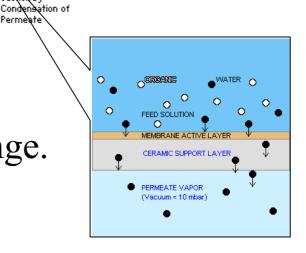
- Pervaporation
- Discovered 1917.
- Only operation with phase change.

Impure

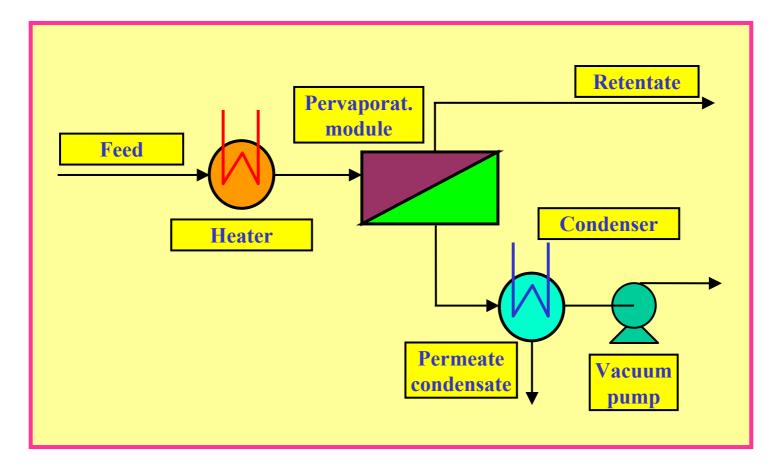

Feed

PerVap

Membrane

- Non-Porous Membranes.
- Mechanism solution-diffusion.
- Driving force: difference in partial pressure.

-Vacuum (<40 mm Hg), dilution (inert gas, N₂) or temperature difference.


Purified Product

Permeate

Impurity

• Pervaporation

General Pervaporation system.

- Pervaporation
- Industrial applications.

- Alternative to distillation when thermodynamic limitations.

- Low energy costs.
- Low investment costs.
- Better selectivity, without thermodynamic limitations.
- Clean and closed operation.
- No process wastes.
- Compact and scalable units.

- Pervaporation
- Drawbacks:
 - Scarce Membrane market.
 - Low permeate flows.
 - Limited applications:
 - Organic substances dehydratation.
 - Recovery of volatile compounds at low concentrations.
 - Separation of azeotropic mixtures.

• Pervaporation.

- Do not mistake with a distillation where a membrane is just separating phases.

- Three steps mechanisms:

- Selective absorption on the membrane.
- Dissolution at the membrane.
- Diffusion through the membrane.

- Pervaporation
- The membrane is active in this process.

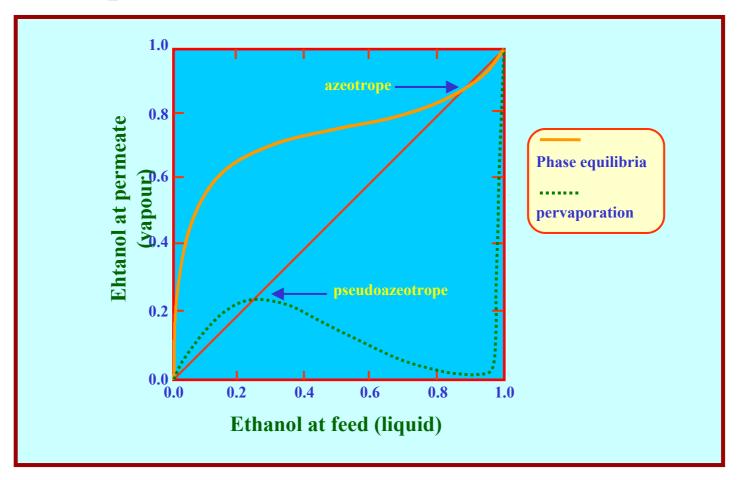
- The permeability coefficient (P) of a compound depends on the solubility (S) and the diffusivity (D), in the polymeric phase, of the crossing compound

