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Preface

This book covers piping calculations for liquids and gases in single
phase steady state flow for various industrial applications. Pipe sizing
and capacity calculations are covered mainly with additional analysis of
strength requirement for pipes. In each case the basic theory necessary
is presented first followed by several example problems fully worked out
illustrating the concepts discussed in each chapter. Unlike a textbook
or a handbook the focus is on solving actual practical problems that the
engineer or technical professional may encounter in their daily work.
The calculation manual approach has been found to be very successful
and I want to thank Ken McCombs of McGraw-Hill for suggesting this
format.

The book consists of ten chapters and three appendices. As far as
possible calculations are illustrated using both US Customary System
of units as well as the metric or SI units. Piping calculations involving
water are covered in the first three chapters titled Water Systems Pip-
ing, Fire Protection Piping Systems and Wastewater and Stormwater
Piping. Water Systems Piping address transportation of water in short
and long distance pipelines. Pressure loss calculations, pumping horse-
power required and pump analysis are discussed with numerous exam-
ples. The chapter on Fire Protection Piping Systems covers sprinkler
system design for residential and commercial buildings. Wastewater
Systems chapter addresses how wastewater and stormwater piping
is designed. Open channel gravity flow in sewer lines are also dis-
cussed.

Chapter 4 introduces the basics of steam piping systems. Flow of sat-
urated and superheated steam through pipes and nozzles are discussed
and concepts explained using example problems.

Chapter 5 covers the flow of compressed air in piping systems includ-
ing flow through nozzles and restrictions. Chapter 6 addresses trans-
portation of oil and petroleum products through short and long distance
pipelines. Various pressure drop equations used in the oil industry are

xv



xvi Preface

reviewed using practical examples. Series and parallel piping config-
urations are analyzed along with pumping requirements and pump
performance. Economic analysis is used to compare alternatives for ex-
panding pipeline throughput.

Chapter 7 covers transportation of natural gas and other compress-
ible fluids through pipeline. Calculations illustrate how gas piping are
sized, pressures required and how compressor stations are located on
long distance gas pipelines. Economic analysis of pipe loops versus com-
pression for expanding throughput are discussed. Fuel Gas Distribution
Piping System is covered in chapter 8. In this chapter low pressure gas
piping are analyzed with examples involving Compressed Natural Gas
(CNG) and Liquefied Petroleum Gas (LPG).

Chapter 9 covers Cryogenic and Refrigeration Systems Piping. Com-
monly used cryogenic fluids are reviewed and capacity and pipe sizing
illustrated. Since two phase flow may occur in some cryogenic piping
systems, the Lockhart and Martinelli correlation method is used in ex-
plaining flow of cryogenic fluids. A typical compression refrigeration
cycle is explained and pipe sizing illustrated for the suction and dis-
charge lines.

Finally, chapter 10 discusses transportation of slurry and sludge sys-
tems through pipelines. Both newtonian and nonnewtonian slurry sys-
tems are discussed along with different Bingham and pseudo-plastic
slurries and their behavior in pipe flow. Homogenous and heteroge-
neous flow are covered in addition to pressure drop calculations in
slurry pipelines.

I would like to thank Ken McCombs of McGraw-Hill for suggesting
the subject matter and format for the book and working with me on
finalizing the contents. He was also aggressive in followthrough to get
the manuscript completed within the agreed time period. I enjoyed
working with him and hope to work on another project with McGraw-
Hill in the near future. Lucy Mullins did most of the copyediting. She
was very meticulous and thorough in her work and I learned a lot from
her about editing technical books. Ben Kolstad, Editorial Services Man-
ager of International Typesetting and Composition (ITC), coordinated
the work wonderfully. Neha Rathor and her team at ITC did the type-
setting. I found ITC’s work to be very prompt, professional, and of high
quality.

Needless to say, I received a lot of help during the preparation of
the manuscript. In particular I want to thank my wife Pramila for
the many hours she spent on the computer typing the manuscript and
meticulously proof reading to create the final work product. My father-
in-law, A. Mukundan, a retired engineer and consultant, also provided
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valuable guidance and help in proofing the manuscript. Finally, I would
like to dedicate this book to my mother, who passed away recently, but
she definitely was aware of my upcoming book and provided her usual
encouragement throughout my effort.

E. Shashi Menon
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Chapter

1
Water Systems Piping

Introduction

Water systems piping consists of pipes, valves, fittings, pumps, and as-
sociated appurtenances that make up water transportation systems.
These systems may be used to transport fresh water or nonpotable wa-
ter at room temperatures or at elevated temperatures. In this chapter
we will discuss the physical properties of water and how pressure drop
due to friction is calculated using the various formulas. In addition, to-
tal pressure required and an estimate of the power required to transport
water in pipelines will be covered. Some cost comparisons for economic
transportation of various pipeline systems will also be discussed.

1.1 Properties of Water

1.1.1 Mass and weight

Mass is defined as the quantity of matter. It is measured in slugs (slug)
in U.S. Customary System (USCS) units and kilograms (kg) in Système
International (SI) units. A given mass of water will occupy a certain
volume at a particular temperature and pressure. For example, a mass
of water may be contained in a volume of 500 cubic feet (ft3) at a temper-
ature of 60◦F and a pressure of 14.7 pounds per square inch (lb/in2 or
psi). Water, like most liquids, is considered incompressible. Therefore,
pressure and temperature have a negligible effect on its volume. How-
ever, if the properties of water are known at standard conditions such
as 60◦F and 14.7 psi pressure, these properties will be slightly different
at other temperatures and pressures. By the principle of conservation
of mass, the mass of a given quantity of water will remain the same at
all temperatures and pressures.

1



2 Chapter One

Weight is defined as the gravitational force exerted on a given mass
at a particular location. Hence the weight varies slightly with the geo-
graphic location. By Newton’s second law the weight is simply the prod-
uct of the mass and the acceleration due to gravity at that location. Thus

W = mg (1.1)

where W = weight, lb
m= mass, slug
g = acceleration due to gravity, ft/s2

In USCS units g is approximately 32.2 ft/s2, and in SI units it is
9.81 m/s2. In SI units, weight is measured in newtons (N) and mass
is measured in kilograms. Sometimes mass is referred to as pound-
mass (lbm) and force as pound-force (lbf) in USCS units. Numerically
we say that 1 lbm has a weight of 1 lbf.

1.1.2 Density and specific weight

Density is defined as mass per unit volume. It is expressed as slug/ft3

in USCS units. Thus, if 100 ft3 of water has a mass of 200 slug, the
density is 200/100 or 2 slug/ft3. In SI units, density is expressed in
kg/m3. Therefore water is said to have an approximate density of 1000
kg/m3at room temperature.

Specific weight, also referred to as weight density, is defined as the
weight per unit volume. By the relationship between weight and mass
discussed earlier, we can state that the specific weight is as follows:

γ = ρg (1.2)

where γ = specific weight, lb/ft3

ρ = density, slug/ft3

g = acceleration due to gravity

The volume of water is usually measured in gallons (gal) or cubic
ft (ft3) in USCS units. In SI units, cubic meters (m3) and liters (L) are
used. Correspondingly, the flow rate in water pipelines is measured
in gallons per minute (gal/min), million gallons per day (Mgal/day),
and cubic feet per second (ft3/s) in USCS units. In SI units, flow rate
is measured in cubic meters per hour (m3/h) or liters per second (L/s).
One ft3 equals 7.48 gal. One m3equals 1000 L, and 1 gal equals
3.785 L. A table of conversion factors for various units is provided in
App. A.
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Example 1.1 Water at 60◦F fills a tank of volume 1000 ft3 at atmospheric
pressure. If the weight of water in the tank is 31.2 tons, calculate its density
and specific weight.

Solution

Specific weight = weight
volume

= 31.2 × 2000
1000

= 62.40 lb/ft3

From Eq. (1.2) the density is

Density = specific weight
g

= 62.4
32.2

= 1.9379 slug/ft3

Example 1.2 A tank has a volume of 5 m3 and contains water at 20◦C.
Assuming a density of 990 kg/m3, calculate the weight of the water in the
tank. What is the specific weight in N/m3 using a value of 9.81 m/s2 for
gravitational acceleration?

Solution

Mass of water = volume × density = 5 × 990 = 4950 kg

Weight of water = mass × g = 4950 × 9.81 = 48,559.5 N = 48.56 kN

Specific weight = weight
volume

= 48.56
5

= 9.712 N/m3

1.1.3 Specific gravity

Specific gravity is a measure of how heavy a liquid is compared to water.
It is a ratio of the density of a liquid to the density of water at the same
temperature. Since we are dealing with water only in this chapter, the
specific gravity of water by definition is always equal to 1.00.

1.1.4 Viscosity

Viscosity is a measure of a liquid’s resistance to flow. Each layer of water
flowing through a pipe exerts a certain amount of frictional resistance to
the adjacent layer. This is illustrated in the shear stress versus velocity
gradient curve shown in Fig. 1.1a. Newton proposed an equation that
relates the frictional shear stress between adjacent layers of flowing
liquid with the velocity variation across a section of the pipe as shown
in the following:

Shear stress = μ × velocity gradient

or

τ = μ
dv
dy

(1.3)
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Figure 1.1 Shear stress versus velocity gradient curve.

where τ = shear stress
μ = absolute viscosity, (lb · s)/ft2 or slug/(ft · s)

dv
dy

= velocity gradient

The proportionality constant μ in Eq. (1.3) is referred to as the absolute
viscosity or dynamic viscosity. In SI units, μ is expressed in poise or
centipoise (cP).

The viscosity of water, like that of most liquids, decreases with an
increase in temperature, and vice versa. Under room temperature con-
ditions water has an absolute viscosity of 1 cP.

Kinematic viscosity is defined as the absolute viscosity divided by the
density. Thus

ν = μ

ρ
(1.4)

where ν = kinematic viscosity, ft2/s
μ = absolute viscosity, (lb · s)/ft2 or slug/(ft · s)
ρ = density, slug/ft3

In SI units, kinematic viscosity is expressed as stokes or centistokes
(cSt). Under room temperature conditions water has a kinematic vis-
cosity of 1.0 cSt. Properties of water are listed in Table 1.1.

Example 1.3 Water has a dynamic viscosity of 1 cP at 20◦C. Calculate the
kinematic viscosity in SI units.

Solution

Kinematic viscosity = absolute viscosity μ

density ρ

= 1.0 × 10−2 × 0.1 (N · s)/m2

1.0 × 1000 kg/m3
= 10−6 m2/s

since 1.0 N = 1.0 (kg · m)/s2.
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TABLE 1.1 Properties of Water at Atmospheric Pressure

Temperature Density Specific weight Dynamic viscosity Vapor pressure
◦F slug/ft3 lb/ft3 (lb · s)/ft2 psia

USCS units

32 1.94 62.4 3.75 × 10−5 0.08
40 1.94 62.4 3.24 × 10−5 0.12
50 1.94 62.4 2.74 × 10−5 0.17
60 1.94 62.4 2.36 × 10−5 0.26
70 1.94 62.3 2.04 × 10−5 0.36
80 1.93 62.2 1.80 × 10−5 0.51
90 1.93 62.1 1.59 × 10−5 0.70

100 1.93 62.0 1.42 × 10−5 0.96

Temperature Density Specific weight Dynamic viscosity Vapor pressure
◦C kg/m3 kN/m3 (N · s)/m2 kPa

SI units

0 1000 9.81 1.75 × 10−3 0.611
10 1000 9.81 1.30 × 10−3 1.230
20 998 9.79 1.02 × 10−3 2.340
30 996 9.77 8.00 × 10−4 4.240
40 992 9.73 6.51 × 10−4 7.380
50 988 9.69 5.41 × 10−4 12.300
60 984 9.65 4.60 × 10−4 19.900
70 978 9.59 4.02 × 10−4 31.200
80 971 9.53 3.50 × 10−4 47.400
90 965 9.47 3.11 × 10−4 70.100

100 958 9.40 2.82 ×10−4 101.300

1.2 Pressure

Pressure is defined as the force per unit area. The pressure at a location
in a body of water is by Pascal’s law constant in all directions. In USCS
units pressure is measured in lb/in2 (psi), and in SI units it is expressed
as N/m2 or pascals (Pa). Other units for pressure include lb/ft2, kilopas-
cals (kPa), megapascals (MPa), kg/cm2, and bar. Conversion factors are
listed in App. A.

Therefore, at a depth of 100 ft below the free surface of a water tank
the intensity of pressure, or simply the pressure, is the force per unit
area. Mathematically, the column of water of height 100 ft exerts a force
equal to the weight of the water column over an area of 1 in2. We can
calculate the pressures as follows:

Pressure = weight of 100-ft column of area 1.0 in2

1.0 in2

= 100 × (1/144) × 62.4
1.0
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In this equation, we have assumed the specific weight of water to be
62.4 lb/ft3. Therefore, simplifying the equation, we obtain

Pressure at a depth of 100 ft = 43.33 lb/in2 (psi)

A general equation for the pressure in a liquid at a depth h is

P = γ h (1.5)

where P = pressure, psi
γ = specific weight of liquid
h = liquid depth

Variable γ may also be replaced with ρg where ρ is the density and g
is gravitational acceleration.

Generally, pressure in a body of water or a water pipeline is referred
to in psi above that of the atmospheric pressure. This is also known
as the gauge pressure as measured by a pressure gauge. The absolute
pressure is the sum of the gauge pressure and the atmospheric pressure
at the specified location. Mathematically,

Pabs = Pgauge + Patm (1.6)

To distinguish between the two pressures, psig is used for gauge pres-
sure and psia is used for the absolute pressure. In most calculations
involving water pipelines the gauge pressure is used. Unless otherwise
specified, psi means the gauge pressure.

Liquid pressure may also be referred to as head pressure, in which
case it is expressed in feet of liquid head (or meters in SI units). There-
fore, a pressure of 1000 psi in a liquid such as water is said to be equiv-
alent to a pressure head of

h = 1000 × 144
62.4

= 2308 ft

In a more general form, the pressure P in psi and liquid head h in
feet for a specific gravity of Sg are related by

P = h × Sg
2.31

(1.7)

where P = pressure, psi
h = liquid head, ft

Sg = specific gravity of water
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In SI units, pressure P in kilopascals and head h in meters are related
by the following equation:

P = h × Sg
0.102

(1.8)

Example 1.4 Calculate the pressure in psi at a water depth of 100 ft assum-
ing the specific weight of water is 62.4 lb/ft3. What is the equivalent pressure
in kilopascals? If the atmospheric pressure is 14.7 psi, calculate the absolute
pressure at that location.

Solution Using Eq. (1.5), we calculate the pressure:

P = γ h = 62.4 lb/ft3 × 100 ft = 6240 lb/ft2

= 6240
144

lb/in2 = 43.33 psig

Absolute pressure = 43.33 + 14.7 = 58.03 psia

In SI units we can calculate the pressures as follows:

Pressure = 62.4 × 1
2.2025

(3.281)3 kg/m3 ×
(

100
3.281

m

)
(9.81 m/s2)

= 2.992 × 105( kg · m)/(s2 · m2)

= 2.992 × 105 N/m2 = 299.2 kPa

Alternatively,

Pressure in kPa = pressure in psi
0.145

= 43.33
0.145

= 298.83 kPa

The 0.1 percent discrepancy between the values is due to conversion factor
round-off.

1.3 Velocity

The velocity of flow in a water pipeline depends on the pipe size and flow
rate. If the flow rate is uniform throughout the pipeline (steady flow),
the velocity at every cross section along the pipe will be a constant value.
However, there is a variation in velocity along the pipe cross section.
The velocity at the pipe wall will be zero, increasing to a maximum at
the centerline of the pipe. This is illustrated in Fig. 1.1b.

We can define a bulk velocity or an average velocity of flow as follows:

Velocity = flow rate
area of flow
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Considering a circular pipe with an inside diameter D and a flow rate
of Q, we can calculate the average velocity as

V = Q
π D2/4

(1.9)

Employing consistent units of flow rate Q in ft3/s and pipe diameter in
inches, the velocity in ft/s is as follows:

V = 144Q
π D2/4

or

V = 183.3461
Q
D2 (1.10)

where V = velocity, ft/s
Q = flow rate, ft3/s
D = inside diameter, in

Additional formulas for velocity in different units are as follows:

V = 0.4085
Q
D2 (1.11)

where V = velocity, ft/s
Q = flow rate, gal/min
D = inside diameter, in

In SI units, the velocity equation is as follows:

V = 353.6777
Q
D2 (1.12)

where V = velocity, m/s
Q = flow rate, m3/h
D = inside diameter, mm

Example 1.5 Water flows through an NPS 16 pipeline (0.250-in wall thick-
ness) at the rate of 3000 gal/min. Calculate the average velocity for steady
flow. (Note: The designation NPS 16 means nominal pipe size of 16 in.)

