Biological Wastewater Treatment

Prepared by Dr. Rehan Mohamed Mounir

Contents

- Wastewater treatment Importance
- □ Type of Pollutants
- Methods of Treatment
- Biological process as Wastewater Treatment
- Microorganisms (Type, Applications and Working)
- □ BOD removal
- Nitrogen removal (Type of Microbes, Environment condition & Operational parameter)
- Activated sludge process (Components, Monitoring & Operation)

Wastewater Treatment

Why Treat?

- Environmental Effects
- □ Image
- Reuse Implications
- □ Potable
- □ Industrial
- Regulatory Requirements

Types of Pollutants

Suspended Solids Dissolved Solids Colloidal Solids

□ Solids may be

organic (eg. Phenol, oil, bacteria) or

inorganic (eg. Salts, Ca, Mg, silt) in nature

The "Conventional" Pollutant Measures:

- □ Oxygen (BOD, COD, DO)
- \Box Solids content (TS)
- Nutrients (phosphorus, nitrogen)
- \Box Acidity (pH)
- □ Bacteria (e.g., fecal coliform)
- □ Temperature

Measurements of Gross Organic Content

- $\Box \quad \text{Dissolved Oxygen (DO)}$
- Biochemical oxygen demand (BOD)
- □ Chemical oxygen demand (COD)
- □ Total organic carbon (TOC)
- □ Theoretical oxygen demand (ThOD)

Biological Oxygen Demand (BOD)

- BOD: Oxygen is removed from water when organic matter is consumed by bacteria
- Low oxygen conditions may kill fish and other organisms

Chemical Oxygen Demand

- The quantity of oxygen used in biological <u>and non-biological</u> oxidation of materials in wastewater
- The determination of chemical oxygen demand (COD) is used in municipal and industrial laboratories to measure the overall level of organic contamination in wastewater. The contamination level is determined by measuring the equivalent amount of oxygen required to oxidize organic matter in the sample
- BOD/COD ratio the greater the ratio, the more oxidizable (biologically treatable) the waste. Ratios rarely exceed 0.8-0.9.

Total Organic Carbon (TOC)

- □ Measure of WW pollution characteristics
- Based on the chemical formula
- Test methods use heat and oxygen, UV radiation, and/or chemical oxidants to convert organic carbon to carbon dioxide, which can then be measured
- □ Can be assessed in 5 to 10 minutes
- \Box Theoretical > Measured

Theoretical Oxygen Demand (ThOD)

□ WW generally contains a mixture of carbon, hydrogen,

oxygen, and nitrogen

□ Calculated using stoichiometric equations

Considers both carbonaceous and nitrogenous oxygen

demand

Main difference from COD

Methods of Treatment

1) Clarification, Sedimentation, Flocculation are used for suspended and/ or colloidal pollutants

2) Evaporation, Reverse Osmosis etc, are used for dissolved inorganic pollutants

3) Oxidation/ Synthesis by Micro-organisms is carried out (Biological Treatment) for Dissolved Organic Pollutant

Biological Processes...

cell: derives energy from oxidation of reduced
 food sources (carbohydrate, protein & fats)

Requires.....

microbes with the ability to degrade the waste organics
 contact time with the organics
 favorable conditions for growth

Objective of Biological Wastewater Treatment

To stabilize the organic matter (Soluble and non settlable)

 To reduce the amount of dissolved phosphorus and nitrogen in the final effluent

Microorganisms

Microorganisms = single-celled organism capable of performing all life functions independent!, zymes

Typical animal cell:

Bacterial Cell

Shape of Bacteria

\Box Rods

- most common shape
- vary in shape & size

□ Spiral Rod - curved rods

Growth

□ **Growth = cell division**

one cell divides to produce two equal daughter cells

Generation time

length of time required for bacterial population to double

Bacterial Growth: cell division

The cell replicates all its components, reorganizes it into two cells, forms a cell wall, and separates.