$$P_i = S_i (c_i, c_j) \cdot D_i (c_i, c_j)$$

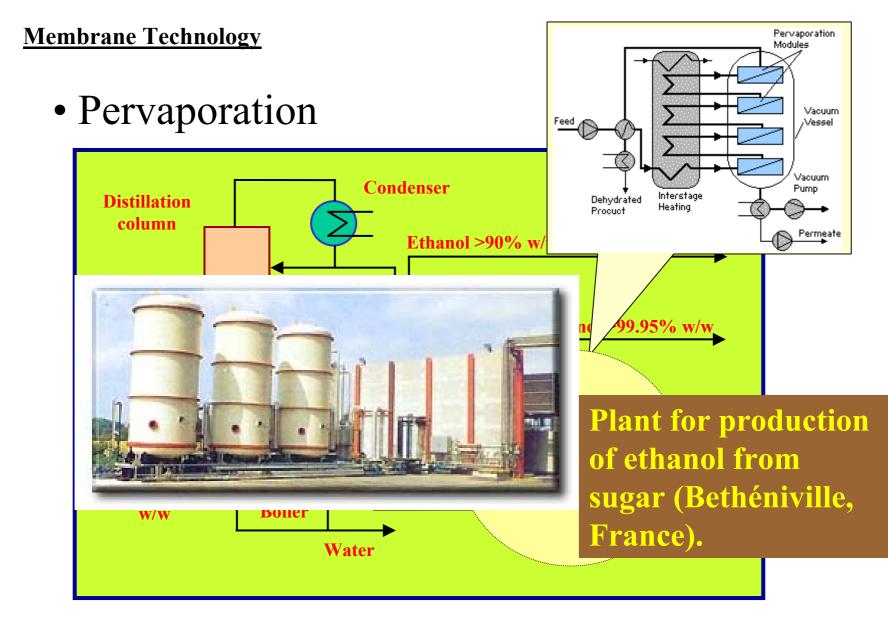
- Simplificated transport equation:

$$J_{i} = \frac{P_{i}}{d} \cdot \left(x_{i} \cdot \gamma_{i} \cdot p_{i}^{o} - y_{i} \cdot p_{p} \right)$$

 J_i : flux of component id: membrane thickness x_i : molarfraction in liquid γ_i : activity coefficient p_i^{o} : vapour pressure y_i : molar fraction at permeate p_p : pressure at permeate side


- Pervaporation
- Main membrane parameters:

- Separation factors - Enrichment factors


$$\alpha_{A,B} = \frac{C_{A,p}/C_{B,p}}{C_{A,f}/C_{B,f}} = \frac{\beta_A}{\beta_B}$$

$$\beta_{A} = \frac{C_{A,p}}{C_{A,f}}$$

• Pervaporation

Pervaporation process of an ethanol/water mixture with a PVA membrane.

Combination of distillation and pervaporation for the production of pure ethanol.

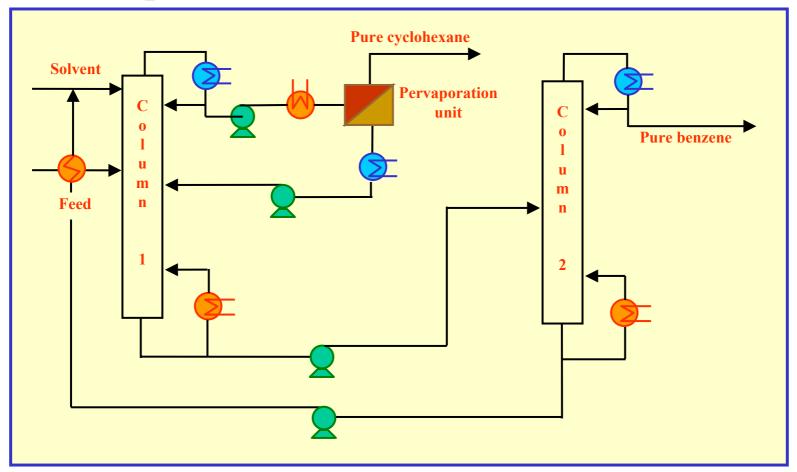
• Pervaporation

Dehydration of organic solvents.

Organic solvents to apply pervaporation.

Methanol	Alil alcohol	Ethyl Acetate	Tricloretilene
Ethanol	Furfurol	Buthyl acetate	Tetrachloretane
n-Propanol	Methylfurfurol	Diethyl ether	Tretrahydrofurane
Isopropanol	Diethilenglicol	Diisopropyl ether	Aniline
n-Buthanol	Acetone	Dipropyl ether	Benzene
t-Buthanol	Buthanone	Ethyl propyl ether	Toluene
2-Penthanol	Cyclohexanone	Chloroform	Xylene
Hexanol	Methyl ethyl Ketone	Methyl Chloride	Ethylen diamine
Cyclohexanol	Metil isobuthyl Ketone	Chlorethylene	Ethanol amine
Isoamilic Alcohol	Caprolactame	Dichloro ethylene	Diethyl amine

• Hydrophilic membranes: PVA, PAN...


- Pervaporation
- Organic compounds recovery.
 - For volatile compounds.
 - Economically competitive.
 - Hydrophobic membranes: PDMS and derivatives.
- Azeotrope breaking of organic compounds.
 - Studied at lab scale.
 - Low selectivity.

• Pervaporation

Lab scale separations reported.

