Activated Sludge Process
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Sludge, Odors & Biogas
Only logged in customers who have purchased this product may leave a review.
Related products
Energy from Wastewater Sewage Sludge in Lebanon
The Ministry of Energy and Water (MEW) and the Council for Development and Reconstruction (CDR) are considering investing in energy produced from
wastewater sludge through anaerobic digestion (AD). Currently, Lebanon has only a few constructed wastewater treatment plants (WWTPs), however many
others are either under construction, under designphase assessment, or are envisioned to be assessed in the future. The goal of this study is to undergo a feasibility assessment to identify the WWTPs that meet the conditions to implement AD and elaborate the related technical specifications.
Energy from Wastewater Sewage Sludge in Lebanon
The Ministry of Energy and Water (MEW) and the Council for Development and Reconstruction (CDR) are considering investing in energy produced from
wastewater sludge through anaerobic digestion (AD). Currently, Lebanon has only a few constructed wastewater treatment plants (WWTPs), however many
others are either under construction, under designphase assessment, or are envisioned to be assessed in the future. The goal of this study is to undergo a feasibility assessment to identify the WWTPs that meet the conditions to implement AD and elaborate the related technical specifications.
A Detailed Assessment of The Science and Technology of Odor Measurement
INTRODUCTION
Odors remain at the top of air pollution complaints to regulators and government bodies around the U.S. and internationally. Ambient air holds a mixture of chemicals from everyday activities of industrial and commercial enterprises.
A person’s olfactory sense, the sense of smell, gives a person the ability to detect the presence of some chemicals in the ambient air. Not all chemicals are odorants, but when they are, a person may be able to detect their presence. Therefore, an odor perceived by a person’s olfactory sense can be an early warning or may simply be a marker for the presence of air emissions from a facility. For whatever reason, it is a person’s sense of smell that can lead to a complaint. When facility odors affect air quality and cause citizen complaints, an investigation of those odors may require that specific odorants be measured and that odorous air be measured using standardized scientific methods. Point emission sources, area emission sources, and volume emission sources can be sampled and the samples sent to an odor laboratory for testing of odor parameters, such as odor concentration, odor intensity, odor persistence, and odor characterization. Odor can also be measured and quantified directly in the ambient air, at the property line and in the community, using standard field olfactometry practices, e.g. odor intensity referencing scales and field olfactometers.
A Detailed Assessment of The Science and Technology of Odor Measurement
INTRODUCTION
Odors remain at the top of air pollution complaints to regulators and government bodies around the U.S. and internationally. Ambient air holds a mixture of chemicals from everyday activities of industrial and commercial enterprises.
A person’s olfactory sense, the sense of smell, gives a person the ability to detect the presence of some chemicals in the ambient air. Not all chemicals are odorants, but when they are, a person may be able to detect their presence. Therefore, an odor perceived by a person’s olfactory sense can be an early warning or may simply be a marker for the presence of air emissions from a facility. For whatever reason, it is a person’s sense of smell that can lead to a complaint. When facility odors affect air quality and cause citizen complaints, an investigation of those odors may require that specific odorants be measured and that odorous air be measured using standardized scientific methods. Point emission sources, area emission sources, and volume emission sources can be sampled and the samples sent to an odor laboratory for testing of odor parameters, such as odor concentration, odor intensity, odor persistence, and odor characterization. Odor can also be measured and quantified directly in the ambient air, at the property line and in the community, using standard field olfactometry practices, e.g. odor intensity referencing scales and field olfactometers.
Sludge Dehydration Technologies
INTRODUCTION
Dewatering is a physical process integrated in the sludge line of treatment plant. It is aimed at reducing the water content and therefore the sludge volume. In this way, its transportation costs to the final destination point is reduced. On the other hand, the dewatered sludge is easier to handle and the transport process is more convenient than in the case of a sludge with higher water content.
The dewatering technique chosen must be consistent with the amount and characteristics of sludges generated and with the biosolid final destination.
Water present in the sludge exists in four forms (see figure): free, colloidal, intercellular and capillary. Free water can be separated from sludge by gravity as it is not associated with solids. Chemical conditioning prior to the use of mechanical tools is required in order to remove colloidal and capillary water. For intercellular water removal, the structure containing it must be broken and this can be done through heat treatment.