Growth curve (typical phases of growth)

Composition of bacterial cell:

Percentage by weight

Carbon	50
Oxygen	20
Nitrogen	14
Hydrogen	8
Phosphorus	3
Sulfur	1

- Potassium 1
- □ Sodium 1
- □ Calcium 0.5
- □ Magnesium 0.5
- □ **Iron 0.2**
- □ All other elements 0.3

Cell Formula C60H84N12O24P

Requirements for Bacterial Growth

Nutritional

- Carbon source (waste to be degraded)
- N & P (IOO:5:I;C:N:P)
- Trace minerals

Environmental

- Oxygen (terminal electron acceptor)
- Temperature
- Water
- pH
- Non-toxic

Microorganisms

Classification:

- Heterotrophic- obtain energy from oxidation of organic matter (organic Carbon)
- Autotrophic- obtain energy from oxidation of inorganic matter (CO₂, NH₄, H₊)
- Phototrophic- obtain energy from sunlight

Biochemical Environments

Three Major Ones

- \Box Aerobic oxygen
- \Box Anoxic nitrate
- □ Anaerobic strict and facultative

Biological Treatment

•In the case of domestic wastewater treatment, the objective of biological treatment is:

□To stabilize the organic content

□ To remove nutrients such as nitrogen and phosphorus

Major Aerobic Biological Processes

Type of Growth	Common Name	Use
Suspended Growth	Activated Sludge (AS)	Carbonaceous BOD removal (nitrification)
	Aerated Lagoons	Carbonaceous BOD removal (nitrification)
Attached Growth	Trickling Filters	Carbonaceous BOD removal. nitrification
	Roughing Filters (trickling filters with high hydraulic loading rates)	Carbonaceous BOD removal
	Rotating Biological Contactors	Carbonaceous BOD removal (nitrification)
	Packed-bed reactors	Carbonaceous BOD removal (nitrification)
Combined Suspended & Attached Growth	Activated Biofilter Process s Trickling filter-solids contact process s Biofilter-AS process s Series trickling filter-AS process	Carbonaceous BOD removal (nitrification)

Biological Carbonaceous Removal

aerobic

A - oxidation

bacteria

CHONS + O₂ + Nutrients ----- ► CO₂ + NH, + C₅HNO₂

(organic matter)

(new bacterial cells

+ other end products)

B- endogenous respiration bacteria

OHNO, $+5O_2 + 5CO_2 ---- + 2H_2O + NH_3 + energy$ (cells)

What are the forms of nitrogen found in wastewater?

□ Forms of nitrogen:

TKN ____-Organic N____ __-Ammonia Nitrite Nitrate

Why is it necessary to treat the forms of nitrogen?

- Improve receiving stream quality
- Increase chlorination efficiency
- Minimize pH changes in plant
- Increase suitability for reuse
- Prevent NH4 toxicity
- Protect groundwater from nitrate contamination
- Increases aquatic growth (algae)
- Increases DO depletion

Nitrification

- \square NH₄+ -> Nitrosomonas NO₂-
- $\square NO_{2}^{-} ^{Nitrobacter} ^{NO_{3}^{-}}$
 - Denitrification

□ NO₃ · ^ denitrifiers (facultative bacteria) ^ N gas + CO_{2 gas}

- □ Nitrate is used instead of oxygen as terminal electron acceptor
- Denitrifiers require reduced carbon source for energy and cell synthesis
- Denitrifiers can use variety of organic carbon source methanol, ethanol and acetic acid

Biological Nitrogen Removal

- factors affecting nitrification

- □ temperature
- □ substrate concentration
- \Box dissolved oxygen
- □ pH
- □ toxic and inhibitory substances

Biological Nitrogen Removal

\square factors affecting denitrification

□ temperature

 \square dissolved oxygen

□ pH

Activated Sludge Process

Activated Sludge Process

□ There are two phases to biological treatment

- "Mineralization" of the waste organics producing $CO_2 + H_2O + microbes$
- Separation of the microbes and water

Activated Sludge Process

R (RAS)

W (WAS)

MLSS

Mixed Liquor Suspended Solids

The suspended solids in the totally mixed aeration basin liquid

Mixed Liquor Volatile Suspended Solids

The part

of MLSS which will combust.

- A good approximation of the active
 biological portion of the MLSS (75 85%)
- $\Box \quad In a well oxidised sample, \\ MLVSS = biomass$

Operational Parameters in Activated Sludge Process

- □ Nature of substrate
- □ F/M ratio
- Dissolved Oxygen
- \square RAS
- Reactor Configuration
- □ pH
- Reaction kinetics
- Reactor Hydraulics
- Nutrients

Activated Sludge Process

□ Monitoring

- □ Flows
- Organic Concentrations and Loadings
- Solids concentrations
- Settleability data
- □ Oxygen
 - Dissolved oxygen (DO) in aeration basin
 - DOUR (Dissolved oxygen uptake rate (mg/L/hr)