Solution From Eq. (1.11), the average flow velocity is

V = 0.4085
3000
15.52

= 5.10 ft/s

Example 1.6 Water flows through a DN 200 pipeline (10-mm wall thickness)
at the rate of 75 L/s. Calculate the average velocity for steady flow.
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Solution The designation DN 200 means metric pipe size of 200-mm outside
diameter. It corresponds to NPS 8 in USCS units. From Eq. (1.12) the average
flow velocity is

V = 353.6777

(
75 × 60 × 60 × 10−3

1802

)
= 2.95 m/s

The variation of flow velocity in a pipe depends on the type of flow.
In laminar flow, the velocity variation is parabolic. As the flow rate be-
comes turbulent the velocity profile approximates a trapezoidal shape.
Both types of flow are depicted in Fig. 1.1b. Laminar and turbulent
flows are discussed in Sec. 1.5 after we introduce the concept of the
Reynolds number.

1.4 Reynolds Number

The Reynolds number is a dimensionless parameter of flow. It depends
on the pipe size, flow rate, liquid viscosity, and density. It is calculated
from the following equation:

R = VDρ

μ
(1.13)

or

R = VD
ν

(1.14)

where R = Reynolds number, dimensionless
V = average flow velocity, ft/s
D = inside diameter of pipe, ft
ρ = mass density of liquid, slug/ft3

μ = dynamic viscosity, slug/(ft · s)
ν = kinematic viscosity, ft2/s

Since R must be dimensionless, a consistent set of units must be used
for all items in Eq. (1.13) to ensure that all units cancel out and R has
no dimensions.

Other variations of the Reynolds number for different units are as
follows:

R = 3162.5
Q
Dν

(1.15)

where R = Reynolds number, dimensionless
Q = flow rate, gal/min
D = inside diameter of pipe, in
ν = kinematic viscosity, cSt



10 Chapter One

In SI units, the Reynolds number is expressed as follows:

R = 353,678
Q
νD

(1.16)

where R = Reynolds number, dimensionless
Q = flow rate, m3/h
D = inside diameter of pipe, mm
ν = kinematic viscosity, cSt

Example 1.7 Water flows through a 20-in pipeline (0.375-in wall thickness)
at 6000 gal/min. Calculate the average velocity and Reynolds number of flow.
Assume water has a viscosity of 1.0 cSt.

Solution Using Eq. (1.11), the average velocity is calculated as follows:

V = 0.4085
6000

19.252
= 6.61 ft/s

From Eq. (1.15), the Reynolds number is

R = 3162.5
6000

19.25 × 1.0
= 985,714

Example 1.8 Water flows through a 400-mm pipeline (10-mm wall thick-
ness) at 640 m3/h. Calculate the average velocity and Reynolds number of
flow. Assume water has a viscosity of 1.0 cSt.

Solution From Eq. (1.12) the average velocity is

V = 353.6777
640
3802

= 1.57 m/s

From Eq. (1.16) the Reynolds number is

R = 353,678
640

380 × 1.0
= 595,668

1.5 Types of Flow

Flow through pipe can be classified as laminar flow, turbulent flow, or
critical flow depending on the Reynolds number of flow. If the flow is
such that the Reynolds number is less than 2000 to 2100, the flow is
said to be laminar. When the Reynolds number is greater than 4000,
the flow is said to be turbulent. Critical flow occurs when the Reynolds
number is in the range of 2100 to 4000. Laminar flow is characterized by
smooth flow in which no eddies or turbulence are visible. The flow is said
to occur in laminations. If dye was injected into a transparent pipeline,
laminar flow would be manifested in the form of smooth streamlines
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of dye. Turbulent flow occurs at higher velocities and is accompanied
by eddies and other disturbances in the liquid. Mathematically, if R
represents the Reynolds number of flow, the flow types are defined as
follows:

Laminar flow: R ≤ 2100

Critical flow: 2100 < R ≤ 4000

Turbulent flow: R > 4000

In the critical flow regime, where the Reynolds number is between 2100
and 4000, the flow is undefined as far as pressure drop calculations are
concerned.

1.6 Pressure Drop Due to Friction

As water flows through a pipe there is friction between the adjacent lay-
ers of water and between the water molecules and the pipe wall. This
friction causes energy to be lost, being converted from pressure energy
and kinetic energy to heat. The pressure continuously decreases as
water flows down the pipe from the upstream end to the downstream
end. The amount of pressure loss due to friction, also known as head
loss due to friction, depends on the flow rate, properties of water (spe-
cific gravity and viscosity), pipe diameter, pipe length, and internal
roughness of the pipe. Before we discuss the frictional pressure loss in
a pipeline we must introduce Bernoulli’s equation, which is a form of
the energy equation for liquid flow in a pipeline.

1.6.1 Bernoulli’s equation

Bernoulli’s equation is another way of stating the principle of conser-
vation of energy applied to liquid flow through a pipeline. At each point
along the pipeline the total energy of the liquid is computed by tak-
ing into consideration the liquid energy due to pressure, velocity, and
elevation combined with any energy input, energy output, and energy
losses. The total energy of the liquid contained in the pipeline at any
point is a constant. This is also known as the principle of conservation
of energy.

Consider a liquid flow through a pipeline from point A to point B as
shown in Fig. 1.2. The elevation of point A is ZA and the elevation at B
is ZB above some common datum, such as mean sea level. The pressure
at point A is PA and that at B is PB. It is assumed that the pipe diameter
at A and B are different, and hence the flow velocity at A and B will
be represented by VA and VB, respectively. A particle of the liquid of
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Flow

Pressure PA

Pressure PB

A

B

ZBZA

Datum for elevations

Figure 1.2 Total energy of water in pipe flow.

unit weight at point A in the pipeline possesses a total energy E which
consists of three components:

Potential energy = ZA

Pressure energy = PA

γ

Kinetic energy =
(

VA

2g

)2

where γ is the specific weight of liquid.
Therefore the total energy E is

E = ZA + PA

γ
+ VA

2

2g
(1.17)

Since each term in Eq. (1.17) has dimensions of length, we refer to the
total energy at point A as HA in feet of liquid head. Therefore, rewriting
the total energy in feet of liquid head at point A, we obtain

HA = ZA + PA

γ
+ VA

2

2g
(1.18)

Similarly, the same unit weight of liquid at point B has a total energy
per unit weight equal to HB given by

HB = ZB + PB

γ
+ VB

2

2g
(1.19)

By the principle of conservation of energy

HA = HB (1.20)
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Therefore,

ZA + PA

γ
+ VA

2

2g
= ZB + PB

γ
+ VB

2

2g
(1.21)

In Eq. (1.21), referred to as Bernoulli’s equation, we have not consid-
ered any energy added to the liquid, energy taken out of the liquid, or
energy losses due to friction. Therefore, modifying Eq. (1.21) to take
into account the addition of energy (such as from a pump at A) and
accounting for frictional head losses hf , we get the more common form
of Bernoulli’s equation as follows:

ZA + PA

γ
+ VA

2

2g
+ Hp = ZB + PB

γ
+ VB

2

2g
+ hf (1.22)

where HP is the equivalent head added to the liquid by the pump at
A and hf represents the total frictional head losses between points A
and B.

We will next discuss how the head loss due to friction hf in Bernoulli’s
equation is calculated for various conditions of water flow in pipelines.
We begin with the classical pressure drop equation known as the Darcy-
Weisbach equation, or simply the Darcy equation.

1.6.2 Darcy equation

The Darcy equation, also called Darcy-Weisbach equation, is one of the
oldest formulas used in classical fluid mechanics. It can be used to cal-
culate the pressure drop in pipes transporting any type of fluid, such
as a liquid or gas.

As water flows through a pipe from point A to point B the pressure
decreases due to friction between the water and the pipe wall. The Darcy
equation may be used to calculate the pressure drop in water pipes as
follows:

h = f
L
D

V 2

2g
(1.23)

where h = frictional pressure loss, ft of head
f = Darcy friction factor, dimensionless
L = pipe length, ft
D = inside pipe diameter, ft
V = average flow velocity, ft/s
g = acceleration due to gravity, ft/s2

In USCS units, g = 32.2 ft/s2, and in SI units, g = 9.81 m/s2.
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Note that the Darcy equation gives the frictional pressure loss in
feet of head of water. It can be converted to pressure loss in psi using
Eq. (1.7). The term V 2/2g in the Darcy equation is called the velocity
head, and it represents the kinetic energy of the water. The term velocity
head will be used in subsequent sections of this chapter when discussing
frictional head loss through pipe fittings and valves.

Another form of the Darcy equation with frictional pressure drop
expressed in psi/mi and using a flow rate instead of velocity is as follows:

Pm = 71.16
f Q2

D5 (1.24)

where Pm = frictional pressure loss, psi/mi
f = Darcy friction factor, dimensionless

Q = flow rate, gal/min
D = pipe inside diameter, in

In SI units, the Darcy equation may be written as

h = 50.94
f LV 2

D
(1.25)

where h = frictional pressure loss, meters of liquid head
f = Darcy friction factor, dimensionless
L = pipe length, m
D = pipe inside diameter, mm
V = average flow velocity, m/s

Another version of the Darcy equation in SI units is as follows:

Pkm = (6.2475 × 1010)
f Q2

D5 (1.26)

where Pkm = pressure drop due to friction, kPa/km
Q = liquid flow rate, m3/h
f = Darcy friction factor, dimensionless
D = pipe inside diameter, mm

In order to calculate the friction loss in a water pipeline using the
Darcy equation, we must know the friction factor f . The friction factor
f in the Darcy equation is the only unknown on the right-hand side
of Eq. (1.23). This friction factor is a nondimensional number between
0.0 and 0.1 (usually around 0.02 for turbulent flow) that depends on
the internal roughness of the pipe, the pipe diameter, and the Reynolds
number, and therefore the type of flow (laminar or turbulent).
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For laminar flow, the friction factor f depends only on the Reynolds
number and is calculated as follows:

f = 64
R

(1.27)

where f is the friction factor for laminar flow and R is the Reynolds
number for laminar flow (R < 2100) (dimensionless).

Therefore, if the Reynolds number for a particular flow is 1200, the
friction factor for this laminar flow is 64/1200 = 0.0533. If this pipeline
has a 400-mm inside diameter and water flows through it at 500 m3/h,
the pressure loss per kilometer would be, from Eq. (1.26),

Pkm = 6.2475 × 1010 × 0.0533 × (500)2

(400)5 = 81.3 kPa/km

If the flow is turbulent (R > 4000), calculation of the friction factor
is not as straightforward as that for laminar flow. We will discuss this
next.

1.6.3 Colebrook-White equation

In turbulent flow the calculation of friction factor f is more complex. The
friction factor depends on the pipe inside diameter, the pipe roughness,
and the Reynolds number. Based on work by Moody, Colebrook-White,
and others, the following empirical equation, known as the Colebrook-
White equation, has been proposed for calculating the friction factor in
turbulent flow:

1√
f

= −2 log10

(
e

3.7D
+ 2.51

R
√

f

)
(1.28)

where f = Darcy friction factor, dimensionless
D = pipe inside diameter, in
e = absolute pipe roughness, in
R = Reynolds number, dimensionless

The absolute pipe roughness depends on the internal condition of
the pipe. Generally a value of 0.002 in or 0.05 mm is used in most
calculations, unless better data are available. Table 1.2 lists the pipe
roughness for various types of pipe. The ratio e/D is known as the
relative pipe roughness and is dimensionless since both pipe absolute
roughness e and pipe inside diameter D are expressed in the same units
(inches in USCS units and millimeters in SI units). Therefore, Eq. (1.28)
remains the same for SI units, except that, as stated, the absolute pipe
roughness e and the pipe diameter D are both expressed in millimeters.
All other terms in the equation are dimensionless.



16 Chapter One

TABLE 1.2 Pipe Internal Roughness

Roughness

Pipe material in mm

Riveted steel 0.035–0.35 0.9–9.0
Commercial steel/welded steel 0.0018 0.045
Cast iron 0.010 0.26
Galvanized iron 0.006 0.15
Asphalted cast iron 0.0047 0.12
Wrought iron 0.0018 0.045
PVC, drawn tubing, glass 0.000059 0.0015
Concrete 0.0118–0.118 0.3–3.0

It can be seen from Eq. (1.28) that the calculation of the friction factor
f is not straightforward since it appears on both sides of the equation.
Successive iteration or a trial-and-error approach is used to solve for
the friction factor.

1.6.4 Moody diagram

The Moody diagram is a graphical plot of the friction factor f for all flow
regimes (laminar, critical, and turbulent ) against the Reynolds num-
ber at various values of the relative roughness of pipe. The graphical
method of determining the friction factor for turbulent flow using the
Moody diagram (see Fig. 1.3) is discussed next.

For a given Reynolds number on the horizontal axis, a vertical line
is drawn up to the curve representing the relative roughness e/D. The
friction factor is then read by going horizontally to the vertical axis
on the left. It can be seen from the Moody diagram that the turbulent
region is further divided into two regions: the “transition zone” and
the “complete turbulence in rough pipes” zone. The lower boundary is
designated as “smooth pipes,” and the transition zone extends up to
the dashed line. Beyond the dashed line is the complete turbulence in
rough pipes zone. In this zone the friction factor depends very little
on the Reynolds number and more on the relative roughness. This is
evident from the Colebrook-White equation, where at large Reynolds
numbers, the second term within the parentheses approaches zero. The
friction factor thus depends only on the first term, which is proportional
to the relative roughness e/D. In contrast, in the transition zone both
R and e/D influence the value of friction factor f .

Example 1.9 Water flows through a 16-in pipeline (0.375-in wall thickness)
at 3000 gal/min. Assuming a pipe roughness of 0.002 in, calculate the friction
factor and head loss due to friction in 1000 ft of pipe length.
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Solution Using Eq. (1.11) we calculate the average flow velocity:

V = 0.4085
3000

(15.25)2
= 5.27 ft/s

Using Eq. (1.15) we calculate the Reynolds number as follows:

R = 3162.5
3000

15.25 × 1.0
= 622,131

Thus the flow is turbulent, and we can use the Colebrook-White equation
(1.28) to calculate the friction factor.

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

f

)

This equation must be solved for f by trial and error. First assume that
f = 0.02. Substituting in the preceding equation, we get a better approxi-
mation for f as follows:

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

0.02

)
or f = 0.0142

Recalculating using this value

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

(622,131
√

0.0142

)
or f = 0.0145

and finally

1√
f

= −2 log10

(
0.002

3.7 × 15.25
+ 2.51

622,131
√

0.0145

)
or f = 0.0144

Thus the friction factor is 0.0144. (We could also have used the Moody dia-
gram to find the friction factor graphically, for Reynolds number R = 622,131
and e/D = 0.002/15.25 = 0.0001. From the graph, we get f = 0.0145, which
is close enough.)

The head loss due to friction can now be calculated using the Darcy equa-
tion (1.23).

h = 0.0144
1000 × 12

15.25
5.272

64.4
= 4.89 ft of head of water

Converting to psi using Eq. (1.7), we get

Pressure drop due to friction = 4.89 × 1.0
2.31

= 2.12 psi

Example 1.10 A concrete pipe (2-m inside diameter) is used to transport
water from a pumping facility to a storage tank 5 km away. Neglecting any
difference in elevations, calculate the friction factor and pressure loss in
kPa/km due to friction at a flow rate of 34,000 m3/h. Assume a pipe roughness
of 0.05 mm. If a delivery pressure of 4 kPa must be maintained at the delivery
point and the storage tank is at an elevation of 200 m above that of the
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pumping facility, calculate the pressure required at the pumping facility at
the given flow rate, using the Moody diagram.

Solution The average flow velocity is calculated using Eq. (1.12).

V = 353.6777
34,000
(2000)2

= 3.01 m/s

Next using Eq. (1.16), we get the Reynolds number as follows:

R = 353,678
34,000

1.0 × 2000
= 6,012,526

Therefore, the flow is turbulent. We can use the Colebrook-White equation or
the Moody diagram to determine the friction factor. The relative roughness
is

e
D

= 0.05
2000

= 0.00003

Using the obtained values for relative roughness and the Reynolds number,
from the Moody diagram we get friction factor f = 0.01.

The pressure drop due to friction can now be calculated using the Darcy
equation (1.23) for the entire 5-km length of pipe as

h = 0.01
5000
2.0

3.012

2 × 9.81
= 11.54 m of head of water

Using Eq. (1.8) we calculate the pressure drop in kilopascals as

Total pressure drop in 5 km = 11.54 × 1.0
0.102

= 113.14 kPa

Therefore,

Pressure drop in kPa/km = 113.14
5

= 22.63 kPa/km

The pressure required at the pumping facility is calculated by adding the
following three items:

1. Pressure drop due to friction for 5-km length.

2. The static elevation difference between the pumping facility and storage
tank.

3. The delivery pressure required at the storage tank.

We can also state the calculation mathematically.

Pt = Pf + Pelev + Pdel (1.29)

where Pt = total pressure required at pump
Pf = frictional pressure head

Pelev = pressure head due to elevation difference
Pdel = delivery pressure at storage tank
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All pressures must be in the same units: either meters of head or kilopascals.

