Industry Electrification In A Renewable Power System
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Electrical & Automation
Chapter 2 summarizes the impact of a high penetration of variable renewables in our electricity system. It is based on a series of previous DNV white papers. This series started with the paper ‘Future proof renewables’ and was continued with ‘Hydrogen in the electricity value chain’, ‘The promise of seasonal storage’, and ‘Sector coupling’.
Only logged in customers who have purchased this product may leave a review.
Related products
Process Automation In Wastewater Treatment Plants: the Finnish Experience
Abstract:
The degree and importance of automation at municipal wastewater treatment plants (WWTPs) have increased with the development of technology and tightening of treatment requirements. The objective of this paper is to assess and document the current status of process automation at WWTPs in Finland to determine successful practices and the needs of plant operators. Renewing ammonia or organic content
removal processes to total nitrogen removal processes has also increased the need of Instrumentation, Control and Automation (ICA). The survey has quantified that the reliability and accuracy of the on-line sensor measurement has improved recently, which makes the use of on-line measurements in control more applicable. The use of nutrient sensors in control is apparently still rare at Finnish WWTPs even though their use for monitoring purposes is common.
Process Automation In Wastewater Treatment Plants: the Finnish Experience
Abstract:
The degree and importance of automation at municipal wastewater treatment plants (WWTPs) have increased with the development of technology and tightening of treatment requirements. The objective of this paper is to assess and document the current status of process automation at WWTPs in Finland to determine successful practices and the needs of plant operators. Renewing ammonia or organic content
removal processes to total nitrogen removal processes has also increased the need of Instrumentation, Control and Automation (ICA). The survey has quantified that the reliability and accuracy of the on-line sensor measurement has improved recently, which makes the use of on-line measurements in control more applicable. The use of nutrient sensors in control is apparently still rare at Finnish WWTPs even though their use for monitoring purposes is common.
Electrodeionization versus Electrodialysis: A Clean- Up of Produced Water in Hydraulic Fracturing
Abstract:
Electrodeionization (EDI) is a widely studied process ranging from applications in wastewater clean-up in the food and beverage industry to purifying organic compounds. To date, there are no apparent studies on applying this technology to produced wastewater recovered from hydraulic fracking sites. Water consumption within hydraulic fracturing sites can reach in the upwards of millions of gallons per site, so a need for a water recycling process becomes necessary within areas where water requirements are scarce. Implementation of an EDI module that is capable of handling high salt solutions from produced wastewater in subsequent fracturing practices will decrease overall water demands, making this an environmentally sustainable process as well. This study will focus on the selective removal of high concentrations of ions using ion-selective membranes and ion exchange wafers in Wafer-Enhanced Electrodeionization (WE-EDI) of hydraulic fracturing solutions for improved water recovery and reuse within industrial applications. Experiments were performed using a WE-EDI setup with varied wafer composition and thickness in comparison with electrodialysis for selective removal of divalent ions (Ca2+) over monovalent ions (Na+ ) from simulated and fracking solutions. Research sought to show that when increasing the wafer thickness and changing the composition (weak acid compared to strong acid resins) there would be a greater overall current efficiency observed and subsequently lower power consumption. This research concluded that there is some degree of enhanced selectivity with increased wafer size, as well as varied composition compared to a traditional ED system. Continued research is recommended to conclude uncertainties, eliminate areas of system performance error and to further solidify all hypothesizes within this research.
Electrodeionization versus Electrodialysis: A Clean- Up of Produced Water in Hydraulic Fracturing
Abstract:
Electrodeionization (EDI) is a widely studied process ranging from applications in wastewater clean-up in the food and beverage industry to purifying organic compounds. To date, there are no apparent studies on applying this technology to produced wastewater recovered from hydraulic fracking sites. Water consumption within hydraulic fracturing sites can reach in the upwards of millions of gallons per site, so a need for a water recycling process becomes necessary within areas where water requirements are scarce. Implementation of an EDI module that is capable of handling high salt solutions from produced wastewater in subsequent fracturing practices will decrease overall water demands, making this an environmentally sustainable process as well. This study will focus on the selective removal of high concentrations of ions using ion-selective membranes and ion exchange wafers in Wafer-Enhanced Electrodeionization (WE-EDI) of hydraulic fracturing solutions for improved water recovery and reuse within industrial applications. Experiments were performed using a WE-EDI setup with varied wafer composition and thickness in comparison with electrodialysis for selective removal of divalent ions (Ca2+) over monovalent ions (Na+ ) from simulated and fracking solutions. Research sought to show that when increasing the wafer thickness and changing the composition (weak acid compared to strong acid resins) there would be a greater overall current efficiency observed and subsequently lower power consumption. This research concluded that there is some degree of enhanced selectivity with increased wafer size, as well as varied composition compared to a traditional ED system. Continued research is recommended to conclude uncertainties, eliminate areas of system performance error and to further solidify all hypothesizes within this research.
Concept of SCADA System
SCADA is an acronym for Supervisory Control and Data Acquisition
❑ Data Acquisition :
Gathers information from widely distributed processes
❑ Supervisory Control :
Calculate and give limited control instructions to distant process facilities
Concept of SCADA System
SCADA is an acronym for Supervisory Control and Data Acquisition
❑ Data Acquisition :
Gathers information from widely distributed processes
❑ Supervisory Control :
Calculate and give limited control instructions to distant process facilities
Energy Efficient Electric Motors Systems
Introduction:
This manual gives a brief description of state-of-the-art technologies used to develop high efficiency motors, including premium efficiency induction motors, permanent magnet motors, and switched reluctance motors.
It also analyses issues that affect motor system efficiency and provides guidelines on how to deal with those issues namely by:
Selection of energy‐efficient motors
Properly sizing of motors;
Using Variable Speed Drives (VSDs), where appropriate. The use of VSDs can
lead to better process control, less wear in the mechanical equipment, less
acoustical noise, and significant energy savings;
Optimisation of the complete system, including, the distribution network,
power quality and efficient transmissions;
Motor Systems Energy Assessments
Taking Measurements
Applying best maintenance practices.
Motor Repair
How to win approval for energy efficiency projects
Energy Management Systems
Energy Efficient Electric Motors Systems
Introduction:
This manual gives a brief description of state-of-the-art technologies used to develop high efficiency motors, including premium efficiency induction motors, permanent magnet motors, and switched reluctance motors.
It also analyses issues that affect motor system efficiency and provides guidelines on how to deal with those issues namely by:
Selection of energy‐efficient motors
Properly sizing of motors;
Using Variable Speed Drives (VSDs), where appropriate. The use of VSDs can
lead to better process control, less wear in the mechanical equipment, less
acoustical noise, and significant energy savings;
Optimisation of the complete system, including, the distribution network,
power quality and efficient transmissions;
Motor Systems Energy Assessments
Taking Measurements
Applying best maintenance practices.
Motor Repair
How to win approval for energy efficiency projects
Energy Management Systems
Reviews
There are no reviews yet.