Waste Water Treatment

Waste water Treatment

Moving Bed Biofilm Reactor (MBBR) Moving Bed Biofilm Reactor (MBBR)

Sewage Treatment Plant (STP)

Prepared By – Ashwini Yadav

Chemical Engineer

Moving Bed Biofilm Reactor (MBBR)

MBBR process that was first invented by Prof. Hallvard Ødegaard at Norwegian University of Science and Technology in the late 1980s

- It is attached growth biological wastewater treatment process.
- MBBR process utilizes small plastic carrier media upon which the microorganisms are attached and grow.
- The carrier media is kept suspended by diffused air aeration system for an aerobic process or by a mechanical mixing system for an anoxic or anaerobic process.
- Primary and secondary clarifiers are used in this process but there is no sludge recirculation of activated sludge because an adequate microorganism population is maintained attached to the media.

Properties of MBBR media considered in design

- Specific surface area of MBBR carriers m2/m3
- Void ratio i.e. void volume to volume of solid. Its ranges from 60% to 90%
- Surface area loading rate (SALR)

The design properties should be obtained from manufacturer or vendor.

Advantages of MBBR media

- Using these technology we can achieve the similar objective with respect to BOD₅ and nitrogen removal in smaller tank volume.
- Biomass retention time is independent on clarifier.

Moving Bed Biofilm Reactor (MBBR)

- MBBR is continuous –flow process that does not require a special operational cycle for biofilm thickness control.
- System required low maintenance.
- MBBR is well suited for retrofit installation.

Typical Design value for MBBR at 15 °C		
BOD removal	Treatment Target % Removal	Design SALR g/m2/day
High Rate	75-80	25 BOD ₇
Normal Rate	85-90	15 BOD ₇
Law Rate	90-95	7.5 BOD ₇

Table 1.

Applications of MBBR media

- Municipal and industrial wastewater treatment
- Used in aquaculture
- Potable water de-nitrification
- Used to remove ammonia from waste water

Surface Area Loading Rate

It is expressed in g/m2/day in this the g/day is parameter is to be removed and m2 refers to the surface area of carrier.

There for SALR is the g BOD/day entering the MBBR tank per m2 of carrier surface area.

Process Design Calculations

Method -I

Single Stage BOD removal MBBR process design calculations

1. BOD Loading Rate

BOD Loading Rate = Q X So

BOD Loading Rate – g/day

Q – Wastewater flow rate in kg/hr.

S_O – BOD Concentration in mg/lit

2. Required Carrier Surface Area

Required Carrier Surface Area = BOD Loading /SALR

SALR – Surface Area Loading Rate in g/m2/day (Refer table 1)

Required Surface Area - m2

3. Required Carrier Volume

Required Carrier Volume = Required Carrier Surface Area/Carrier Specific Surface Area Required Carrier Volume – m3

Carrier specific surface Area – m2/m3.

Method -II

Design considerations for Aeration Tank

(As per Waste water engineering treatment & reuse by Metcalf & Eddy, Inc.)

Biofilm Surface Area - 300-350 m3/hr.

Organic Loading Rate - 4-7 kg BOD/m3/day

MLSS Concentration - 2500 -4500 mg/lit

- Biofilm surface area used for finding quantity of media.
- Organic loading rate is used to calculate volume of MBBR tank.
- MLSS concentration is used to calculate sludge production.

1) BOD due to suspended solid

= Suspended Solid outlet X (MLVSS/MLSS) X 0.68 X 1.42

Constants comes from

2) Total applied BOD

= Inlet BOD X Inlet Flow Rate

3) Protected Surface area of media

=Surface Area of media X 0.80

4) Media Organic Loading

= Organic BOD loading / Protected Surface Area of Media

5) Quantity of media required

= Total applied BOD / (Media Organic Loading X Surface Area of Media)