Pt = 113.14 kPa + 200 m + 4 kPa

Changing all units to kilopascals we get

Pt = 113.14 + 200 × 1.0
0.102

+ 4 = 2077.92 kPa

Therefore, the pressure required at the pumping facility is 2078 kPa.

1.6.5 Hazen-Williams equation

A more popular approach to the calculation of head loss in water piping
systems is the use of the Hazen-Williams equation. In this method a
coefficient C known as the Hazen-Williams C factor is used to account
for the internal pipe roughness or efficiency. Unlike the Moody diagram
or the Colebrook-White equation, the Hazen-Williams equation does not
require use of the Reynolds number or viscosity of water to calculate
the head loss due to friction.

The Hazen-Williams equation for head loss is expressed as follows:

h = 4.73 L(Q/C)1.852

D4.87 (1.30)

where h = frictional head loss, ft
L = length of pipe, ft
D = inside diameter of pipe, ft
Q = flow rate, ft3/s
C = Hazen-Williams C factor or roughness coefficient,

dimensionless

Commonly used values of the Hazen-Williams C factor for various ap-
plications are listed in Table 1.3.

TABLE 1.3 Hazen-Williams C Factor

Pipe material C factor

Smooth pipes (all metals) 130–140
Cast iron (old) 100
Iron (worn/pitted) 60–80
Polyvinyl chloride (PVC) 150
Brick 100
Smooth wood 120
Smooth masonry 120
Vitrified clay 110
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On examining the Hazen-Williams equation, we see that the head
loss due to friction is calculated in feet of head, similar to the Darcy
equation. The value of h can be converted to psi using the head-to-psi
conversion [Eq. (1.7)]. Although the Hazen-Williams equation appears
to be simpler to use than the Colebrook-White and Darcy equations to
calculate the pressure drop, the unknown term C can cause uncertain-
ties in the pressure drop calculation.

Usually, the C factor, or Hazen-Williams roughness coefficient, is
based on experience with the water pipeline system, such as the pipe
material or internal condition of the pipeline system. When designing
a new pipeline, proper judgment must be exercised in choosing a C
factor since considerable variation in pressure drop can occur by se-
lecting a particular value of C compared to another. Because of the
inverse proportionality effect of C on the head loss h, using C = 140
instead of C = 100 will result in a [1 − ( 100

140

)1.852] or 46 percent less
pressure drop. Therefore, it is important that the C value be chosen
judiciously.

Other forms of the Hazen-Williams equation using different units
are discussed next. In the following formulas the presented equations
calculate the flow rate from a given head loss, or vice versa.

In USCS units, the following forms of the Hazen-Williams equation
are used.

Q = (6.755 × 10−3)CD2.63h0.54 (1.31)

h = 10,460
(

Q
C

)1.852 1
D4.87 (1.32)

Pm = 23,909
(

Q
C

)1.852 1
D4.87 (1.33)

where Q = flow rate, gal/min
h = friction loss, ft of water per 1000 ft of pipe

Pm = friction loss, psi per mile of pipe
D = inside diameter of pipe, in
C = Hazen-Williams C factor, dimensionless (see Table 1.3)

In SI units, the Hazen-Williams equation is expressed as follows:

Q = (9.0379 × 10−8)CD2.63
(

Pkm

Sg

)0.54

(1.34)

Pkm = 1.1101 × 1013
(

Q
C

)1.852 Sg
D4.87 (1.35)
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where Q = flow rate, m3/h
D = pipe inside diameter, mm

Pkm = frictional pressure drop, kPa/km
Sg = liquid specific gravity (water = 1.00)
C = Hazen-Williams C factor, dimensionless (see Table 1.3)

1.6.6 Manning equation

The Manning equation was originally developed for use in open-channel
flow of water. It is also sometimes used in pipe flow. The Manning equa-
tion uses the Manning index n, or roughness coefficient, which like the
Hazen-Williams C factor depends on the type and internal condition
of the pipe. The values used for the Manning index for common pipe
materials are listed in Table 1.4.

The following is a form of the Manning equation for pressure drop
due to friction in water piping systems:

Q = 1.486
n

AR2/3
(

h
L

)1/2

(1.36)

where Q = flow rate, ft3/s
A = cross-sectional area of pipe, ft2

R = hydraulic radius = D/4 for circular pipes flowing full
n = Manning index, or roughness coefficient, dimensionless
D = inside diameter of pipe, ft
h = friction loss, ft of water
L = pipe length, ft

TABLE 1.4 Manning Index

Resistance
Pipe material factor

PVC 0.009
Very smooth 0.010
Cement-lined ductile iron 0.012
New cast iron, welded steel 0.014
Old cast iron, brick 0.020
Badly corroded cast iron 0.035
Wood, concrete 0.016
Clay, new riveted steel 0.017
Canals cut through rock 0.040
Earth canals average condition 0.023
Rivers in good conditions 0.030
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In SI units, the Manning equation is expressed as follows:

Q = 1
n

AR2/3
(

h
L

)1/2

(1.37)

where Q = flow rate, m3/s
A = cross-sectional area of pipe, m2

R = hydraulic radius = D/4 for circular pipes flowing full
n = Manning index, or roughness coefficient, dimensionless
D = inside diameter of pipe, m
h = friction loss, ft of water
L = pipe length, m

Example 1.11 Water flows through a 16-in pipeline (0.375-in wall thickness)
at 3000 gal/min. Using the Hazen-Williams equation with a C factor of 120,
calculate the pressure loss due to friction in 1000 ft of pipe length.

Solution First we calculate the flow rate using Eq. (1.31):

Q = 6.755 × 10−3 × 120 × (15.25)2.63h0.54

where h is in feet of head per 1000 ft of pipe.
Rearranging the preceding equation, using Q = 3000 and solving for h, we

get

h0.54 = 3000
6.755 × 10−3 × 120 × (15.25)2.63

Therefore,

h = 7.0 ft per 1000 ft of pipe

Pressure drop = 7.0 × 1.0
2.31

= 3.03 psi

Compare this with the same problem described in Example 1.9. Using the
Colebrook-White and Darcy equations we calculated the pressure drop to be
4.89 ft per 1000 ft of pipe. Therefore, we can conclude that the C value used
in the Hazen-Williams equation in this example is too low and hence gives
us a comparatively higher pressure drop. Therefore, we will recalculate the
pressure drop using a C factor = 140 instead.

h0.54 = 3000
6.755 × 10−3 × 140 × (15.25)2.63

Therefore,

h = 5.26 ft per 1000 ft of pipe

Pressure drop = 5.26 × 1.0
2.31

= 2.28 psi

It can be seen that we are closer now to the results using the Colebrook-White
and Darcy equations. The result is still 7.6 percent higher than that obtained
using the Colebrook-White and Darcy equations. The conclusion is that the
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C factor in the preceding Hazen-Williams calculation should probably be
slightly higher than 140. In fact, using a C factor of 146 will get the result
closer to the 4.89 ft per 1000 ft we got using the Colebrook-White equation.

Example 1.12 A concrete pipe with a 2-m inside diameter is used to trans-
port water from a pumping facility to a storage tank 5 km away. Neglecting
differences in elevation, calculate the pressure loss in kPa/km due to friction
at a flow rate of 34,000 m3/h. Use the Hazen-Williams equation with a C
factor of 140. If a delivery pressure of 400 kPa must be maintained at the
delivery point and the storage tank is at an elevation of 200 m above that of
the pumping facility, calculate the pressure required at the pumping facility
at the given flow rate.

Solution The flow rate Q in m3/h is calculated using the Hazen-Williams
equation (1.35) as follows:

Pkm = (1.1101 × 1013)

(
34,000

140

)1.852

× 1
(2000)4.87

= 24.38 kPa/km

The pressure required at the pumping facility is calculated by adding the
pressure drop due to friction to the delivery pressure required and the static
elevation head between the pumping facility and storage tank using
Eq. (1.29).

Pt = Pf + Pelev + Pdel

= (24.38 × 5) kPa + 200 m + 400 kPa

Changing all units to kPa we get

Pt = 121.9 + 200 × 1.0
0.102

+ 400 = 2482.68 kPa

Thus the pressure required at the pumping facility is 2483 kPa.

1.7 Minor Losses

So far, we have calculated the pressure drop per unit length in straight
pipe. We also calculated the total pressure drop considering several
miles of pipe from a pump station to a storage tank. Minor losses in a
water pipeline are classified as those pressure drops that are associated
with piping components such as valves and fittings. Fittings include
elbows and tees. In addition there are pressure losses associated with
pipe diameter enlargement and reduction. A pipe nozzle exiting from
a storage tank will have entrance and exit losses. All these pressure
drops are called minor losses, as they are relatively small compared to
friction loss in a straight length of pipe.

Generally, minor losses are included in calculations by using the
equivalent length of the valve or fitting or using a resistance factor or
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TABLE 1.5 Equivalent Lengths of
Valves and Fittings

Description L/D

Gate valve 8
Globe valve 340
Angle valve 55
Ball valve 3
Plug valve straightway 18
Plug valve 3-way through-flow 30
Plug valve branch flow 90
Swing check valve 100
Lift check valve 600
Standard elbow

90◦ 30
45◦ 16
Long radius 90◦ 16

Standard tee
Through-flow 20
Through-branch 60

Miter bends
α = 0 2
α = 30 8
α = 60 25
α = 90 60

K factor multiplied by the velocity head V 2/2g. The term minor losses
can be applied only where the pipeline lengths and hence the friction
losses are relatively large compared to the pressure drops in the fittings
and valves. In a situation such as plant piping and tank farm piping
the pressure drop in the straight length of pipe may be of the same
order of magnitude as that due to valves and fittings. In such cases the
term minor losses is really a misnomer. In any case, the pressure losses
through valves, fittings, etc., can be accounted for approximately using
the equivalent length or K times the velocity head method. It must
be noted that this way of calculating the minor losses is valid only in
turbulent flow. No data are available for laminar flow.

1.7.1 Valves and fittings

Table 1.5 shows the equivalent lengths of commonly used valves and
fittings in a typical water pipeline. It can be seen from this table that a
gate valve has an L/D ratio of 8 compared to straight pipe. Therefore, a
20-in-diameter gate valve may be replaced with a 20 × 8 = 160-in-long
piece of pipe that will match the frictional pressure drop through the
valve.

Example 1.13 A piping system is 2000 ft of NPS 20 pipe that has two
20-in gate valves, three 20-in ball valves, one swing check valve, and four
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90◦ standard elbows. Using the equivalent length concept, calculate the to-
tal pipe length that will include all straight pipe and valves and fittings.

Solution Using Table 1.5, we can convert all valves and fittings in terms of
20-in pipe as follows:

Two 20-in gate valves = 2 × 20 × 8 = 320 in of 20-in pipe

Three 20-in ball valves = 3 × 20 × 3 = 180 in of 20-in pipe

One 20-in swing check valve = 1 × 20 × 50 = 1000 in of 20-in pipe

Four 90◦ elbows = 4 × 20 × 30 = 2400 in of 20-in pipe

Total for all valves and fittings = 4220 in of 20-in pipe

= 351.67 ft of 20-in pipe

Adding the 2000 ft of straight pipe, the total equivalent length of straight
pipe and all fittings is

Le = 2000 + 351.67 = 2351.67 ft

The pressure drop due to friction in the preceding piping system can
now be calculated based on 2351.67 ft of pipe. It can be seen in this
example that the valves and fittings represent roughly 15 percent of
the total pipeline length. In plant piping this percentage may be higher
than that in a long-distance water pipeline. Hence, the reason for the
term minor losses.

Another approach to accounting for minor losses is using the resis-
tance coefficient or K factor. The K factor and the velocity head approach
to calculating pressure drop through valves and fittings can be analyzed
as follows using the Darcy equation. From the Darcy equation (1.23),
the pressure drop in a straight length of pipe is given by

h = f
L
D

V 2

2g
(1.38)

The term f (L/D) may be substituted with a head loss coefficient K (also
known as the resistance coefficient) and Eq. (1.38) then becomes

h = K
V 2

2g
(1.39)

In Eq. (1.39), the head loss in a straight piece of pipe is represented
as a multiple of the velocity head V 2/2g. Following a similar analysis,
we can state that the pressure drop through a valve or fitting can also
be represented by K(V 2/2g), where the coefficient K is specific to the
valve or fitting. Note that this method is only applicable to turbulent
flow through pipe fittings and valves. No data are available for laminar
flow in fittings and valves. Typical K factors for valves and fittings are
listed in Table 1.6. It can be seen that the K factor depends on the



TABLE 1.6 Friction Loss in Valves—Resistance Coefficient K

Nominal pipe size, in

Description L /D 1
2

3
4 1 1 1

4 1 1
2 2 2 1

2 –3 4 6 8–10 12–16 18–24

Gate valve 8 0.22 0.20 0.18 0.18 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.10
Globe valve 340 9.20 8.50 7.80 7.50 7.10 6.50 6.10 5.80 5.10 4.80 4.40 4.10
Angle valve 55 1.48 1.38 1.27 1.21 1.16 1.05 0.99 0.94 0.83 0.77 0.72 0.66
Ball valve 3 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
Plug valve straightway 18 0.49 0.45 0.41 0.40 0.38 0.34 0.32 0.31 0.27 0.25 0.23 0.22
Plug valve 3-way through-flow 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
Plug valve branch flow 90 2.43 2.25 2.07 1.98 1.89 1.71 1.62 1.53 1.35 1.26 1.17 1.08
Swing check valve 50 1.40 1.30 1.20 1.10 1.10 1.00 0.90 0.90 0.75 0.70 0.65 0.60
Lift check valve 600 16.20 15.00 13.80 13.20 12.60 11.40 10.80 10.20 9.00 8.40 7.80 7.22
Standard elbow

90◦ 30 0.81 0.75 0.69 0.66 0.63 0.57 0.54 0.51 0.45 0.42 0.39 0.36
45◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19
Long radius 90◦ 16 0.43 0.40 0.37 0.35 0.34 0.30 0.29 0.27 0.24 0.22 0.21 0.19

Standard tee
Through-flow 20 0.54 0.50 0.46 0.44 0.42 0.38 0.36 0.34 0.30 0.28 0.26 0.24
Through-branch 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

Mitre bends
α = 0 2 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02
α = 30 8 0.22 0.20 0.18 0.18 0.17 0.15 0.14 0.14 0.12 0.11 0.10 0.10
α = 60 25 0.68 0.63 0.58 0.55 0.53 0.48 0.45 0.43 0.38 0.35 0.33 0.30
α = 90 60 1.62 1.50 1.38 1.32 1.26 1.14 1.08 1.02 0.90 0.84 0.78 0.72

27
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nominal pipe size of the valve or fitting. The equivalent length, on the
other hand, is given as a ratio of L/D for a particular fitting or valve.

From Table 1.6, it can be seen that a 6-in gate valve has a K factor of
0.12, while a 20-in gate valve has a K factor of 0.10. However, both sizes
of gate valves have the same equivalent length–to–diameter ratio of 8.
The head loss through the 6-in valve can be estimated to be 0.12 (V 2/2g)
and that in the 20-in valve is 0.10 (V 2/2g). The velocities in both cases
will be different due to the difference in diameters.

If the flow rate was 1000 gal/min, the velocity in the 6-in valve will
be approximately

V6 = 0.4085
1000

6.1252 = 10.89 ft/s

Similarly, at 1000 gal/min, the velocity in the 20-in valve will be ap-
proximately

V6 = 0.4085
1000
19.52 = 1.07 ft/s

Therefore,

Head loss in 6-in gate valve = 0.12 (10.89)2

64.4
= 0.22 ft

and

Head loss in 20-in gate valve = 0.10 (1.07)2

64.4
= 0.002 ft

These head losses appear small since we have used a relatively low flow
rate in the 20-in valve. In reality the flow rate in the 20-in valve may be
as high as 6000 gal/min and the corresponding head loss will be 0.072 ft.

1.7.2 Pipe enlargement and reduction

Pipe enlargements and reductions contribute to head loss that can be
included in minor losses. For sudden enlargement of pipes, the following
head loss equation may be used:

hf = (v1 − v2)2

2g
(1.40)

where v1 and v2 are the velocities of the liquid in the two pipe sizes D1
and D2 respectively. Writing Eq. (1.40) in terms of pipe cross-sectional
areas A1 and A2,

hf =
(

1 − A1

A2

)2(v1
2

2g

)
(1.41)

for sudden enlargement. This is illustrated in Fig. 1.4.
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D1 D2

D1 D2

Sudden pipe enlargement

Sudden pipe reduction

Area A1 Area A2

A1/A2
Cc

0.00 0.200.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.585 0.6320.624 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.000

Figure 1.4 Sudden pipe enlargement and reduction.

For sudden contraction or reduction in pipe size as shown in Fig. 1.4,
the head loss is calculated from

hf =
(

1
Cc

− 1
)

v2
2

2g
(1.42)

where the coefficient Cc depends on the ratio of the two pipe cross-
sectional areas A1 and A2 as shown in Fig. 1.4.