Mixture	Membrane	Selectivity
Ethylbenzene/xylene	Polyethylene	Not available
p-xilene/o-xilene	Polyethylene	Not available
m-xilene/p-xilene	Polypropilene	m-Xylene
Dichlor ethane/trichlor	Poliamide/polyeth	Dichlorethane
ethane		
Benzene/cyclohexane	Polyimide	Benzene
Acetone/cyclohexane	Polyimide	Acetone

• Pervaporation

Hybrid process: extractive distillation and pervaporation for the production of pure benzene and cyclohexane .

- Gas permeation
- Since 50's.
- Membranes: porous and no porous.
- Several possible mechanisms for gas transport:
 X Viscous Flow.
 √ Knudsen Flow.
 √ Solution-diffusion.
- The last two are selective.

- Gas Permeation
- Knudsen Flow (porous membranes). When the porous diameter is on the range of the average free space of the molecule (kinetic theory for gases).

ε: porosity

 τ : tortuosity

r: porus radi

M: MW

$$J_{i} = \frac{\varepsilon}{d \cdot \tau} \cdot \frac{D_{k}}{R \cdot T} \cdot \Delta P_{i}$$
$$D_{k} = \frac{2}{3} \cdot r \cdot \sqrt{\frac{8 \cdot R \cdot T}{\pi \cdot M}}$$

T: temperature ΔP : transmembrane P

d: membrane thickness

R: gas constant

Enrichment

$$\frac{J_i}{J_j} = \sqrt{\frac{M_j}{M_i}}$$

• Gas permeation

-Solution-diffusion (non-porous membranes).

$$\mathbf{P}_i = \mathbf{S}_i \cdot \mathbf{D}_i$$

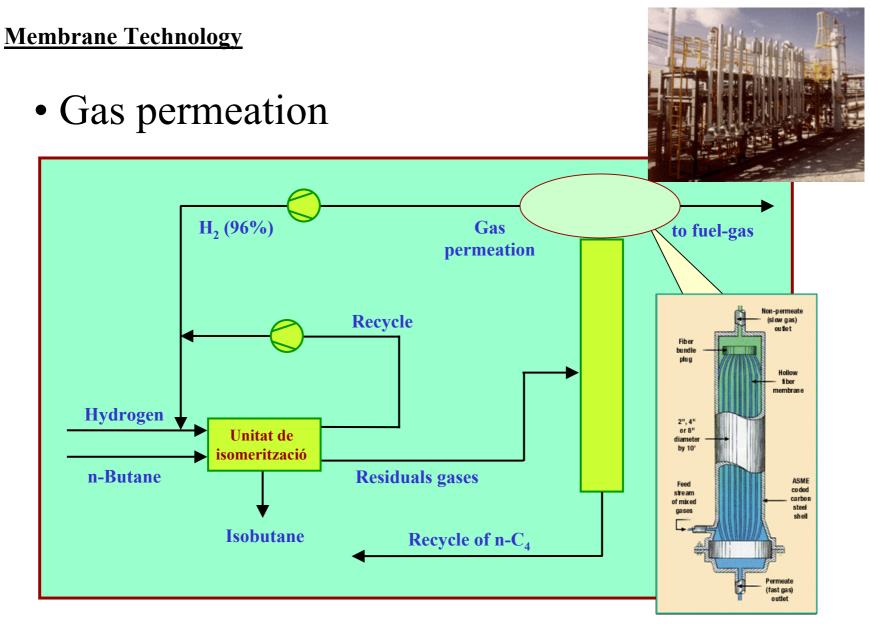
The selectivity is referred to the separation factors of the compounds to be separated

$$\alpha_{ij} = \frac{P_i}{P_j} = \left(\frac{D_i}{D_j}\right) \cdot \left(\frac{S_i}{S_j}\right)$$

There are "slow" and "fast gases" for a determined membrane.

des La	nts.
an angle and	
High High High High High High High High	And
Holong Holong subtrat Aethoris Aethoris Aethoris Aegon Aegon Morany Morany	annah

- Gas permeation
- Driving force: partial pressure gradient.
- Working pressure: up to 100 bar.
- Non-porous polymeric membranes:

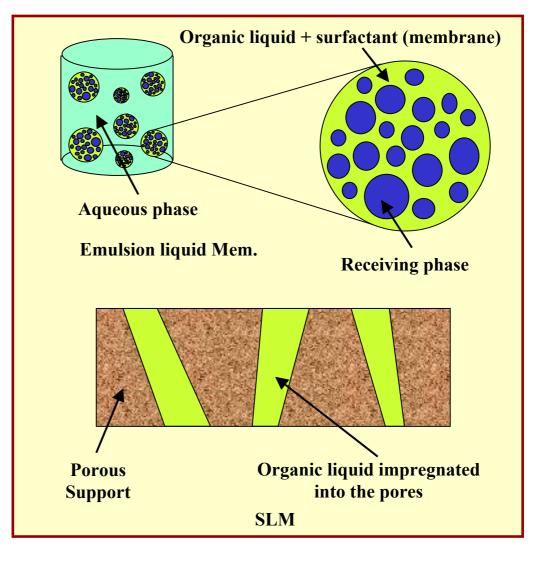

PDMS, CA, PS, PES i PI

- Ceramic Membranes (small pores for Knudsen).

