

Processes (problems).

- 3. An homogeneous membrane made from cellulose ester with a thickness of 20 µm is placed in a pervaporation cell (10 cm in diameter). In the permeate side, 1.0 mbar vacuum is kept. In steady state, during an experiment carried out at 20°C, 12.0 g of water are collected in 2.0 hours. Calculate the water permeability coefficient in mol.m/m².s.Pa and in Barrer.
- 4. An electrodialysis cell has been used to take measures of current intensity-voltage for a CL25T membrana using a 0.15 M NaCl solution at 25°C.

Determine the limiting intensity current, i_{lim} . If the salt concentration is increased, how does i_{lim} behave?

Membrane Separations

Processes (problems).

5. Determine the water flux for both a typical membrane of microfiltration (MF) and of ultrafiltration (UF). MF

ε (porosity)	0.6	0.02
r _p (pore radius, nm)	200	2
d (thickness, μm)	100	1

6. You know that the membrane permeability for gases depends on both solubility (S) and diffusivity (D) of the membrane material $P_i = S_i \cdot D_i$

Which gas shows, thus, higher permeability, a small molecule (i.e. H_2) or a large one (i.e. C_3H_8)?

7. You have to select a membrane to conduct a gas separation where only non condensable gases are involved, which kind of polymer is better? A glassy polymer or a rubber polymer?