Gradual enlargement and reduction of pipe size, as shown in Fig. 1.5,
cause less head loss than sudden enlargement and sudden reduction.
For gradual expansions, the following equation may be used:

hf = Cc(v1 − v2)2

2g
(1.43)

D1

D1
D2

D2

Figure 1.5 Gradual pipe enlargement and reduction.
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Figure 1.6 Gradual pipe expansion head loss coefficient.

where Cc depends on the diameter ratio D2/D1 and the cone angle β in
the gradual expansion. A graph showing the variation of Cc with β and
the diameter ratio is shown in Fig. 1.6.

1.7.3 Pipe entrance and exit losses

The K factors for computing the head loss associated with pipe entrance
and exit are as follows:

K =
⎧⎨
⎩

0.5 for pipe entrance, sharp edged
1.0 for pipe exit, sharp edged
0.78 for pipe entrance, inward projecting

1.8 Complex Piping Systems

So far we have discussed straight length of pipe with valves and fittings.
Complex piping systems include pipes of different diameters in series
and parallel configuration.

1.8.1 Series piping

Series piping in its simplest form consists of two or more different pipe
sizes connected end to end as illustrated in Fig. 1.7. Pressure drop cal-
culations in series piping may be handled in one of two ways. The first
approach would be to calculate the pressure drop in each pipe size and
add them together to obtain the total pressure drop. Another approach
is to consider one of the pipe diameters as the base size and convert
other pipe sizes into equivalent lengths of the base pipe size. The re-
sultant equivalent lengths are added together to form one long piece
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L1

D1 D2 D3

L2 L3

Figure 1.7 Series piping.

of pipe of constant diameter equal to the base diameter selected. The
pressure drop can now be calculated for this single-diameter pipeline.
Of course, all valves and fittings will also be converted to their respec-
tive equivalent pipe lengths using the L/D ratios from Table 1.5.

Consider three sections of pipe joined together in series. Using sub-
scripts 1, 2, and 3 and denoting the pipe length as L, inside diameter
as D, flow rate as Q, and velocity as V, we can calculate the equivalent
length of each pipe section in terms of a base diameter. This base diam-
eter will be selected as the diameter of the first pipe section D1. Since
equivalent length is based on the same pressure drop in the equiva-
lent pipe as the original pipe diameter, we will calculate the equivalent
length of section 2 by finding that length of diameter D1 that will match
the pressure drop in a length L2 of pipe diameter D2. Using the Darcy
equation and converting velocities in terms of flow rate from Eq. (1.11),
we can write

Head loss = f (L/D)(0.4085Q/D2)2

2g
(1.44)

For simplicity, assuming the same friction factor,

Le

D1
5 = L2

D2
5 (1.45)

Therefore, the equivalent length of section 2 based on diameter D1 is

Le = L2

(
D1

D2

)5

(1.46)

Similarly, the equivalent length of section 3 based on diameter D1 is

Le = L3

(
D1

D3

)5

(1.47)

The total equivalent length of all three pipe sections based on diameter
D1 is therefore

Lt = L1 + L2

(
D1

D2

)5

+ L3

(
D1

D3

)5

(1.48)

The total pressure drop in the three sections of pipe can now be calcu-
lated based on a single pipe of diameter D1 and length Lt.
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Example 1.14 Three pipes with 14-, 16-, and 18-in diameters, respectively,
are connected in series with pipe reducers, fittings, and valves as follows:

14-in pipeline, 0.250-in wall thickness, 2000 ft long

16-in pipeline, 0.375-in wall thickness, 3000 ft long

18-in pipeline, 0.375-in wall thickness, 5000 ft long

One 16 × 14 in reducer

One 18 × 16 in reducer

Two 14-in 90◦ elbows

Four 16-in 90◦ elbows

Six 18-in 90◦ elbows

One 14-in gate valve

One 16-in ball valve

One 18-in gate valve

(a) Use the Hazen-Williams equation with a C factor of 140 to calculate the
total pressure drop in the series water piping system at a flow rate of 3500
gal/min. Flow starts in the 14-in piping and ends in the 18-in piping.
(b) If the flow rate is increased to 6000 gal/min, estimate the new total
pressure drop in the piping system, keeping everything else the same.

Solution

(a) Since we are going to use the Hazen-Williams equation, the pipes in
series analysis will be based on the pressure loss being inversely proportional
to D4.87, where D is the inside diameter of pipe, per Eq. (1.30).

We will first calculate the total equivalent lengths of all 14-in pipe, fittings,
and valves in terms of the 14-in-diameter pipe.

Straight pipe: 14 in., 2000 ft = 2000 ft of 14-in pipe

Two 14-in 90◦ elbows = 2 × 30 × 14
12

= 70 ft of 14-in pipe

One 14-in gate valve = 1 × 8 × 14
12

= 9.33 ft of 14-in pipe

Therefore, the total equivalent length of 14-in pipe, fittings, and valves =
2079.33 ft of 14-in pipe.

Similarly we get the total equivalent length of 16-in pipe, fittings, and
valve as follows:

Straight pipe: 16-in, 3000 ft = 3000 ft of 16-in pipe

Four 16-in 90◦ elbows = 4 × 30 × 16
12

= 160 ft of 16-in pipe

One 16-in ball valve = 1 × 3 × 16
12

= 4 ft of 16-in pipe
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Therefore, the total equivalent length of 16-in pipe, fittings, and valve =
3164 ft of 16-in pipe.

Finally, we calculate the total equivalent length of 18-in pipe, fittings, and
valve as follows:

Straight pipe: 18-in, 5000 ft = 5000 ft of 18-in pipe

Six 18-in 90◦ elbows = 6 × 30 × 18
12

= 270 ft of 18-in pipe

One 18-in gate valve = 1 × 8 × 18
12

= 12 ft of 18-in pipe

Therefore, the total equivalent length of 18-in pipe, fittings, and valve =
5282 ft of 18-in pipe.

Next we convert all the preceding pipe lengths to the equivalent 14-in pipe
based on the fact that the pressure loss is inversely proportional to D4.87,
where D is the inside diameter of pipe.

2079.33 ft of 14-in pipe = 2079.33 ft of 14-in pipe

3164 ft of 16-in pipe = 3164 ×
(

13.5
15.25

)4.87

= 1748 ft of 14-in pipe

5282 ft of 18-in pipe = 5282 ×
(

13.5
17.25

)4.87

= 1601 ft of 14-in pipe

Therefore adding all the preceding lengths we get

Total equivalent length in terms of 14-in pipe = 5429 ft of 14-in pipe

We still have to account for the 16 × 14 in and 18 × 16 in reducers. The
reducers can be considered as sudden enlargements for the approximate cal-
culation of the head loss, using the K factor and velocity head method. For
sudden enlargements, the resistance coefficient K is found from

K =
[

1 −
(

d1

d2

)2
]2

(1.49)

where d1 is the smaller diameter and d2 is the larger diameter.
For the 16 × 14 in reducer,

K =
[

1 −
(

13.5
15.25

)2
]2

= 0.0468

and for the 18 × 16 in reducer,

K =
[

1 −
(

15.25
17.25

)2
]2

= 0.0477

The head loss through the reducers will then be calculated based on K(V 2/2g).
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Flow velocities in the three different pipe sizes at 3500 gal/min will be
calculated using Eq. (1.11):

Velocity in 14-in pipe: V14 = 0.4085 × 3500
(13.5)2

= 7.85 ft/s

Velocity in 16-in pipe: V16 = 0.4085 × 3500
(15.25)2

= 6.15 ft/s

Velocity in 18-in pipe: V18 = 0.4085 × 3500
(17.25)2

= 4.81 ft/s

The head loss through the 16 × 14 in reducer is

h1 = 0.0468
7.852

64.4
= 0.0448 ft

and the head loss through the 18 × 16 in reducer is

h1 = 0.0477
6.152

64.4
= 0.028 ft

These head losses are insignificant and hence can be neglected in comparison
with the head loss in straight length of pipe. Therefore, the total head loss in
the entire piping system will be based on a total equivalent length of 5429 ft
of 14-in pipe.

Using the Hazen-Williams equation (1.32) the pressure drop at 3500
gal/min is

h = 10,460

(
3500
140

)1.852 1.0
(13.5)4.87

= 12.70 ft per 1000 ft of pipe

Therefore, for the 5429 ft of equivalent 14-in pipe, the total pressure drop is

h = 12.7 × 5429
1000

= 68.95 ft = 68.95
2.31

= 29.85 psi

(b) When the flow rate is increased to 6000 gal/min, we can use proportions
to estimate the new total pressure drop in the piping as follows:

h =
(

6000
3500

)1.852

× 12.7 = 34.46 ft per 1000 ft of pipe

Therefore, the total pressure drop in 5429 ft of 14-in. pipe is

h = 34.46 × 5429
1000

= 187.09 ft = 187.09
2.31

= 81.0 psi

Example 1.15 Two pipes with 400- and 600-mm diameters, respectively, are
connected in series with pipe reducers, fittings, and valves as follows:

400-mm pipeline, 6-mm wall thickness, 600 m long

600-mm pipeline, 10-mm wall thickness, 1500 m long

One 600 × 400 mm reducer

Two 400-mm 90◦ elbows
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Four 600-mm 90◦ elbows

One 400-mm gate valve

One 600-mm gate valve

Use the Hazen-Williams equation with a C factor of 120 to calculate the total
pressure drop in the series water piping system at a flow rate of 250 L/s.
What will the pressure drop be if the flow rate were increased to 350 L/s?

Solution The total equivalent length on 400-mm-diameter pipe is the sum of
the following:

Straight pipe length = 600 m

Two 90◦ elbows = 2 × 30 × 400
1000

= 24 m

One gate valve = 1 × 8 × 400
1000

= 3.2 m

Thus,

Total equivalent length on 400-mm-diameter pipe = 627.2 m

The total equivalent length on 600-mm-diameter pipe is the sum of the
following:

Straight pipe length = 1500 m

Four 90◦ elbows = 4 × 30 × 600
1000

= 72 m

One gate valve = 1 × 8 × 600
1000

= 4.8 m

Thus,

Total equivalent length on 600-mm-diameter pipe = 1576.8 m

Reducers will be neglected since they have insignificant head loss. Convert
all pipe to 400-mm equivalent diameter.

1576.8 m of 600-mm pipe = 1576.8

(
388
580

)4.87

= 222.6 m of 400-mm pipe

Total equivalent length on 400-mm-diameter pipe = 627.2+222.6 = 849.8 m

Q = 250 × 10−3 × 3600 = 900 m3/h

The pressure drop from Eq. (1.35) is

Pm = 1.1101 × 1013
(

900
120

)1.852 1
(388)4.87

= 114.38 kPa/km

Total pressure drop = 114.38 × 849.8
1000

= 97.2 kPa
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When the flow rate is increased to 350 L/s, we can calculate the pressure
drop using proportions as follows:

Revised head loss at 350 L/s =
(

350
250

)1.852

× 114.38 = 213.3 kPa/km

Therefore,

Total pressure drop = 213.3 × 0.8498 = 181.3 kPa

1.8.2 Parallel piping

Water pipes in parallel are set up such that the multiple pipes are con-
nected so that water flow splits into the multiple pipes at the beginning
and the separate flow streams subsequently rejoin downstream into
another single pipe as depicted in Fig. 1.8.

Figure 1.8 shows a parallel piping system in the horizontal plane
with no change in pipe elevations. Water flows through a single pipe
AB, and at the junction B the flow splits into two pipe branches BCE
and BDE. At the downstream end at junction E, the flows rejoin to the
initial flow rate and subsequently flow through the single pipe EF.

To calculate the flow rates and pressure drop due to friction in the
parallel piping system, shown in Fig. 1.8, two main principles of parallel
piping must be followed. These are flow conservation at any junction
point and common pressure drop across each parallel branch pipe.

Based on flow conservation, at each junction point of the pipeline,
the incoming flow must exactly equal the total outflow. Therefore, at
junction B, the flow Q entering the junction must exactly equal the
sum of the flow rates in branches BCE and BDE.

Thus,

Q = QBCE + QBDE (1.50)

where QBCE = flow through branch BCE
QBDE = flow through branch BDE

Q = incoming flow at junction B

The other requirement in parallel pipes concerns the pressure drop
in each branch piping. Based on this the pressure drop due to friction

A B E F

C

D

Figure 1.8 Parallel piping.
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in branch BCE must exactly equal that in branch BDE. This is because
both branches have a common starting point (B) and a common ending
point (E). Since the pressure at each of these two points is a unique
value, we can conclude that the pressure drop in branch pipe BCE and
that in branch pipe BDE are both equal to PB − PE, where PB and PE
represent the pressure at the junction points B and E, respectively.

Another approach to calculating the pressure drop in parallel piping
is the use of an equivalent diameter for the parallel pipes. For example
in Fig. 1.8, if pipe AB has a diameter of 14 in and branches BCE and
BDE have diameters of 10 and 12 in, respectively, we can find some
equivalent diameter pipe of the same length as one of the branches
that will have the same pressure drop between points B and C as the
two branches. An approximate equivalent diameter can be calculated
using the Darcy equation.

The pressure loss in branch BCE (10-in diameter) can be calculated
as

h1 = f (L1/D1)V1
2

2g
(1.51)

where the subscript 1 is used for branch BCE and subscript 2 for branch
BDE.

Similarly, for branch BDE

h2 = f (L2/D2)V2
2

2g
(1.52)

For simplicity we have assumed the same friction factors for both
branches. Since h1 and h2 are equal for parallel pipes, and representing
the velocities V1 and V2 in terms of the respective flow rates Q1 and Q2,
using Eq. (1.23) we have the following equations:

f (L1/D1)V1
2

2g
= f (L2/D2)V2

2

2g
(1.53)

V1 = 0.4085
Q1

D1
2 (1.54)

V2 = 0.4085
Q2

D2
2 (1.55)

In these equations we are assuming flow rates in gal/min and diameters
in inches.

Simplifying Eqs. (1.53) to (1.55), we get

L1

D1

(
Q1

D1
2

)2

= L2

D2

(
Q2

D2
2

)2
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or

Q1

Q2
=
(

L2

L1

)0.5(D1

D2

)2.5

(1.56)

Also by conservation of flow

Q1 + Q2 = Q (1.57)

Using Eqs. (1.56) and (1.57), we can calculate the flow through each
branch in terms of the inlet flow Q. The equivalent pipe will be desig-
nated as De in diameter and Le in length. Since the equivalent pipe will
have the same pressure drop as each of the two branches, we can write

Le

De

(
Qe

De
2

)2

= L1

D1

(
Q1

D1
2

)2

(1.58)

where Qe is the same as the inlet flow Q since both branches have
been replaced with a single pipe. In Eq. (1.58), there are two unknowns
Le and De. Another equation is needed to solve for both variables. For
simplicity, we can set Le to be equal to one of the lengths L1 or L2.
With this assumption, we can solve for the equivalent diameter De as
follows:

De = D1

(
Q
Q1

)0.4

(1.59)

Example 1.16 A 10-in water pipeline consists of a 2000-ft section of NPS 12
pipe (0.250-in wall thickness) starting at point A and terminating at point
B. At point B, two pieces of pipe (4000 ft long each and NPS 10 pipe with
0.250-in wall thickness) are connected in parallel and rejoin at a point D.
From D, 3000 ft of NPS 14 pipe (0.250-in wall thickness) extends to point E.
Using the equivalent diameter method calculate the pressures and flow rate
throughout the system when transporting water at 2500 gal/min. Compare
the results by calculating the pressures and flow rates in each branch. Use
the Colebrook-White equation for the friction factor.

Solution Since the pipe loops between B and D are each NPS 10 and 4000 ft
long, the flow will be equally split between the two branches. Each branch
pipe will carry 1250 gal/min.

The equivalent diameter for section BD is found from Eq. (1.59):

De = D1

(
Q
Q1

)0.4

= 10.25 × (2)0.4 = 13.525 in

Therefore we can replace the two 4000-ft NPS 10 pipes between B and D
with a single pipe that is 4000 ft long and has a 13.525-in inside diameter.
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The Reynolds number for this pipe at 2500 gal/min is found from Eq. (1.15):

R = 3162.5 × 2500
13.525 × 1.0

= 584,566

Considering that the pipe roughness is 0.002 in for all pipes:

Relative roughness
e
D

= 0.002
13.525

= 0.0001

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section BD is [using Eq. (1.24)]

Pm = 71.16
f Q2

D5

= 71.16
0.0147 × (2500)2 × 1

(13.525)5
= 14.45 psi/mi

Therefore,

Total pressure drop in BD = 14.45 × 4000
5280

= 10.95 psi

For section AB we have,

R = 3162.5 × 2500
12.25 × 1.0

= 645,408

Relative roughness
e
D

= 0.002
12.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section AB is [using Eq. (1.24)]

Pm = 71.16
0.0147 × (2500)2 × 1

(12.25)5
= 22.66 psi/mi

Therefore,

Total pressure drop in AB = 22.66 × 2000
5280

= 8.58 psi

Finally, for section DE we have,

R = 3162.5 × 2500
13.5 × 1.0

= 585,648

Relative roughness
e
D

= 0.002
13.5

= 0.0001

From the Moody diagram, the friction factor f = 0.0147. The pressure drop
in section DE is

Pm = 71.16
0.0147 × (2500)2 × 1

(13.5)5
= 14.58 psi/mi

Therefore,

Total pressure drop in DE = 14.58 × 3000
5280

= 8.28 psi
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Finally,

Total pressure drop in entire piping system = 8.58 + 10.95 + 8.28

= 27.81 psi

Next for comparison we will analyze the branch pressure drops considering
each branch separately flowing at 1250 gal/min.

