Lecture 1 Membrane Technology: Introduction, Applications, Business

Prof. Ir. Dr. ZAINI UJANG

Ph.D., P.Eng. (M), C.Eng.(UK), C.Sci. (UK), C.W.E.M. (UK), MIEM, DNS, PPT

Institute of Environmental & Water Resource Management (IPASA) UNIVERSITI TEKNOLOGI MALAYSIA

Email: zaini@utm.my Homepage: http://web.utm.my/ipasa

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Presentation Menu

Part 1: Why Membrane Technology?
Part 2: Market forces
Part 3: Water scarcity
Part 4: End-of-Pipe vs Zero Discharge
Part 5: For Developing Countries?
Part 6: Conclusion & Future Directions

IWA Conference, Workshop on 6th Membrane Technology II 14-15 May 2007 II KLCC

Membrane?

Selective barrier that allows entities to pass through, while restricting the passage of others.

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Our body separation system is a membrane in nature!!

- Kidney
- Intestinal
- Respiration system, etc.

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Selective Barrier

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Definitions

- Membrane: Thin film separating two phases and acting as a selective barrier to the transport matter
- Membrane Operation: Operation where a feed stream is divided into 2 streams:
 - (a) permeate (product/filterate) and
 - (b) retente (brine/concentrate/etc)

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Membrane plant for water treatment, Ogose Town, Japan

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Part 1: Why Membrane?

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Part 1: Why Membrane?

- **Technical Answers**
 - Modular design, compact
 - Small foot-print
 - Continuous process, simple automation
 - Good solid-liquid, liquid-liquid separation
 - No phase and temperature change
 - Easy for reuse, recycle

Part 1: Why Membrane?

Management and Regulatory Answers

- Meeting the regulatory standards
- Public health
- Environmental protection
- Market forces

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

From Options to Necessity Scenario 1: 1970

- Do we really need tab water?
- Do we require a wastewater treatment plant?
- Do we need landfill for solid and hazardous waste disposal?
- Do you prefer water from well, or river?

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

From Options to Necessity Scenario 2: 2004

- Do we really need <u>bottled</u> water?
- How best we can achieve <u>nutrient removal</u> in wastewater treatment plant?
- How best we can operate <u>sanitary</u> landfill for solid and hazardous waste disposal?
- Do you prefer mineral or reverse osmosis water?

Main Environmental Concerns

Scenario 1 Year 1970

- Clean drinking water
- Do we need a toilet?
- Where to dispose?
- Monsoon flood
- Pollution control

Scenario 2 Year 2000

- ■THM in tab water
- Organic & nutrient removal
- How to dispose
- Flood of WW
- Pollution prevention

Target water pollutants, and technology options

Era	Pollutants	Solutions	
1800s	Pathogenic bacteria	Sewer system	
1900s	BOD, COD	Biological wastewater plants	
1950s	Heavy metals, biodegradable substances	Treatment at source	
1970s	Eutrophication	N and P control	
1980s	Trace substances, carcinogens, flavor, taste	Activated carbon, membrane technology	
1990s	CO ₂ , NH ₄ , N ₂ O, CFCs, NO _x , SO _x	Energy saving, photosyntetic bacteria, biotechnology, MBR	
2000s	Endocrine disrupting chemicals (EDCs), eco-hazard	Membrane technology	

Part 2: Market Forces

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Part 2: Market Forces – Demand Sector

- High quality drinking water
- High quality process water (ultrapure)
- High quality laboratory water (ultrapure)
- Cleaner production 3R
- Relatively cheaper
- Relatively easier maintenance

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Worldwide Market Segments

Drinking/potable water production

- Desalination
- Treatment of polluted water resources
- Treatment for higher quality requirements
- Ultrapure water production
- Wastewater management

Worldwide Market Segments

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Worldwide Membrane Market

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Worldwide Membrane Market

Membrane for potable water production
 Membrane for municipal wastewater treatment

20

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Regional Distribution of Membrane Market

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Sectoral Distribution of Membrane Market

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Part3: Water Stress & Water Scarcity

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Worldwide Water Resources

- 97% in sea (35,000 mg/l salt concentration)
- 0.1% in rivers and lakes
- 0.6% in reservoirs
- 5 x 10¹⁵ m³ of freshwater in rivers, lakes and shallow aquifers

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Water Consumption in Malaysia

225 l/d.capita

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Bottled Water Industry

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Part 4: End-of-pipe vs Zero discharge

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Zero Discharge Engineering

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Principles and Priority in Waste Management Within Zero Emission Concept

Disposal or discharge to the environment should be employed only as a last resort

PRINCIPLE 2

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Wastewater minimization through reuse

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Regeneration, Flowrate Changes & Multiple Contaminants

Wastewater minimization through regeneration & reuse

Note: ReGen=Regeneration

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Regeneration, Flowrate Changes & Multiple Contaminants

Wastewater minimization through regeneration & reuse Note: ReGen=Regeneration

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Strategies for Industrial Water Reuse & Wastewater Minimization

- Reduce freshwater consumption
- Minimize effluent discharges by reducing wastewater flowrates
- Zero liquid discharges

Part 5: For Developing Countries?

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Principles in Environmental Economics

- Environmental protection measures are much cheaper than curative measures post-pollution
- You get back what you discharge
- Environmental protection is much cheaper than the economic lost in **pollution** remediation, health damage, natural resources and eco-tourism.
- Zero discharge can absorb the cost by waste reuse and recycle schemes.

Comparison: Cost of Damage from Minamata Disease around Minamata Bay vs. Cost of Pollution Prevention

Items		Yen/Year
Cost of industrial pollution co	123 million	
Total damage		12,631 million
Health damage Environmental pollution Fishery damage	7,671 million 4,271 million 689 million	

Water Supply in Indonesia 20% of drinking water is supplied in bottles (???)

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Centralized urban sanitation

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Decentralized sanitation & reuse (DESAR)

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Membrane technology

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Membrane costs

Hollow fiber MF (USF – Memcor data)

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Membrane costs

Approximate processing costs (2002) (Fane, 2002)

Seawater RO	A\$1.0~1.5 / m ³	
NF/LPROM	A\$0.5~1.0 / m ³	
Ultrafiltration	A\$0.25~0.5 / m ³	
Microfiltration	A\$0.15~0.3 / m ³	

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Wastewater reclamation costs Veolia Water Systems

Projects	Production capacity	CAPEX	Status
Bedok NEWater	32,000 m3/d	S\$15.53 m	Completed
Kranji NEWater	40,000 m3/d	S\$21.05 m	Completed
Seletar NEWater	24,000 m3/d	S\$25.90 m	Completed

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Part 6: Conclusion & Future Directions

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Introduction Module by Zaini Ujang

Part 6 Conclusion

- Membrane technology is well accepted in high quality of water production
 - drinking, process, bottled, laboratory
- Membrane tech is growing fast & instrumental for implementation of zero discharge concept
- Zero emissions can absorb the cost by waste reuse and recycling
- Zero emission is much cheaper than allowing pollution to take place

Part 6 Future Directions

- Membrane technology will be central in public water production EDC, heavy metals etc.
- Membrane is to be household technology in many industries for process water treatment, waste recycling and cleaner production
- Membrane vs Pollution

Latest R&D on Physical Separation

- Membrane materials
- Low pressure membrane operation
- High chlorine resistant membranes
- Membrane transport phenomena
- Membrane fouling
- Module design & Portable membrane
- Integration in Waste Minimization