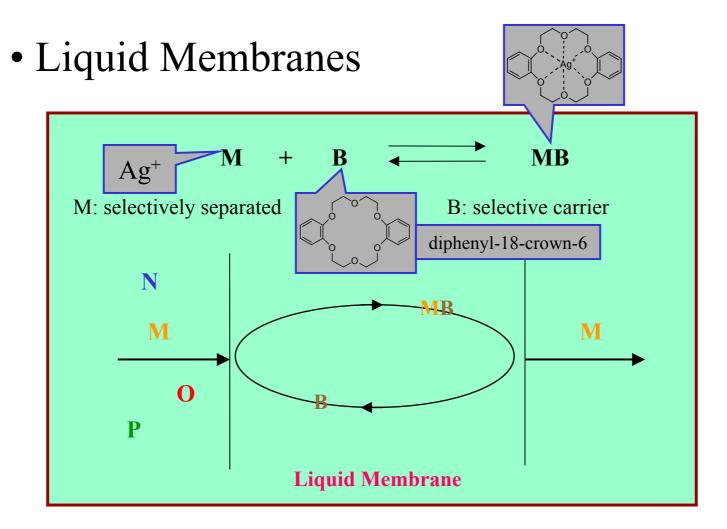
- Metallic membranes (Pd and Ag alloys).

- Gas permeation
- Asymmetric membranes.
- Thin polymer on a structural porous material.
- Preferred configuration Hollow Fiber or Spiral, others like flat or tubular also possible.
- Applied in petrochemistry.
- Purification of H_2 , CO_2 , CH_4 and gaseous hydrocarbons of difficult distillation.
- Nitrogen purification.

- Gas permeation
- Some examples:
- Enrichment, recovery and dehydration of N_2 .
- H_2 recovery in residual flows of processes, purge o natural gas.
- Adjust of the ratio H_2/CO synthesis gas.
- Acid gas removal (CO_2 , H_2S) from natural gas.
- Helium recovery from natural gas and other sources.
- VOC removal from process flow.


Hydrogen recovery in a butane isomeration A typical PRISM® plant. A typical PRISM®

• Liquid Membranes


- A liquid barrier between to phases.
- Not yet industrial uses.
- Driving force: chemical potential, concentration.
- Two configurations:
 - Emulsion (ELM).
 - Supported Liquid Membranes (SLM).

• Liquid Membranes

Possible configuration for LM.

- Liquid Membranes
- Advantages:
- High flows due to the transport velocity in liquids.
- Selective separations due to the presence of specific reagents.
- Pumping effect (against the gradient) due to the carrier equilibrium.
- Small quantities of solvent lets to the application of expensive solvents.
 - Drawbacks:
- Low stability of emulsions in ELM.
- Leaching out of organic phase from the pores of a SLM .

Facilitated Transport in Liquid Membrane.

- Liquid Membranes
- ELM: low practical interest
- SLM: lab scale and few applications restricted high added value compounds.
- Hydrophobic Membranes (PE, PP ...).
- Hollow fibers.
- Potential applications:
- Selective removal and concentration of cations in solution.
- Selective separation of gases.
- Recovery of acid or basic compounds.
- Organic compound separation in complex mixtures.

- Other Techniques
- Membrane distillation.

- A hydrophobic membrane separates two aqueous phases.
- The volatile compounds cross the membrane and condensate.
- The hydrophobic membrane avoids the aqueous phases to get into the membrane.
- The driving force in the temperature gradient.

- Other techniques
- Membrane distillation.
- Driven by the phase equilibrium in both sides of the membrane.
- The membrane acts just like a physical barrier.
- Some applications:
 - Water demineralization.
 - ♦ Inorganic acid or salt concentration.
 - Ethanol extraction at the fermentation.

- Other techniques
- Osmotic distillation.
- Similar to membrane distillation.
- Both phases at the same temperature.
- The partial pressure gradient due to the osmotic pressure is the driving force.
- The osmotic pressure is risen by adding appropriate compounds to the receiving phase.
 Attractive to the food industry provided it maintains the temperature.
 - Alcohol removal from wine and beer.
 - ♦ Fruit juice enrichment.

- Other techniques
- Membrane extraction.
- The membrane acts as a barrier to separate immiscible phases.
- It has to assure immiscibility between phases.
- Hollow Fiber membranes have high area.
- It makes possible to avoid the separation at decanting of the phases at the end.
- Lab scale research.