R = 3162.5 × 1250
10.25 × 1.0

= 385,671

Relative roughness
e
D

= 0.002
10.25

= 0.0002

From the Moody diagram, the friction factor f = 0.0158. The pressure drop
in section BD is [using Eq. (1.24)]

Pm = 71.16
0.0158 × (1250)2 × 1

(10.25)5
= 15.53 psi/mi

This compares with the pressure drop of 14.45 psi/mi we calculated using an
equivalent diameter of 13.525. It can be seen that the difference between the
two pressure drops is approximately 7.5 percent.

Example 1.17 A waterline 5000 m long is composed of three sections A, B,
and C. Section A has a 200-m inside diameter and is 1500 m long. Section
C has a 400-mm inside diameter and is 2000 m long. The middle section B
consists of two parallel pipes each 3000 m long. One of the parallel pipes
has a 150-mm inside diameter and the other has a 200-mm inside diameter.
Assume no elevation change throughout. Calculate the pressures and flow
rates in this piping system at a flow rate of 500 m3/h, using the Hazen-
Williams formula with a C factor of 1.20.

Solution We will replace the two 3000-m pipe branches in section B with a
single equivalent diameter pipe to be determined. Since the pressure drop
according to the Hazen-Williams equation is inversely proportional to the
4.87 power of the pipe diameter, we calculate the equivalent diameter for
section B as follows:

Qe
1.852

De4.87
= Q1

1.852

D1
4.87

= Q2
1.852

D2
4.87

Therefore,

De

D1
=
(

Qe

Q1

)0.3803

Also Qe = Q1 + Q2 and

Q1

Q2
=
(

D1

D2

)2.63

=
(

150
200

)2.63

= 0.4693
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Solving for Q1 and Q2, with Qe = 500, we get

Q1 = 159.7m3/hr and Q2 = 340.3m3/h

Therefore, the equivalent diameter is

De = D1

(
Qe

Q1

)0.3803

= 150 ×
(

500
159.7

)0.3803

= 231.52 mm

The pressure drop in section A, using Hazen-Williams equation (1.35), is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(200)4.87

= 970.95 kPa/km

	Pa = 970.95 × 1.5 = 1456.43 kPa

The pressure drop in section B, using Hazen-Williams equation, is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(231.52)4.87

= 476.07 kPa/km

	Pb = 476.07 × 3.0 = 1428.2 kPa

The pressure drop in section C, using Hazen-Williams equation, is

Pm = 1.1101 × 1013 ×
(

500
120

)1.852

× 1
(400)4.87

= 33.20 kPa/km

	Pc = 33.2 × 2.0 = 66.41 kPa

Therefore,

Total pressure drop of sections A, B, and C = 1456.43 + 1428.20 + 66.41

= 2951.04 kPa

1.9 Total Pressure Required

So far we have examined the frictional pressure drop in water systems
piping consisting of pipe, fittings, valves, etc. We also calculated the
total pressure required to pump water through a pipeline up to a de-
livery station at an elevated point. The total pressure required at the
beginning of a pipeline, for a specified flow rate, consists of three distinct
components:

1. Frictional pressure drop

2. Elevation head

3. Delivery pressure

Pt = Pf + Pelev + Pdel from Eq. (1.29)
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The first item is simply the total frictional head loss in all straight pipe,
fittings, valves, etc. The second item accounts for the pipeline elevation
difference between the origin of the pipeline and the delivery termi-
nus. If the origin of the pipeline is at a lower elevation than that of the
pipeline terminus or delivery point, a certain amount of positive pres-
sure is required to compensate for the elevation difference. On the other
hand, if the delivery point were at a lower elevation than the beginning
of the pipeline, gravity will assist the flow and the pressure required
at the beginning of the pipeline will be reduced by this elevation differ-
ence. The third component, delivery pressure at the terminus, simply
ensures that a certain minimum pressure is maintained at the delivery
point, such as a storage tank.

For example, if a water pipeline requires 800 psi to take care of fric-
tional losses and the minimum delivery pressure required is 25 psi, the
total pressure required at the beginning of the pipeline is calculated as
follows. If there were no elevation difference between the beginning of
the pipeline and the delivery point, the elevation head (component 2)
is zero. Therefore, the total pressure Pt required is

Pt = 800 + 0 + 25 = 825 psi

Next consider elevation changes. If the elevation at the beginning is
100 ft and the elevation at the delivery point is 500 ft, then

Pt = 800 + (500 − 100) × 1.0
2.31

+ 25 = 998.16 psi

The middle term in this equation represents the static elevation head
difference converted to psi. Finally, if the elevation at the beginning is
500 ft and the elevation at the delivery point is 100 ft, then

Pt = 800 + (100 − 500) × 1.0
2.31

+ 25 = 651.84 psi

It can be seen from the preceding that the 400-ft advantage in ele-
vation in the final case reduces the total pressure required by approxi-
mately 173 psi compared to the situation where there was no elevation
difference between the beginning of the pipeline and delivery point.

1.9.1 Effect of elevation

The preceding discussion illustrated a water pipeline that had a flat el-
evation profile compared to an uphill pipeline and a downhill pipeline.
There are situations, where the ground elevation may have drastic
peaks and valleys, that require careful consideration of the pipeline
topography. In some instances, the total pressure required to transport
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a given volume of water through a long pipeline may depend more on
the ground elevation profile than the actual frictional pressure drop.
In the preceding we calculated the total pressure required for a flat
pipeline as 825 psi and an uphill pipeline to be 998 psi. In the up-
hill case the static elevation difference contributed to 17 percent of the
total pressure required. Thus the frictional component was much higher
than the elevation component. We will examine a case where the ele-
vation differences in a long pipeline dictate the total pressure required
more than the frictional head loss.

Example 1.18 A 20-in (0.375-in wall thickness) water pipeline 500 mi long
has a ground elevation profile as shown in Fig. 1.9. The elevation at Corona
is 600 ft and at Red Mesa is 2350 ft. Calculate the total pressure required at
the Corona pump station to transport 11.5 Mgal/day of water to Red Mesa
storage tanks, assuming a minimum delivery pressure of 50 psi at Red Mesa.
Use the Hazen-Williams equation with a C factor of 140. If the pipeline
operating pressure cannot exceed 1400 psi, how many pumping stations,
besides Corona, will be required to transport the given flow rate?

Solution The flow rate Q in gal/min is

Q = 11.5 × 106

24 × 60
= 7986.11 gal/min

If Pm is the head loss in psi/mi of pipe, using the Hazen-Williams equation
(1.33),

Pm = 23,909

(
7986.11

140

)1.852 1
19.254.87

= 23.76 psi/mi

Therefore,

Frictional pressure drop = 23.76 psi/mi

Hydraulic pressure gradient = 11.5 Mgal/day

Pipeline elevation profile

C

A BFlow

Corona
Elev. = 600 ft

Red Mesa
Elev. = 2350 ft

500-mi-long, 20-in pipeline

50 psi

Figure 1.9 Corona to Red Mesa pipeline.
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The total pressure required at Corona is calculated by adding the pressure
drop due to friction to the delivery pressure required at Red Mesa and the
static elevation head between Corona and Red Mesa.

Pt = Pf + Pelev + Pdel from Eq. (1.29)

= (23.76 × 500) + 2350 − 600
2.31

+ 50

= 11,880 + 757.58 + 50 = 12,688 psi rounded off to the nearest psi

Since a total pressure of 12,688 psi at Corona far exceeds the maximum op-
erating pressure of 1400 psi, it is clear that we need additional intermediate
booster pump stations besides Corona. The approximate number of pump
stations required without exceeding the pipeline pressure of 1400 psi is

Number of pump stations = 12,688
1400

= 9.06 or 10 pump stations

With 10 pump stations the average pressure per pump station will be

Average pump station pressure = 12,688
10

= 1269 psi

1.9.2 Tight line operation

When there are drastic elevation differences in a long pipeline, some-
times the last section of the pipeline toward the delivery terminus may
operate in an open-channel flow. This means that the pipeline section
will not be full of water and there will be a vapor space above the water.
Such situations are acceptable in water pipelines compared to high
vapor pressure liquids such as liquefied petroleum gas (LPG). To pre-
vent such open-channel flow or slack line conditions, we pack the line
by providing adequate back pressure at the delivery terminus as illus-
trated in Fig. 1.10.

Pipeline pressure gradient

Pipeline elevation profile

C

DPeak

A B

Pump station
Flow

Delivery terminus

B
ac

k 
pr

es
su

re

Figure 1.10 Tight line operation.
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Hydraulic pressure gradient

Peak

Pipeline elevation profile

Open-channel flow

ΔP

D

BA
Flow

C

Pump station Delivery terminus

Figure 1.11 Slack line flow.

1.9.3 Slack line flow

Slack line or open-channel flow occurs in the last segment of a long-
distance water pipeline where a large elevation difference exists be-
tween the delivery terminus and intermediate point in the pipeline as
indicated in Fig. 1.11.

If the pipeline were packed to avoid slack line flow, the hydraulic
gradient is as shown by the solid line in Fig. 1.11. However, the piping
system at the delivery terminal may not be able to handle the higher
pressure due to line pack. Therefore, we may have to reduce the pres-
sure at some point within the delivery terminal using a pressure control
valve. This is illustrated in Fig. 1.11.

1.10 Hydraulic Gradient

The graphical representation of the pressures along the pipeline, as
shown in Fig. 1.12, is called the hydraulic pressure gradient. Since ele-
vation is measured in feet, the pipeline pressures are converted to feet of
head and plotted against the distance along the pipeline superimposed

C
F

D

E

A B

Pipeline elevation profile

Pressure

Pipeline pressure gradient

Pump station Delivery terminus

Figure 1.12 Hydraulic pressure gradient.
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on the elevation profile. If we assume a beginning elevation of 100 ft,
a delivery terminus elevation of 500 ft, a total pressure of 1000 psi
required at the beginning, and a delivery pressure of 25 psi at the ter-
minus, we can plot the hydraulic pressure gradient graphically by the
following method.

At the beginning of the pipeline the point C representing the total
pressure will be plotted at a height of

100 ft + (1000 × 2.31) = 2410 ft

Similarly, at the delivery terminus the point D representing the total
head at delivery will be plotted at a height of

500 + (25 × 2.31) = 558 ft rounded off to the nearest foot

The line connecting the points C and D represents the variation of the
total head in the pipeline and is termed the hydraulic gradient. At any
intermediate point such as E along the pipeline the pipeline pressure
will be the difference between the total head represented by point F on
the hydraulic gradient and the actual elevation of the pipeline at E.

If the total head at F is 1850 ft and the pipeline elevation at E is
250 ft, the actual pipeline pressure at E is

(1850 − 250)ft = 1600
2.31

= 693 psi

It can be seen that the hydraulic gradient clears all peaks along the
pipeline. If the elevation at E were 2000 ft, we would have a negative
pressure in the pipeline at E equivalent to

(1850 − 2000)ft = −150 ft = − 150
2.31

= −65 psi

Since a negative pressure is not acceptable, the total pressure at the be-
ginning of the pipeline will have to be higher by the preceding amount.

Revised total head at A = 2410 + 150 = 2560 ft

This will result in zero gauge pressure in the pipeline at peak E. The ac-
tual pressure in the pipeline will therefore be equal to the atmospheric
pressure at that location. Since we would like to always maintain some
positive pressure above the atmospheric pressure, in this case the total
head at A must be slightly higher than 2560 ft. Assuming a 10-psi posi-
tive pressure is desired at the highest peak such as E (2000-ft elevation),
the revised total pressure at A would be

Total pressure at A = 1000 + 65 + 10 = 1075 psi
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Therefore,

Total head at C = 100 + (1075 × 2.31) = 2483 ft

This will ensure a positive pressure of 10 psi at the peak E.

1.11 Gravity Flow

Gravity flow in a water pipeline occurs when water flows from a source
at point A at a higher elevation than the delivery point B, without any
pumping pressure at A and purely under gravity. This is illustrated in
Fig. 1.13.

The volume flow rate under gravity flow for the reservoir pipe system
shown in Fig. 1.13 can be calculated as follows. If the head loss in the
pipeline is h ft/ft of pipe length, the total head loss in length L is (h× L).
Since the available driving force is the difference in tank levels at A
and B, we can write

H1 − (h × L) = H2 (1.60)

Therefore,

hL = H1 − H2 (1.61)

and

h = H1 − H2

L
(1.62)

where h = head loss in pipe, ft/ft
L = length of pipe

H1 = head in tank A
H2 = head in tank B

In the preceding analysis, we have neglected the entrance and exit
losses at A and B. Using the Hazen-Williams equation we can then
calculate flow rate based on a C value.

A

B

H1

H2

L

Q

Figure 1.13 Gravity flow from reservoir.
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Example 1.19 The gravity feed system shown in Fig. 1.13 consists of a
16-inch (0.250-in wall thickness) 3000-ft-long pipeline, with a tank elevation
at A = 500 ft and elevation at B = 150 ft. Calculate the flow rate through
this gravity flow system. Use a Hazen-Williams C factor of 130.

Solution

h = 500 − 150
3000

= 0.1167 ft/ft

Substituting in Hazen-Williams equation (1.32), we get

0.1167 × 1000 = 10,460 ×
(

Q
130

)1.852( 1
15.5

)4.87

Solving for flow rate Q,

Q = 15,484 gal/min

Compare the results using the Colebrook-White equation assuming e =
0.002.

e
D

= 0.002
15.5

= 0.0001

We will assume a friction factor f = 0.02 initially. Head loss due to friction
per Eq. (1.24) is

Pm = 71.16 × 0.02(Q2)
(15.5)5

psi/mi

or

Pm = 1.5908 × 10−6 Q2 psi/mi

=
(

1.5908 × 10−6 2.31
5280

)
Q2 ft/ft

= (6.9596 × 10−10)Q2 ft/ft

0.1167 = (6.9596 × 10−10)Q2

Solving for flow rate Q, we get

Q = 12,949 gal/min

Solving for the Reynolds number, we get

Re = 3162.5 × 12,949
15.5

× 1 = 2,642,053

From the Moody diagram, f = 0.0128. Now we recalculate Pm,

Pm = 71.16 × 0.0128 × Q2

(15.5)5
psi/mi

= 4.4541 × 10−10 Q2 ft/ft
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Solving for Q again,

Q = 16,186 gal/min

By successive iteration we arrive at the final flow rate of 16,379 gal/min
using the Colebrook-White equation. Comparing this with 15,484 gal/min
obtained using the Hazen-Williams equation, we see that the flow rate is
underestimated probably because the assumed Hazen-Williams C factor
(C = 130) was too low.

Example 1.20 The two-reservoir system described in Fig. 1.13 is modified
to include a second source of water from a tank located at C between the two
tanks located at A and B and away from the pipeline AB. The tank at C is
at an elevation of 300 ft and connects to the piping from A to B via a new
16-inch, 1000-ft-long pipe CD. The common junction D is located along the
pipe AB at a distance of 1500 ft from the tank at B. Determine the flow rates
Q1 from A to D, Q2 from C to D, and Q3 from D to B. Use the Hazen-Williams
equation with C = 130.

Solution At the common junction D we can apply the conservation of flow
principle as follows:

Q1 + Q2 = Q3

Also since D is a common junction, the head HD at point D is common to the
three legs AD, CD, and DB. Designating the head loss due to friction in the
respective pipe segments AD, CD, and DB as hf AD, hf CD, and hf DB, we can
write the following pressure balance equations for the three pipe legs.

HD = HA − hf AD

HD = HC − hf CD

HD = HB + hf DB

Since the pipe sizes are all 16 in and the C factor is 130, using the Hazen-
Williams equation (1.32) we can write

hf AD = 10,460 × LAD

1000

(
Q1

130

)1.852( 1
15.5

)4.87

= KLAD × Q1
1.852

where K is a constant for all pipes and is equal to

K = 10,460 × 1
1000

(
1

130

)1.852( 1
15.5

)4.87

= 2.0305 × 10−9

and

LAD = length of pipe from A to D = 1500 ft

Similarly, we can write

hf CD = KLCD × Q2
1.852
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and for leg DB

hf DB = KLDB × Q3
1.852

Substituting the values in the preceding HD equations, we get

HD = 500 − K × 1500 × Q1
1.852

HD = 300 − K × 1000 × Q2
1.852

HD = 150 + K × 1000 × Q3
1.852

Simplifying these equations by eliminating HD, we get the following two
equations:

1.5Q1
1.852 − Q2

1.852 = 0.2
K

(A)

1.5Q1
1.852 + Q3

1.852 = 0.35
K

(B)

Also

Q1 + Q2 = Q3 (C)

Solving for the three flow rates we get,

Q1 = 16,677 Q2 = 1000 and Q3 = 17,677

1.12 Pumping Horsepower

In the previous sections we calculated the total pressure required at
the beginning of the pipeline to transport a given volume of water over
a certain distance. We will now calculate the pumping horsepower (HP)
required to accomplish this.