Sludge Dehydration Technologies
INTRODUCTION
Dewatering is a physical process integrated in the sludge line of treatment plant. It is aimed at reducing the water content and therefore the sludge volume. In this way, its transportation costs to the final destination point is reduced. On the other hand, the dewatered sludge is easier to handle and the transport process is more convenient than in the case of a sludge with higher water content.
The dewatering technique chosen must be consistent with the amount and characteristics of sludges generated and with the biosolid final destination.
Water present in the sludge exists in four forms (see figure): free, colloidal, intercellular and capillary. Free water can be separated from sludge by gravity as it is not associated with solids. Chemical conditioning prior to the use of mechanical tools is required in order to remove colloidal and capillary water. For intercellular water removal, the structure containing it must be broken and this can be done through heat treatment.
Sewage Sludge Management In Germany
Introduction
What is sewage sludge?
In Germany, daily water use now reaches 120 litres per person. All of this water ultimately ends up in the sewage system, and from there is channelled to sewage treatment plants. At such plants, the sewage passes through screens and sieves and undergoes mechanical and biological purification,
the goal being to remove impurities from the sewage and to then channel the resulting purified water into waterbodies. The residue of this process is known as
sewage sludge, which can occur in anhydrous, dried or other processed forms.
Sewage Sludge Management In Germany
Introduction
What is sewage sludge?
In Germany, daily water use now reaches 120 litres per person. All of this water ultimately ends up in the sewage system, and from there is channelled to sewage treatment plants. At such plants, the sewage passes through screens and sieves and undergoes mechanical and biological purification,
the goal being to remove impurities from the sewage and to then channel the resulting purified water into waterbodies. The residue of this process is known as
sewage sludge, which can occur in anhydrous, dried or other processed forms.
Drinking Water Treatment Plant Residuals Management Technical Report
INTRODUCTION
The U.S. Environmental Protection Agency (EPA) completed a review of discharges from water treatment plants (WTPs). The purpose of this report is to summarize the data collected during this review (principally covered in Sections 2, 3, 9, 10, and 11) and to serve as a technical resource to permit writers (primarily covered in Sections 4 through 8 and Sections 12 and 13). EPA selected the drinking water treatment (DWT) industry for a rulemaking as part of its 2004 Biennial Effluent Limitations and Guidelines Program planning process. EPA is not at this time continuing its effluent guidelines rulemaking for the DWT industry. In the 2004 Plan, EPA announced that it would begin development of a regulation to control the pollutants discharged from medium and large DWT plants. See 69 FR 53720 (September 2, 2004). Based on a preliminary study and on public comments, EPA was interested in the potential volume of discharges associated with drinking water facilities. The preliminary data were not conclusive, and the Agency proceeded with additional study and analysis of treatability, including an industry survey. After considering extensive information about the industry, its treatment residuals, wastewater treatment options, and discharge characteristics, and after considering other priorities, EPA has suspended work on this rulemaking.
Drinking Water Treatment Plant Residuals Management Technical Report
INTRODUCTION
The U.S. Environmental Protection Agency (EPA) completed a review of discharges from water treatment plants (WTPs). The purpose of this report is to summarize the data collected during this review (principally covered in Sections 2, 3, 9, 10, and 11) and to serve as a technical resource to permit writers (primarily covered in Sections 4 through 8 and Sections 12 and 13). EPA selected the drinking water treatment (DWT) industry for a rulemaking as part of its 2004 Biennial Effluent Limitations and Guidelines Program planning process. EPA is not at this time continuing its effluent guidelines rulemaking for the DWT industry. In the 2004 Plan, EPA announced that it would begin development of a regulation to control the pollutants discharged from medium and large DWT plants. See 69 FR 53720 (September 2, 2004). Based on a preliminary study and on public comments, EPA was interested in the potential volume of discharges associated with drinking water facilities. The preliminary data were not conclusive, and the Agency proceeded with additional study and analysis of treatability, including an industry survey. After considering extensive information about the industry, its treatment residuals, wastewater treatment options, and discharge characteristics, and after considering other priorities, EPA has suspended work on this rulemaking.
Reviews
There are no reviews yet.