Advanced Membrane Technologies Stanford University, May 07, 2008

Membranes for Water Treatment: Properties and Characterization

Ingo Pinnau, Ph.D.

Membrane Separation Processes and Characteristics

Process	Separation Mechanism	Pore Size (Å)	Transport Regime
Particle Filtration	Size Exclusion	> 50,000	Macropores
Microfiltration (MF)	Size Exclusion	500 - 50,000	Macropores
Ultrafiltration (UF)	Size Exclusion	20 - 500	Mesopores
Reverse Osmosis (RO)	Solution/ Diffusion	< 10	Molecular (Nonporous)

Membrane Separation Processes and Characteristics

Membrane Characteristics: **Porous Membranes**

Microfiltration

Ultrafiltration

Ideal Membranes for UF, NF and RO Applications

- High water flux (low capital cost)
- High solute rejection (high water purity)
- Long-term stability of water flux and rejection (Membrane fouling)
- Mechanical, chemical and thermal stability
- Minimum pre-treatment (backflushing and chemical treatment)
- Can be processed into large-scale membranes and modules
- > Inexpensive!

Problems of Current Membranes Used in UF and RO Applications

- Poor long-term stability of water flux (Membrane Fouling)
- Backflushing and chemical treatment
- High membrane replacement cost
- Poor resistance to chlorine
- Membrane system size

Major Foulant Types in Natural and Industrial Wastewater

Surface Structure of a Typical UF Membrane

Membrane Separation Processes and Characteristics

Unfouled Membrane

Fouled Membrane

Schematic Structures of Porous and Non-Porous UF Membranes

Microporous Ultrafiltration Membrane

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
Selective skin layer
OOOOOOOOOO
Porous substrate

Non-Porous Ultrafiltration Membrane

Non-porous hydrophilic Surface coating (0.1-0.5 µm)

Porous substrate

Cross-Section of a Non-Porous UF Membrane

Long-Term Water Flux of Porous and Non-Porous Ultrafiltration Membranes

Fouling Index of Porous and Non-Porous Ultrafiltration Membranes for Separation of Oil/Water Emulsions

Kennedy/Jenks Consultants Engineers & Scientists National Water Research Institute Long-Term Permeation Properties of Porous Ceramic and Ceramic/Polymer Composite Membranes

Membrane Technology

& Research

Kennedy/Jenks Consultants Engineers & Scientists National Water Research Institute

Integral asymmetric membrane (Cellulose acetate)

- Selective layer (Material A)

 Microporous substrate (Material A)

Thin-film composite membrane (Polyamide)

2003 RO/NF Membrane Sales

Company	Sales (\$ MM)	Share (%)
Dow/Filmtech	115	34
Nitto Denko/ Hydranautics	99	30
Toray	36	11
GE Osmonics	27	8
Koch/ Fluid Systems	18	5
Toyobo	15	4
TriSep	12	4
Others	15	4

R. Truby, *Water Executive*, September/October 2004, p.11 (Supplement of *Ultrapure Water 21*, 2004)

2003 RO/NF Module Sales Distribution

Module Type	Market Share (%)
Polyamide spiral-wound (8'x40')	91
Cellulose acetate hollow fiber module	5
Plate-and-frame	4

- Expected RO/NF membrane lifetime ~ 3-5 years.
- Actual RO/NF membrane lifetime ~ 7-12 years.
- Membrane replacement makes up for ~ 60% of annual sales.

R. Truby, *Water Executive*, September/October 2004, p.9 (Supplement of *Ultrapure Water 21*, 2004)

Incremental Changes in Spiral-Wound RO Module Performance

Figure of Merit = <u>(Productivity) x (1/Salt Passage)</u> Cost

Year	Cost (Normalized to 1980 U.S.\$)	Productivity (Normalized to 1980)	Reciprocal Salt Passage (Normalized to 1980)	Figure of Merit	
1980	1.00	1.00	1.00	1.0	
1985	0.65	1.10	1.56	2.6	
1990	0.34	1.32	2.01	7.9	
1995	0.19	1.66	3.52	30.8	
1999	0.14	1.94	7.04	99.3	
Dave Furukawa (1999)					

Interfacial Polymerization for Preparation of Thin-Film Composite RO Membranes

Formation of FT 30 Thin-Film Composite Membrane

Formation of PEC 1000 Thin-Film Composite Membrane

Rejection and Water Flux of RO Seawater Desalination Membranes

Membrane Technology

& Research

Kennedy/Jenks Consultants Engineers & Scientists National Water Research Institute

Organic Solute Rejection of Commercial RO Membranes

Surface Structures of Interfacial Aromatic Polyamide Composite Membranes

28 gfd

28 gfd

37 gfd

45 gfd

S.-Y. Kwak, D.W. Ihm, *J. Membrane Sci.* 158 (1999) 143-153

Cross-Section of Interfacial Polyamide Composite Membranes (BW 30)

Ridge and valley structure ~ 0.2 - 0.5 μm Selective layer ~ 500 - 1,000 Å

Surface Structure of Uncoated and Coated RO Membranes

Uncoated

Coated

Surface Structure of Uncoated and Coated RO Membranes (AFM)

ESPA-3

ESPA-3 - coated

Performance of Commercial and Modified RO Membranes for Wastewater Treatment

Financial support was provided by Office of Naval Research and SERDP

Special thanks to my colleagues Isabelle Ciobanu, Sylvie Thomas and Alvin Ng.