Consider Example 1.18 in which we calculated the total pressure
required to pump 11.5 Mgal/day of water from Corona to Red Mesa
through a 500-mi-long, 20-in pipeline. We calculated the total pressure
required to be 12,688 psi. Since the maximum allowable working pres-
sure in the pipeline was limited to 1400 psi, we concluded that nine
additional pump stations besides Corona were required. With a total of
10 pump stations, each pump station would be discharging at a pressure
of approximately 1269 psi.

At the Corona pump station, water would enter the pump at some
minimum pressure, say 50 psi and the pumps would boost the pressure
to the required discharge pressure of 1269 psi. Effectively, the pumps
would add the energy equivalent of 1269 − 50, or 1219 psi at a flow
rate of 11.5 Mgal/day (7986.11 gal/min). The water horsepower (WHP)
required is calculated as

WHP = (1219 × 2.31) × 7986.11 × 1.0
3960

= 5679 HP
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The general equation used to calculate WHP, also known as hydraulic
horsepower (HHP), is as follows:

WHP = ft of head × (gal/min) × specific gravity
3960

(1.63)

Assuming a pump efficiency of 80 percent, the pump brake horsepower
(BHP) required is

BHP = 5679
0.8

= 7099 HP

The general equation for calculating the BHP of a pump is

BHP = ft of head × (gal/min) × (specific gravity)
3960 × effy

(1.64)

where effy is the pump efficiency expressed as a decimal value.
If the pump is driven by an electric motor with a motor efficiency of

95 percent, the drive motor HP required will be

Motor HP = 7099
0.95

= 7473 HP

The nearest standard size motor of 8000 HP would be adequate for this
application. Of course this assumes that the entire pumping require-
ment at the Corona pump station is handled by a single pump-motor
unit. In reality, to provide for operational flexibility and maintenance
two or more pumps will be configured in series or parallel configura-
tions to provide the necessary pressure at the specified flow rate. Let us
assume that two pumps are configured in parallel to provide the nec-
essary head pressure of 1219 psi (2816 ft) at the Corona pump station.
Each pump will be designed for one-half the total flow rate (7986.11) or
3993 gal/min and a head pressure of 2816 ft. If the pumps selected had
an efficiency of 80 percent, we can calculate the BHP required for each
pump as follows:

BHP = 2816 × 3993 × 1.0
3960 × 0.80

from Eq. (1.64)

= 3550 HP

Alternatively, if the pumps were configured in series instead of parallel,
each pump will be designed for the full flow rate of 7986.11 gal/min but
at half the total pressure required, or 1408 ft. The BHP required per
pump will still be the same as determined by the preceding equation.
Pumps are discussed in more detail in Sec. 1.13.
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1.13 Pumps

Pumps are installed on water pipelines to provide the necessary pres-
sure at the beginning of the pipeline to compensate for pipe friction and
any elevation head and provide the necessary delivery pressure at the
pipeline terminus. Pumps used on water pipelines are either positive
displacement (PD) type or centrifugal pumps.

PD pumps generally have higher efficiency, higher maintenance cost,
and a fixed volume flow rate at any pressure within allowable limits.
Centrifugal pumps on the other hand are more flexible in terms of flow
rates but have lower efficiency and lower operating and maintenance
cost. The majority of liquid pipelines today are driven by centrifugal
pumps.

Since pumps are designed to produce pressure at a given flow rate,
an important characteristic of a pump is its performance curve. The
performance curve is a graphic representation of how the pressure gen-
erated by a pump varies with its flow rate. Other parameters, such as
efficiency and horsepower, are also considered as part of a pump per-
formance curve.

1.13.1 Positive displacement pumps

Positive displacement (PD) pumps include piston pumps, gear pumps,
and screw pumps. These are used generally in applications where a
constant volume of liquid must be pumped against a fixed or variable
pressure.

PD pumps can effectively generate any amount of pressure at the
fixed flow rate, which depends on its geometry, as long as equipment
pressure limits are not exceeded. Since a PD pump can generate any
pressure required, we must ensure that proper pressure control de-
vices are installed to prevent rupture of the piping on the discharge
side of the PD pump. As indicated earlier, PD pumps have less flexi-
bility with flow rates and higher maintenance cost. Because of these
reasons, PD pumps are not popular in long-distance and distribution
water pipelines. Centrifugal pumps are preferred due to their flexibility
and low operating cost.

1.13.2 Centrifugal pumps

Centrifugal pumps consist of one or more rotating impellers contained
in a casing. The centrifugal force of rotation generates the pressure in
the liquid as it goes from the suction side to the discharge side of the
pump. Centrifugal pumps have a wide range of operating flow rates
with fairly good efficiency. The operating and maintenance cost of a
centrifugal pump is lower than that of a PD pump. The performance
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Figure 1.14 Performance curve for centrifugal pump.

curves of a centrifugal pump consist of head versus capacity, efficiency
versus capacity, and BHP versus capacity. The term capacity is used
synonymously with flow rate in connection with centrifugal pumps. Also
the term head is used in preference to pressure when dealing with
centrifugal pumps. Figure 1.14 shows a typical performance curve for
a centrifugal pump.

Generally, the head-capacity curve of a centrifugal pump is a drooping
curve. The highest head is generated at zero flow rate (shutoff head) and
the head decreases with an increase in the flow rate as shown in Fig.
1.14. The efficiency increases with flow rate up to the best efficiency
point (BEP) after which the efficiency drops off. The BHP calculated
using Eq. (1.64) also generally increases with flow rate but may taper off
or start decreasing at some point depending on the head-capacity curve.

The head generated by a centrifugal pump depends on the diameter
of the pump impeller and the speed at which the impeller runs. The
affinity laws of centrifugal pumps may be used to determine pump per-
formance at different impeller diameters and pump speeds. These laws
can be mathematically stated as follows:
For impeller diameter change:

Flow rate:
Q1

Q2
= D1

D2
(1.65)

Head:
H1

H2
=
(

D1

D2

)2

(1.66)
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BHP:
BHP1

BHP2
=
(

D1

D2

)3

(1.67)

For impeller speed change:

Flow rates:
Q1

Q2
= N1

N2
(1.68)

Heads:
H1

H2
=
(

N1

N2

)2

(1.69)

BHP:
BHP1

BHP2
=
(

N1

N2

)3

(1.70)

where subscript 1 refers to initial conditions and subscript 2 to final
conditions. It must be noted that the affinity laws for impeller diameter
change are accurate only for small changes in diameter. However, the
affinity laws for impeller speed change are accurate for a wide range of
impeller speeds.

Using the affinity laws if the performance of a centrifugal pump is
known at a particular diameter, the corresponding performance at a
slightly smaller diameter or slightly larger diameter can be calculated
very easily. Similarly, if the pump performance for a 10-in impeller at
3500 revolutions per minute (r/min) impeller speed is known, we can
easily calculate the performance of the same pump at 4000 r/min.

Example 1.21 The performance of a centrifugal pump with a 10-in impeller
is as shown in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 2355 0
1600 2340 57.5
2400 2280 72.0
3200 2115 79.0
3800 1920 80.0
4000 1845 79.8
4800 1545 76.0

(a) Determine the revised pump performance with a reduced impeller size
of 9 in.

(b) If the given performance is based on an impeller speed of 3560 r/min,
calculate the revised performance at an impeller speed of 3000 r/min.

Solution

(a) The ratio of impeller diameters is 9
10 = 0.9. Therefore, the Q values will

be multiplied by 0.9 and the H values will be multiplied by 0.9 × 0.9 = 0.81.
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Revised performance data are given in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 1907 0
1440 1895 57.5
2160 1847 72.0
2880 1713 79.0
3420 1555 80.0
3600 1495 79.8
4320 1252 76.0

(b) When speed is changed from 3560 to 3000 r/min, the speed ratio =
3000/3560 = 0.8427. Therefore, Q values will be multiplied by 0.8427 and H
values will be multiplied by (0.8427)2 = 0.7101. Therefore, the revised pump
performance is as shown in the following table.

Capacity Q, gal/min Head H, ft Efficiency E, %

0 1672 0
1348 1662 57.5
2022 1619 72.0
2697 1502 79.0
3202 1363 80.0
3371 1310 79.8
4045 1097 76.0

Example 1.22 For the same pump performance described in Example 1.21,
calculate the impeller trim necessary to produce a head of 2000 ft at a flow
rate of 3200 gal/min. If this pump had a variable-speed drive and the given
performance was based on an impeller speed of 3560 r/min, what speed would
be required to achieve the same design point of 2000 ft of head at a flow rate
of 3200 gal/min?

Solution Using the affinity laws, the diameter required to produce 2000 ft of
head at 3200 gal/min is as follows:(

D
10

)2

= 2000
2115

D = 10 × 0.9724 = 9.72 in

The speed ratio can be calculated from(
N

3560

)2

= 2000
2115

Solving for speed,

N = 3560 × 0.9724 = 3462 r/min
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Strictly speaking, this approach is only approximate since the affinity laws
have to be applied along iso-efficiency curves. We must create the new H-Q
curves at the reduced impeller diameter (or speed) to ensure that at 3200
gal/min the head generated is 2000 ft. If not, adjustment must be made to
the impeller diameter (or speed). This is left as an exercise for the reader.

Net positive suction head. An important parameter related to the oper-
ation of centrifugal pumps is the concept of net positive suction head
(NPSH). This represents the absolute minimum pressure at the suction
of the pump impeller at the specified flow rate to prevent pump cavita-
tion. If the pressure falls below this value, the pump impeller may be
damaged and render the pump useless.

The calculation of NPSH available for a particular pump and piping
configuration requires knowledge of the pipe size on the suction side of
the pump, the elevation of the water source, and the elevation of the
pump impeller along with the atmospheric pressure and vapor pressure
of water at the pumping temperature. The pump vendor may specify
that a particular model of pump requires a certain amount of NPSH
(known as NPSH required or NPSHR) at a particular flow rate. Based
on the actual piping configuration, elevations, etc., the calculated NPSH
(known as NPSH available or NPSHA) must exceed the required NPSH
at the specified flow rate. Therefore,

NPSHA > NPSHR

If the NPSHR is 25 ft at a 2000 gal/min pump flow rate, then NPSHA
must be 35 ft or more, giving a 10-ft cushion. Also, typically, as the
flow rate increases, NPSHR increases fairly rapidly as can be seen from
the typical centrifugal pump curve in Fig. 1.14. Therefore, it is im-
portant that the engineer perform calculations at the expected range
of flow rates to ensure that the NPSH available is always more than
the required NPSH, per the vendor’s pump performance data. As indi-
cated earlier, insufficient NPSH available tends to cavitate or starve the
pump and eventually causes damage to the pump impeller. The dam-
aged impeller will not be able to provide the necessary head pressure
as indicated on the pump performance curve. NPSH calculation will be
illustrated using an example next.

Figure 1.15 shows a centrifugal pump installation where water is
pumped out of a storage tank that is located at a certain elevation
above that of the centerline of the pump. The piping from the storage
tank to the pump suction consists of straight pipe, valves, and fittings.
The NPSH available is calculated as follows:

NPSH = (Pa − Pv)
2.31
Sg

+ H + E1 − E2 − hf (1.71)
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Pa Water level in tank, H
Elevation of tank, E1

Elevation of pump, E2

Pressure loss in suction piping, hf

Figure 1.15 NPSH calculations.

where Pa = atmospheric pressure, psi
Pv = liquid vapor pressure at flowing temperature, psia

Sg = liquid specific gravity
H = liquid head in tank, ft
E1 = elevation of tank bottom, ft
E2 = elevation of pump suction, ft
hf = friction loss in suction piping from tank to pump suction,ft

All terms in Eq. (1.71) are known except the head loss hf . This item must
be calculated considering the flow rate, pipe size, and liquid properties.
We will use the Hazen-Williams equation with C = 120 for calculating
the head loss in the suction piping. We get

Pm = 23,909
(

3000
120

)1.852 1
13.54.87 = 29.03 psi/mi

The pressure loss in the piping from the tank to the pump = 29.03×500
5280 =

2.75 psi. Substituting the given values in Eq. (1.71) assuming the vapor
pressure of water is 0.5 psia at the pumping temperature,

NPSH = (14.7 − 0.5) × 2.31 + 10 + 102 − 95 − 2.75 = 47.05 ft

The required NPSH for the pump must be less than this value. If the
flow rate increases to 5000 gal/min and the liquid level in turn drops to
1 ft, the revised NPSH available is calculated as follows.

With the flow rate increasing from 3200 to 5000 gal/min, the pressure
loss due to friction Pm is approximately,

Pm =
(

5000
3200

)1.852

× 29.03 = 66.34 psi/mi

Head loss in 500 ft of pipe = 66.34 × 500
5280

= 6.3 psi
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Therefore,

NPSH = (14.7 − 0.5) × 2.31 + 1 + 102 − 95 − 6.3 = 34.5 ft

It can be seen that the NPSH available dropped off considerably with
the reduction in liquid level in the tank and the increased friction loss
in the suction piping at the higher flow rate.

The required NPSH for the pump (based on vendor data) must be
lower than the preceding available NPSH calculations. If the pump
data shows 38 ft NPSH required at 5000 gal/min, the preceding cal-
culation indicates that the pump will cavitate since NPSH available is
only 34.5 ft.

Specific speed. An important parameter related to centrifugal pumps
is the specific speed. The specific speed of a centrifugal pump is defined
as the speed at which a geometrically similar pump must be run such
that it will produce a head of 1 ft at a flow rate of 1 gal/min. Mathemat-
ically, the specific speed is defined as follows

NS = NQ1/2

H3/4 (1.72)

where NS = specific speed
N = impeller speed, r/min
Q = flow rate, gal/min
H = head, ft

It must be noted that in Eq. (1.72) for specific speed, the capacity Q
and head H must be measured at the best efficiency point (BEP) for the
maximum impeller diameter of the pump. For a multistage pump the
value of the head H must be calculated per stage. It can be seen from
Eq. (1.72) that low specific speed is attributed to high head pumps and
high specific speed for pumps with low head.

Similar to the specific speed another term known as suction specific
speed is also applied to centrifugal pumps. It is defined as follows:

NSS = NQ1/2

(NPSHR)3/4 (1.73)

where NSS = suction specific speed
N = impeller speed, r/min
Q = flow rate, gal/min

NPSHR = NPSH required at the BEP
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With single or double suction pumps the full capacity Q is used in
Eq. (1.73) for specific speed. For double suction pumps one-half the
value of Q is used in calculating the suction specific speed.

Example 1.23 Calculate the specific speed of a four-stage double suction
centrifugal pump with a 12-in-diameter impeller that runs at 3500 r/min
and generates a head of 2300 ft at a flow rate of 3500 gal/min at the BEP.
Calculate the suction specific speed of this pump, if the NPSH required is
23 ft.

Solution From Eq. (1.72), the specific speed is

NS = NQ1/2

H3/4

= 3500(3500)1/2

(2300/4)3/4
= 1763

The suction specific speed is calculated using Eq. (1.73):

NSS = NQ1/2

NPSHR3/4

= 3500(3500/2)1/2

(23)3/4
= 13,941

1.13.3 Pumps in series and parallel

In the discussions so far we considered the performance of a single cen-
trifugal pump. Sometimes, because of head limitations of a single pump
or flow rate limits, we may have to use two or more pumps together at a
pump station to provide the necessary head and flow rate. When more
than one pump is used, they may be operated in series or parallel con-
figurations. Series pumps are so arranged that each pump delivers the
same volume of water, but the total pressure generated by the com-
bination is the sum of the individual pump heads. Parallel pumps are
configured such that the total flow delivered is the sum of the flow rates
through all pumps, while each pump delivers a common head pressure.
For higher pressures, pumps are operated in series, and when larger
flow is required they are operated in parallel.

In Example 1.18 we found that the Corona pump station required
pumps that would provide a pressure of 1219 psi at a flow rate of 7986.11
gal/min. Therefore we are looking for a pump or a combination of pumps
at Corona that would provide the following:

Flow rate = 7986.11 gal/min and Head = 1219×2.31 = 2816 ft
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Series pumps—same flow rate Q through both pumps.
Pump heads H1 and H2 are additive.

Q1 + Q2 Q1 + Q2

Q2

Parallel pumps—same head H from each pump.
Flow rates Q1 and Q2 are additive.

Figure 1.16 Pumps in series and parallel.

From a pump manufacturer’s catalog, we can select a single pump that
can match this performance. We could also select two smaller pumps
that can generate 2816 ft of head at 3993 gal/min. We would operate
these two pumps in parallel to achieve the desired flow rate and pres-
sure. Alternatively, if we chose two other pumps that would each provide
1408 ft of head at the full flow rate of 7986.11 gal/min, we would oper-
ate these pumps in series. Example of pumps in series and parallel are
shown in Fig. 1.16.

In some instances, pumps must be configured in parallel, while other
situations might require pumps be operated in series. An example of
where parallel pumps are needed would be in pipelines that have a
large elevation difference between pump stations. In such cases, if one
pump unit fails, the other pump will still be able to handle the head at
a reduced flow rate. If the pumps were in series, the failure of one pump
would cause the entire pump station to be shut down, since the single
pump will not be able to generate enough head on its own to overcome
the static elevation head between the pump stations. Figure 1.17 shows
how the performance of a single pump compares with two identical
pumps in series and parallel configurations.

Example 1.24 Two pumps with the head-capacity characteristics defined as
follows are operated in series.



Water Systems Piping 61

2H

H

Head

Flow rate

2QQ

One pump

Two pumps in series

Two pumps in parallel

Figure 1.17 Pump performance—series and parallel.

Pump A:

Q, gal/min 0 600 1400 2200 3200

H, ft 2400 2350 2100 1720 1200

Pump B:

Q, gal/min 0 600 1400 2200 3200

H, ft 800 780 700 520 410

(a) Calculate the combined performance of the two operated in series.

(b) When operated in series, what impeller trims must be made to either
pump, to meet the requirement of 2080 ft of head at 2200 gal/min?

(c) Can these pumps be operated in parallel configuration?

Solution

(a) Pumps in series cause the heads to be additive at the same flow rate.
Therefore, at each flow rate, we add the corresponding heads to create the
new H-Q curve for the combined pumps in series.

The combined performance of pump A and pump B in series is as follows:

Q, gal/min 0 600 1400 2200 3200

H, ft 3200 3130 2800 2240 1610
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(b) Reviewing the combined pump curve, we see that the head generated
at 2200 gal/min is 2240 ft. Since our requirement is 2080 ft of head at 2200
gal/min, clearly we must trim one of the pump impellers. We will leave the
smaller pump B alone and trim the impeller of the larger pump A to achieve
the total head of 2080 ft.

Pump A head trim required = 2240 − 2080 = 160 ft

At the desired flow rate of 2200 gal/min, pump A produces 1720 ft. We must
reduce this head by 160 ft, by trimming the impeller, or the head must become
1720 − 160 = 1560 ft. Using the affinity laws, the pump trim required is(

1560
1720

)1/2

= 0.9524 or 95.24 percent trim

It must be noted that this calculation is only approximate. We must create
the new pump performance curve at 95.24 percent trim and verify that the
trimmed pump will generate the desired head of 1560 ft at a flow rate of 2200
gal/min. This is left as an exercise for the reader.

(c) For parallel pumps, since flow is split between the pumps at the common
head, the individual pump curves should each have approximately the same
head at each flow rate, for satisfactory operation. Reviewing the individual
curves for pumps A and B, we see that the pumps are mismatched. Therefore,
these pumps are not suitable for parallel operation, since they do not have a
common head range.

Example 1.25 Two identical pumps with the head-capacity characteristic
defined as follows are operated in parallel. Calculate the resultant pump
performance.

Q, gal/min 0 600 1400 2200 3200

H, ft 2400 2350 2100 1720 1200

Solution Since the pumps operated in parallel will have common heads at the
combined flow rates, we can generate the combined pump curve by adding
the flow rates corresponding to each head value. The resulting combined
performance curve is as follows:

Q, gal/min 0 1200 2800 4400 6400

H, ft 2400 2350 2100 1720 1200

1.13.4 System head curve

A system head curve, or a system head characteristic curve, for a pipeline
is a graphic representation of how the pressure needed to pump water
through the pipeline varies with the flow rate. If the pressures required
at 1000, 2000, up to 10,000 gal/min are plotted on the vertical axis, with
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Figure 1.18 System head curve.

the flow rates on the horizontal axis, we get the system head curve as
shown in Fig. 1.18.

It can be seen that the system curve is not linear. This is because the
pressure drop due to friction varies approximately as the square of the
flow rate, and hence the additional pressure required when the flow is
increased 2000 to 3000 gal/min is more than that required when the
flow rate increases from 1000 to 2000 gal/min.

Consider a pipeline used to transport water from point A to point
B. The pipe inside diameter is D and the length is L. By knowing the
elevation along the pipeline we can calculate the total pressure required
at any flow rate using the techniques discussed earlier. At each flow rate
we would calculate the pressure drop due to friction and multiply by
the pipe length to get the total pressure drop. Next we will add the
equivalent of the static head difference between A and B converted to
psi. Finally, the delivery pressure required at B would be added to come
up with the total pressure required similar to Eq. (1.29). The process
would be repeated for multiple flow rates so that a system head curve
can be constructed as shown in Fig. 1.18. If we plotted the feet of head
instead of pressure on the vertical axis, we could use the system curve
in conjunction with the pump curve for the pump at A. By plotting both
the pump H-Q curve and the system head curve on the same graph, we
can determine the point of operation for this pipeline with the specified
pump curve. This is shown in Fig. 1.19.

When there is no elevation difference between points A and B, the
system head curve will start at the point where the flow rate and head
are both zero. If the elevation difference were 100 ft, B being higher
than A, the system head curve will start at H = 100 ft and flow Q = 0.

This means at zero flow rate the pressure required is not zero. This
simply means that even at zero flow rate, a minimum pressure must be
present at Ato overcome the static elevation difference between Aand B.
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Figure 1.19 Pump head curve and system head
curve.

1.13.5 Pump curve versus system
head curve

The system head curve for a pipeline is a graphic representation of the
head required to pump water through the pipeline at various flow rates
and is an increasing curve, indicating that more pressure is required
for a higher flow rate. On the other hand, the pump performance (head
versus capacity) curve shows the head the pump generates at various
flow rates, generally a drooping curve. When the required head per the
system head curve equals the available pump head, we have a match of
the required head versus the available head. This point of intersection
of the system head curve and the pump head curve is the operating
point for this particular pump and pipeline system. This is illustrated
in Fig. 1.19.

It is possible that in some cases there may not be a point of inter-
section between a system head curve and a pump curve. This may be
because the pump is too small and therefore the system head curve
starts off at a point above the shutoff head of the curve and it diverges
from the pump curve. Such a situation is shown in Fig. 1.20. It can be
seen from this figure that even though there is no operating point be-
tween the system head curve and the single pump curve, by adding a
second pump in series, we are able to get a satisfactory operating point
on the system head curve.

When we use multiple pumps in series or parallel, a combined pump
curve is generated and superimposed on the system head curve to get
the operating point. Figure 1.21 shows how for a given pipeline system
head curve, the operating point changes when we switch from a series
pump configuration to a parallel pump configuration.
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Figure 1.20 Diverging pump head curve and system
head curve.

In Fig. 1.21, the pipeline system head curve is plotted along with
the pump curves. Also shown are the combined pump curves for both
series and parallel operation of two identical pumps. It can be seen
that A represents the operating point with one pump, C the operating
point for two pumps in series, and finally B the operating point with
the two pumps in parallel. Corresponding to these points, the pipeline
(and pump) flow rates are QA, QC, and QB, respectively.

The relative magnitudes of these flow rates would depend upon the
nature of the system head curve. A steep system head curve will produce
a higher flow rate with pumps in series, whereas a flat system head
curve will produce a higher flow rate with parallel pumps.

Two pumps in series

Two pumps in parallel

One pump

C
B

A

System head curve

Head H

Flow rate Q

Figure 1.21 Multiple pumps with system head curve.
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1.14 Flow Injections and Deliveries

So far we have discussed water pipelines with flow entering the pipeline
at the beginning and exiting at the end of the pipeline. There was no flow
injection or flow delivery along the pipeline between the entrance and
exit. In many instances a certain volume of water would be pumped out
of a storage tank and on its way to the destination several intermediate
deliveries may be made at various points as shown in Fig. 1.22.

In Fig. 1.22 we see a pipeline that carries 10,000 gal/min from point
A and at two intermediate points C and D delivers 2000 and 5000
gal/min, respectively, ultimately carrying the remainder of 3000 gal/min
to the termination point B. Such a water pipeline would be typical of
a small distribution system that serves three communities along the
path of the pipeline. The hydraulic analysis of such a pipeline must
take into account the different flow rates and hence the pressure drops
in each segment. The pressure drop calculation for the section of pipe
between A and C will be based on a flow rate of 10,000 gal/min. The
pressure drop in the last section between D and B would be based on
3000 gal/min. The pressure drop in the intermediate pipe segment CD
will be based on 8000 gal/min. The total pressure required for pumping
at A will be the sum of the pressure drops in the three segments AC,
CD, and DB along with adjustment for any elevation differences plus
the delivery pressure required at B. For example, if the pressure drops
in the three segments are 500, 300, and 150 psi, respectively, and the
delivery pressure required at B is 50 psi and the pipeline is on a flat
terrain, the total pressure required at A will be

500 + 300 + 150 + 50 = 1000 psi

In comparison if there were no intermediate deliveries at C and D, the
entire flow rate of 10,000 gal/min would be delivered at B necessitating
a much higher pressure at A than the 1000 psi calculated.

Similar to intermediate deliveries previously discussed, water may
be injected into the pipeline at some locations in between, causing ad-
ditional volumes to be transported through the pipeline to the termi-
nus B. These injection volumes may be from other storage facilities or

A C D B

10,000 gal/min

2000 gal/min 5000 gal/min

3000 gal/min

Figure 1.22 Water pipeline with multiple deliveries.
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Figure 1.23 Hydraulic gradient with injections and deliveries.

water wells. The impact of the injections and deliveries on the hydraulic
pressure gradient is illustrated in Fig. 1.23.

Because of the varying flow rates in the three pipe sections, the slope
of the hydraulic gradient, which represents the pressure loss per mile,
will be different for each section. Hence the hydraulic gradient appears
as a series of broken lines. If the flow through the entire pipeline were
a constant value as in previous examples, the hydraulic gradient will
be one continuous line with a constant slope equal to the head loss per
mile. We will illustrate injection and delivery in a water pipeline system
using an example.

Example 1.26 An NPS 30 water pipeline (0.5-in wall thickness) 106 mi long
from A to B is used to transport 10,000 gal/min with intermediate deliveries
at C and D of 2000 and 3000 gal/min, respectively, as shown in Fig. 1.24. At
E, 4000 gal of water is injected into the pipeline so that a total of 9000 gal/min
is delivered to the terminus at B at 50 psi. Calculate the total pressure and
pumping HP required at A based on 80 percent pump efficiency. Use the
Hazen-Williams equation with C = 120. The elevations of points A through
E are as follows:

A = 100 ft B = 340 ft C = 180 ft D = 150 ft and E = 280 ft

Solution Section AC has a flow rate of 10,000 gal/min and is 23 mi long.
Using the Hazen-Williams equation (1.33), we calculate the pressure drop in

10,000 gal/min 9000 gal/min

4000 gal/min3000 gal/min2000 gal/min

A C D E B23 mi 38 mi 18 mi 27 mi

Figure 1.24 Example of water pipeline with injections and deliveries.



68 Chapter One

this section of pipe to be

Pm = 23,909

(
10,000

120

)1.852( 1
29.0

)4.87

= 6.5169 psi/mi

Total pressure drop in AC = 6.52 × 23 = 149.96 psi

Elevation head for AC = 180 − 100
2.31

= 34.63 psi

Section CD has a flow rate of 8000 gal/min and is 38 mi long. Therefore,
the pressure drop is

Pm =
(

8000
10,000

)1.852

× 6.5169 = 4.3108 psi/mi

Total pressure drop in CD = 4.3108 × 38 = 163.81 psi

Elevation head for CD = 150 − 180
2.31

= −12.99 psi

Section DE flows 5000 gal/min and is 18 mi long. We calculate the pressure
drop in this section of pipe to be

Pm =
(

5000
10,000

)1.852

× 6.5169 using proportions

= 1.8052 psi/mi

Total pressure drop in DE = 1.8052 × 18 = 32.49 psi

Elevation head for DE = 280 − 150
2.31

= 56.28 psi

Section EB flows 9000 gal/min and is 27 mi long. We calculate the pressure
drop in this section of pipe to be

Pm =
(

9000
10,000

)1.852

× 6.5169 = 5.3616 psi/mi

	PEB = 5.3616 × 27 = 144.76 psi

Elevation head for EB = 340 − 280
2.31

= 25.97 psi

Adding all the pressure drops and adjusting for elevation difference we get
the total pressure required at A including the delivery pressure of 50 psi at
B as follows:

PA = (149.96 + 34.63) + (163.81 − 12.99) + (32.49 + 56.28)

+(144.76 + 25.97) + 50

Therefore, PA = 644.91 psi.
Approximately 645 psi is therefore required at the beginning of pipeline

A to pump the given volumes through the pipeline system. The pump HP
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required at A is calculated next. Assuming a pump suction pressure of 50 psi

Pump head = (645 − 50) × 2.31 = 1375 ft

Therefore, the BHP required using Eq. (1.64) is

BHP = 1375 × 10,000 × 1
3960 × 0.8

= 4341

Therefore, a 5000-HP motor-driven pump will be required at A.

1.15 Valves and Fittings

Water pipelines include several appurtenances as part of the pipeline
system. Valves, fittings, and other devices are used in a pipeline sys-
tem to accomplish certain features of pipeline operations. Valves may be
used to communicate between the pipeline and storage facilities as well
as between pumping equipment and storage tanks. There are many dif-
ferent types of valves, each performing a specific function. Gate valves
and ball valves are used in the main pipeline as well as within pump sta-
tions and tank farms. Pressure relief valves are used to protect piping
systems and facilities from overpressure due to upsets in operational
conditions. Pressure regulators and control valves are used to reduce
pressures in certain sections of piping systems as well as when deliv-
ering water to third-party pipelines which may be designed for lower
operating pressures. Check valves are found in pump stations and tank
farms to prevent backflow as well as separating the suction piping from
the discharge side of a pump installation. On long-distance pipelines
with multiple pump stations, the pigging process necessitates a com-
plex series of piping and valves to ensure that the pig passes through
the pump station piping without getting stuck.

All valves and fittings such as elbows and tees contribute to the fric-
tional pressure loss in a pipeline system. Earlier we referred to some of
these head losses as minor losses. As described earlier, each valve and
fitting is converted to an equivalent length of straight pipe for the pur-
pose of calculating the head loss in the pipeline system.

A control valve functions as a pressure reducing device and is de-
signed to maintain a specified pressure at the downstream side as
shown in Fig. 1.25.

If P1 is the upstream pressure and P2 is the downstream pressure,
the control valve is designed to handle a given flow rate Q at these pres-
sures. A coefficient of discharge Cv is typical of the control valve design
and is related to the pressures and flow rates by the following equation:

Q = Cv A(P1 − P2)1/2 (1.74)

where A is a constant.
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Upstream pressure P1

Pressure drop ΔP

Downstream pressure P2

Flow Q

Figure 1.25 Control valve.

Generally, the control valve is selected for a specific application based
on P1, P2, and Q. For example, a particular situation may require 800 psi
upstream pressure, 400 psi downstream pressure, and a flow rate of
3000 gal/min. Based on these numbers, we may calculate a Cv = 550. We
would then select the correct size of a particular vendor’s control valve
that can provide this Cv value at a specified flow rate and pressures.
For example, a 10-in valve from vendor A may have a Cv of 400, while
a 12-in valve may have a Cv = 600. Therefore, in this case we would
choose a 12-in valve to satisfy our requirement of Cv = 550.

1.16 Pipe Stress Analysis

In this section we will discuss how a pipe size is selected based on the
internal pressure necessary to transport water through the pipeline. If
1000 psi pressure is required at the beginning of a pipeline to transport
a given volume of water a certain distance, we must ensure that the pipe
has adequate wall thickness to withstand this pressure. In addition to
being able to withstand the internal pressure, the pipeline also must be
designed not to collapse under external loads such as soil loading and
vehicles in case of a buried pipeline.

Since pipe may be constructed of different materials such as rein-
forced concrete, steel, wrought iron, plastic, or fiberglass, the necessary
wall thickness will vary with the strength of the pipe material. The
majority of pipelines are constructed of some form of material conform-
ing to the American National Standards Institute (ANSI), American
Society for Testing and Materials (ASTM), American Petroleum Insti-
tute (API), American Water Works Association (AWWA), Plastic Pipe
Institute (PPI), or Federal Specification.

Barlow’s equation is used to calculate the amount of internal pressure
that a pipe can withstand, based on the pipe diameter, wall thickness,
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and the yield strength of the pipe material. Once we calculate this allow-
able internal operating pressure of the pipeline, we can then determine
a hydrostatic test pressure, to ensure safe operation. The hydrostatic
test pressure is generally 125 percent of the safe working pressure.
The pipeline will be pressurized to this hydrostatic test pressure and
the pressure held for a specified period of time to ensure no leaks and no
pipe rupture. Generally, aboveground pipelines are hydrotested to 4 h
minimum and underground pipelines for 8 h. Various local, city, state,
and federal government codes may dictate more rigorous requirements
for hydrotesting water pipelines.

Barlow’s equation. Consider a circular pipe of outside diameter D and
wall thickness T. Depending on the D/T ratio, the pipe may be classi-
fied as thin walled or thick walled. Most water pipelines constructed of
steel are thin-walled pipes. If the pipe is constructed of some material
(with a yield strength Spsi) an internal pressure of P psi will generate
stresses in the pipe material. At any point within the pipe material
two stresses are present. The hoop stress Sh acts along the circumfer-
ential direction at a pipe cross section. The longitudinal or axial stress
Sa acts along the length or axis of the pipe and therefore normal to the
pipe cross section. It can be proved that the hoop stress Sh is twice the
axial stress Sa. Therefore, the hoop stress becomes the controlling stress
that determines the pipe wall thickness required. As the internal pres-
sure P is increased, both Sh and Sa increase, but Sh will reach the yield
stress of the material first. Therefore, the wall thickness necessary to
withstand the internal pressure P will be governed by the hoop stress
Sh generated in the pipe of diameter D and yield strength S.

Barlow’s equation is as follows

Sh = PD
2T

(1.75)

The corresponding formula for the axial (or longitudinal) stress Sa is

Sa = PD
4T

(1.76)

Equation (1.75) for hoop stress is modified slightly by applying a design
factor to limit the stress and a seam joint factor to account for the
method of manufacture of pipe. The modified equation for calculating
the internal design pressure in a pipe in U.S. Customary units is as
follows:

P = 2TSEF
D

(1.77)
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where P = internal pipe design pressure, psi
D = pipe outside diameter, in
T = nominal pipe wall thickness, in
S= specified minimum yield strength (SMYS) of pipe

material, psig
E = seam joint factor, 1.0 for seamless and submerged

arc welded (SAW) pipes (see Table 1.7)
F = design factor, usually 0.72 for water and petroleum

pipelines

The design factor is sometimes reduced from the 0.72 value in the
case of offshore platform piping or when certain city regulations re-
quire buried pipelines to be operated at a lower pressure. Equation
(1.77) for calculating the internal design pressure is found in the Code
of Federal Regulations, Title 49, Part 195, published by the U.S. Depart-
ment of Transportation (DOT). You will also find reference to this equa-
tion in ASME standard B31.4 for design and transportation of liquid
pipelines.

TABLE 1.7 Pipe Design Joint Factors

Pipe specification Pipe category Joint factor E

ASTM A53 Seamless 1.00
Electric resistance welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

ASTM A106 Seamless 1.00
ASTM A134 Electric fusion arc welded 0.80
ASTM A135 Electric Resistance Welded 1.00
ASTM A139 Electric fusion welded 0.80
ASTM A211 Spiral welded pipe 0.80
ASTM A333 Seamless 1.00
ASTM A333 Welded 1.00
ASTM A381 Double submerged arc welded 1.00
ASTM A671 Electric fusion welded 1.00
ASTM A672 Electric fusion welded 1.00
ASTM A691 Electric fusion welded 1.00
API 5L Seamless 1.00

Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00
Furnace lap welded 0.80
Furnace butt welded 0.60

API 5LX Seamless 1.00
Electric resistance welded 1.00
Electric flash welded 1.00
Submerged arc welded 1.00

API 5LS Electric resistance welded 1.00
Submerged arc welded 1.00
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In SI units, the internal design pressure equation is the same as
shown in Eq. (1.77), except the pipe diameter and wall thickness are
in millimeters and the SMYS of pipe material and the internal design
pressures are both expressed in kilopascals.

For a particular application the minimum wall thickness required for
a water pipeline can be calculated using Eq. (1.77). However, this wall
thickness may have to be increased to account for corrosion effects, if
any, and for preventing pipe collapse under external loading conditions.
For example, if corrosive water is being transported through a pipeline
and it is estimated that the annual corrosion allowance of 0.01 in must
be added, for a pipeline life of 20 years we must add 0.01×20 = 0.20 in
to the minimum calculated wall thickness based on internal pressure. If
such a pipeline were to be designed to handle 1000 psi internal pressure
and the pipeline is constructed of NPS 16, SAW steel pipe with 52,000
psi SMYS, then based on Eq. (1.77) the minimum wall thickness for
1000 psi internal pressure is

T = 1000 × 16
2 × 52,000 × 1.0 × 0.72

= 0.2137 in

Adding 0.01 × 20 = 0.2 in for corrosion allowance for 20-year life, the
revised wall thickness is

T = 0.2137 + 0.20 = 0.4137 in

Therefore, we would use the nearest standard wall thickness of
0.500 in.

Example 1.27 What is the internal design pressure for an NPS 20 water
pipeline (0.375-in wall thickness) if it is constructed of SAW steel with a
yield strength of 42,000 psi? Assume a design factor of 0.66. What would be
the required hydrotest pressure range for this pipe?

Solution Using Eq. (1.77),

P = 2 × 0.375 × 42,000 × 1.0 × 0.66
20

= 1039.5

Hydrotest pressure = 1.25 × 1039.5 = 1299.38 psi

The internal pressure that will cause the hoop stress to reach the yield stress
of 42,000 psi will correspond to 1039.5/0.66 = 1575 psi. Therefore, the hy-
drotest pressure range is 1300 to 1575 psi.

1.17 Pipeline Economics

In pipeline economics we are concerned with the objective of determin-
ing the optimum pipe size and material to be used for transporting
a given volume of water from a source to a destination. The criterion
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would be to minimize the capital investment as well as annual operating
and maintenance cost. In addition to selecting the pipe itself to handle
the flow rate we must also evaluate the optimum size of pumping equip-
ment required. By installing a smaller-diameter pipe we may reduce the
pipe material cost and installation cost. However, the smaller pipe size
would result in a larger pressure drop due to friction and hence higher
horsepower, which would require larger more costly pumping equip-
ment. On the other hand, selecting a larger pipe size would increase
the capital cost of the pipeline itself but would reduce the capital cost
of pumping equipment. Larger pumps and motors will also result in
increased annual operating and maintenance cost. Therefore, we need
to determine the optimum pipe size and pumping power required based
on some approach that will minimize both capital investment as well as
annual operating costs. The least present value approach, which con-
siders the total capital investment, the annual operating costs over the
life of the pipeline, time value of money, borrowing cost, and income tax
rate, seems to be an appropriate method in this regard.

In determining the optimum pipe size for a given pipeline project, we
would compare three or four different pipe diameters based on the cap-
ital cost of pipeline and pump stations, annual operating costs (pump
station costs, electricity costs, demand charges, etc.), and so forth. Tak-
ing into consideration the project life, depreciation of capital assets,
and tax rate, along with the interest rate on borrowed money, we would
be able to annualize all costs. If the annualized cost is plotted against
the different pipe diameters, we will get a set of curves as shown in
Fig. 1.26. The pipe diameter that results in the least annual cost would
be considered the optimum size for this pipeline.
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Figure 1.26 Pipeline costs versus pipe diameter.
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Example 1.28 A 25-mi-long water pipeline is used to transport 15 Mgal/day
of water from a pumping station at Parker to a storage tank at Danby. De-
termine the optimum pipe size for this application based on the minimum
initial cost. Consider three different pipe sizes: NPS 20, NPS 24, and NPS
30. Use the Hazen-Williams equation with C = 120 for all pipes. Assume the
pipeline is on fairly flat terrain. Use 85 percent pump efficiency. Use $700
per ton for pipe material cost and $1500 per HP for pump station installation
cost. Labor costs for installing the three pipe sizes are $100, $120, and $130
per ft, respectively. The pipeline will be designed for an operating pressure
of 1400 psi. Assume the following wall thickness for the pipes:

NPS 20 pipe: 0.312 in

NPS 24 pipe: 0.375 in

NPS 30 pipe: 0.500 in

Solution First we determine the flow in gal/min:

15 Mgal/day = 15 × 106

(24 × 60)
= 10, 416.7 gal/min

For the NPS 20 pipe we will first calculate the pressure and pumping HP
required. The pressure drop per mile from the Hazen-Williams equation
(1.33) is

Pm = 23,909

(
10,416.7

120

)1.852 1
19.3764.87

= 50.09 psi/mi

Total pressure drop in 25 mi = 25 × 50.09 = 1252.25 psi

Assuming a 50-psi delivery pressure at Danby and a 50-psi pump suction
pressure, we obtain

Pump head required at Parker = 1252.25 × 2.31 = 2893 ft

Pump flow rate = 10,416.7 gal/min

Pump HP required at Parker = 2893 × 10,416.7 × 1
3960 × 0.85

= 8953 HP

Therefore, a 9000-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

20 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.312 (20 − 0.312) = 65.60 lb/ft

Total pipe tonnage for 25 mi = 25 × 65.6 × 5280
2000

= 4330 tons
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Increasing this by 5 percent for contingency and considering $700 per ton
material cost, we get

Total pipe material cost = 700 × 4330 × 1.05 = $3.18 million

Labor cost for installing
NPS 20 pipeline = 100 × 25 × 5280 = $13.2 million

Pump station cost = 1500 × 9000 = $13.5 million

Therefore, the total capital cost of NPS 20 pipeline = $3.18+$13.2+$13.5 =
$29.88 million.

Next we calculate the pressure and HP required for the NPS 24 pipeline.
The pressure drop per mile from the Hazen-Williams equation is

Pm = 23,909

(
10,416.7

120

)1.852 1
23.254.87

= 20.62 psi/mi

Total pressure drop in 25 mi = 25 × 20.62 = 515.5 psi

Assuming a 50-psi delivery pressure at Danby and a 50-psi pump suction
pressure, we obtain

Pump head required at Parker = 515.5 × 2.31 = 1191 ft

Pump flow rate = 10,416.7 gal/min

Pump HP required at Parker = 1191 × 10,416.7 × 1
3960 × 0.85

= 3686 HP

Therefore a 4000-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

24 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.375 (24 − 0.375) = 94.62 lb/ft

Total pipe tonnage for 25 mi = 25 × 94.62 × 5280
2000

= 6245 tons

Increasing this by 5 percent for contingency and considering $700 per ton
material cost, we obtain

Total pipe material cost = 700 × 6245 × 1.05 = $4.59 million

Labor cost for installing
NPS 24 pipeline = 120 × 25 × 5280 = $15.84 million

Pump station cost = 1500 × 4000 = $6.0 million

Therefore, the total capital cost of NPS 24 pipeline = $4.59 + $15.84 +
$6.0 = $26.43 million.
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Next we calculate the pressure and HP required for the NPS 30 pipeline.
The pressure drop per mile from the Hazen-Williams equation is

Pm = 23,909

(
10,416.7

120

)1.852 1
29.04.87

= 7.03 psi/mi

Total pressure drop in 25 mi = 25 × 7.03 = 175.75 psi

Assuming a 50-psi delivery pressure at Danby and a 50-psi pump suction
pressure, we obtain

Pump head required at Parker = 175.75 × 2.31 = 406 ft

Pump flow rate = 10,416.7 gal/min

Pump HP required at Parker = 406 × 10, 416.7 × 1
3960 × 0.85

= 1257 HP

Therefore a 1500-HP pump unit will be required.
Next we will calculate the total pipe required. The total tonnage of NPS

30 pipe is calculated as follows:

Pipe weight per ft = 10.68 × 0.500 (30 − 0.500) = 157.53 lb/ft

Total pipe tonnage for 25 mi = 25 × 157.53 × 5280
2000

= 10,397 tons

Increasing this by 5 percent for contingency and considering $700 per ton
material cost, we obtain

Total pipe material cost = 700 × 10,397 × 1.05 = $7.64 million

Labor cost for installing
NPS 30 pipeline = 130 × 25 × 5280 = $17.16 million

Pump station cost = 1500 × 1500 = $2.25 million

Therefore, the total capital cost of NPS 30 pipeline = $7.64 + $17.16 +
$2.25 = $27.05 million.

In summary, the total capital cost of the NPS 20, NPS 24, and NPS 30
pipelines are

NPS 20 capital cost = $29.88 million

NPS 24 capital cost = $26.43 million

NPS 30 capital cost = $27.05 million

Based on initial cost alone, it appears that NPS 24 is the preferred pipe size.

Example 1.29 A 70-mi-long water pipeline is constructed of 30-in (0.375-in
wall thickness) pipe for transporting 15 Mgal/day from Hampton pump
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station to a delivery tank at Derry. The delivery pressure required at Derry is
20 psi. The elevation at Hampton is 150 ft and at Derry it is 250 ft. Calculate
the pumping horsepower required at 85 percent pump efficiency.

This pipeline system needs to be expanded to handle increased capacity
from 15 Mgal/day to 25 Mgal/day. The maximum pipeline pressure is 800 psi.
One option would be to install a parallel 30-in-diameter pipeline (0.375 wall
thickness) and provide upgraded pumps at Hampton. Another option would
require expanding the capacity of the existing pipeline by installing an inter-
mediate booster pump station. Determine the more economical alternative
for the expansion. Use the Hazen-Williams equation for pressure drop with
C = 120.

Solution At 15 Mgal/day flow rate,

Q = 15 × 106

24 × 60
= 10, 416.7 gal/min

Using the Hazen-Williams equation,

Pm = 23,909

(
10,416.7

120

)1.852 1
29.254.87

= 6.74 psi/mi

The total pressure required at Hampton is

Pt = Pf + Pelev + Pdef from Eq. (1.29)

= (6.74 × 70) + 250 − 150
2.31

+ 20 = 535.1 psi

Therefore the Hampton pump head required is (535.1−50) ×2.31 = 1121 ft,
assuming a 50-psi suction pressure at Hampton.

The pump HP required at Hampton [using Eq. (1.64)] is

HP = 1121 × 10,416.7
1

3960 × 0.85
= 3470 HP, say 4000 HP installed

For expansion to 25 Mgal/day, the pressure drop will be calculated using
proportions:

25 Mgal/day = 25 × 106

24 × 60
= 17,361.11 gal/min

Pm = 6.74 ×
(

25
15

)1.852

= 17.36 psi/mi

The total pressure required is

Pt = (17.36 × 70) + 250 − 150
2.31

+ 20 = 1279 psi

Since the maximum pipeline pressure is 800 psi, the number of pump stations
required

= 1279/800 = 1.6, or 2 pump stations
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With two pump stations, the discharge pressure at each pump station =
1279/2 = 640 psi. Therefore, the pump head required at each pump station =
(640 − 50) × 2.31 = 1363 ft, assuming a 50-psi suction pressure at each
pump station.

The pump HP required [using Eq. (1.64)] is

HP = 1363 × 17,361.11
1

3960 × 0.85
= 7030 HP, say 8000 HP installed

Increase in HP for expansion = 2 × 8000 − 4000 = 12,000 HP

Incremental pump station
cost based on $1500 per HP = 1500 × 12,000 = $18 million

This cost will be compared to looping a section of the pipeline with a 30-in
pipe. If a certain length of the 70-mi pipeline is looped with 30-in pipe, we
could reduce the total pressure required for the expansion from 1279 psi to
the maximum pipeline pressure of 800 psi. The equivalent diameter of two
30-in pipes is

De = 29.25

(
2
1

)0.3803

= 38.07 in

The pressure drop in the 30-in pipe at 25 Mgal/day was calculated earlier as
17.36 psi/mi. Hence,

Pm for the 38.07-in pipe = 17.36 × (29.25/38.07)4.87 = 4.81 psi/mi

If we loop x miles of pipe, we will have x miles of pipe at Pm = 4.81 psi/mi
and (70 − x) mi of pipe at 17.36 psi/mi. Therefore, since the total pressure
cannot exceed 800 psi, we can write

4.81x + 17.36 (70 − x) + 43.3 + 20 ≤ 800

Solving for x we get,

x ≥ 38.13

Therefore we must loop about 39 mi of pipe to be within the 800-psi pressure
limit.

If we loop loop 39 mi of pipe, the pressure required at the 25 Mgal/day flow
rate is

(39 × 4.81) + (31 × 17.36) + 43.3 + 20 = 789.1 psi
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The cost of this pipe loop will be calculated based on a pipe material cost of
$700 per ton and an installation cost of $120 per ft.

Pipe weight per foot = 10.68 × 0.375 × (30 − 0.375)

= 118.65 lb/ft

Material cost of 39 mi of 30-in loop = $700 × 118.65 × 5280 × 39

= $17.1 million

Pipe labor cost for installing
39 mi of 30-in loop = $120 × 5280 × 39 = $24.7 million

Total cost of pipe loop = $17.1 + $24.7 = $41.8 million

compared to

Incremental pump station cost based
on adding a booster pump station = $18 million

Therefore, based on the minimum initial cost alone, looping is not the eco-
nomical option.

In conclusion, at the expanded flow rate of 25 Mgal/day, it is more cost
effective to add HP at Hampton and build the second pump station to limit
pipe pressure to 800 psi.
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