Safe Drinking-water from Desalination

Desalination is increasingly being used to provide drinking-water under conditions of freshwater scarcity. Water scarcity is estimated to affect one in three people on every continent of the globe, and almost one fifth of the world’s population live in areas where water is physically scarce. This situation is expected to worsen as competing needs for water intensify along with population growth, urbanization, climate change impacts and increases in household and industrial uses.
Quick View

Safe Drinking-water from Desalination

Desalination is increasingly being used to provide drinking-water under conditions of freshwater scarcity. Water scarcity is estimated to affect one in three people on every continent of the globe, and almost one fifth of the world’s population live in areas where water is physically scarce. This situation is expected to worsen as competing needs for water intensify along with population growth, urbanization, climate change impacts and increases in household and industrial uses.
Read moreView cart

Application of Activated Carbon Treatment for Pharmaceutical Removal in Municipal Wastewater

Abstract Many pharmaceuticals are found in municipal wastewater effluents due to their persistence in the human body as well as in conventional wastewater treatment processes. This discharge to the environment can lead to adverse effects in aquatic species, such as feminization of male fish. During the past decade, these findings have spawned investigations and research into suitable treatment technologies that could severely limit the discharge. Adsorption onto activated carbon has been identified as one of the two main technologies for implementation of (future) full-scale treatment. Recent research has put a closer focus on adsorption with powdered activated carbon (PAC) than on granular activated carbon (GAC). Studies where both methods are compared in parallel operation are thus still scarce and such evaluation in pilot-scale was therefore a primary objective of this thesis. Furthermore, recirculation of PAC can be used to optimize the treatment regarding the carbon consumption. Such a setup was evaluated as a separate treatment stage to comply with Swedish wastewater convention. Additionally, variation of a set of process parameters was evaluated. During successive operation at three different wastewater treatment plants an overall pharmaceutical removal of 95% could consistently be achieved with both methods. Furthermore, treatment with GAC was sensitive to a degraded effluent quality, which severely reduced the hydraulic capacity. Both treatment methods showed efficient removal of previously highlighted substances, such as carbamazepine and diclofenac, however in general a lower adsorption capacity was observed for GAC. By varying the input of process parameters, such as the continuously added dose or the contact time, during PAC treatment, a responsive change of the pharmaceutical removal could be achieved. The work in this thesis contributes some valuable field experience towards wider application of these treatment technologies in full-scale.
Quick View

Application of Activated Carbon Treatment for Pharmaceutical Removal in Municipal Wastewater

Abstract Many pharmaceuticals are found in municipal wastewater effluents due to their persistence in the human body as well as in conventional wastewater treatment processes. This discharge to the environment can lead to adverse effects in aquatic species, such as feminization of male fish. During the past decade, these findings have spawned investigations and research into suitable treatment technologies that could severely limit the discharge. Adsorption onto activated carbon has been identified as one of the two main technologies for implementation of (future) full-scale treatment. Recent research has put a closer focus on adsorption with powdered activated carbon (PAC) than on granular activated carbon (GAC). Studies where both methods are compared in parallel operation are thus still scarce and such evaluation in pilot-scale was therefore a primary objective of this thesis. Furthermore, recirculation of PAC can be used to optimize the treatment regarding the carbon consumption. Such a setup was evaluated as a separate treatment stage to comply with Swedish wastewater convention. Additionally, variation of a set of process parameters was evaluated. During successive operation at three different wastewater treatment plants an overall pharmaceutical removal of 95% could consistently be achieved with both methods. Furthermore, treatment with GAC was sensitive to a degraded effluent quality, which severely reduced the hydraulic capacity. Both treatment methods showed efficient removal of previously highlighted substances, such as carbamazepine and diclofenac, however in general a lower adsorption capacity was observed for GAC. By varying the input of process parameters, such as the continuously added dose or the contact time, during PAC treatment, a responsive change of the pharmaceutical removal could be achieved. The work in this thesis contributes some valuable field experience towards wider application of these treatment technologies in full-scale.
Read moreView cart

Design Of Aerobic Granular Sludge Reactors

Introduction Since several years, conventional wastewater treatment has been dealing with low volumetric loading rates and a high energy consumption (Van Haandel & Van der Lubbe, 2007; Pronk et al., 2017). Especially with the increasing standard of living and an increasing amount of households connected to a sewage system constant improvements are needed (Vlaamse milieumaatschappij, 2019a). The question arises how these challenges can be met in an efficient way. Over the past 20 years, aerobic granular sludge is presented as a promising technology to meet these challenges. Conventional activated sludge flocs, i.e. suspended microorganisms forming bulky aggregates, are converted into compact aerobic granules. This results in 25-75% less land area, 20-50% less energy and up to 7-17% less costs compared to conventional activated sludge plants (Pronk et al, 2017). The conventional use of aerobic granular sludge is in batch systems, but continuous systems are under research as well (Jahn et al., 2019). The aim of this thesis is to gain further insight in continuous processes with aerobic granular sludge. Given that the current continuous systems are not depreciated, yet cannot meet the demand for higher treatment capacity, continuous aerobic granular sludge systems seem promising. Better settleability of granules could lead to higher biomass concentrations in the existing continuous systems, possibly resulting in a higher treatment capacity. Before researching how to get stable granules in a continuous flow reactor, it is needed to investigate the overall effect of granules on the performance of continuous reactors. In this thesis it is questioned if refurbishment of the current continuous activated sludge plants into continuous aerobic granular sludge plants would be advantageous in terms of treatment capacity and energy consumption, in order to meet the effluent criteria. This was investigated by developing the comparison between continuous systems with activated sludge and with aerobic granular sludge. The comparative study is obtained in different steps. In the literature review, a state-of-the-art on current wastewater treatment with activated sludge and aerobic granular sludge is given. Both the typical aerobic granular sludge implementation in batch systems and perspectives on aerobic granular sludge in continuous systems are discussed and compared based on literature findings. The chapter ‘Materials and methods’ describes the mathematical model based on the Benchmark Simulations Model No. 1 (BSM1) in Matlab-Simulink. A continuous activated sludge system serves as the reference model. Furthermore, this model is adapted to make it representable as a continuous design with aerobic granular sludge based on two characteristics: better settleability and diffusion limitation. In the chapter ‘Results and discussion’, the differences between both continuous systems are elucidated to answer the research question. Both the maximal treatment capacity and energy consumption in order to meet the effluent criteria were calculated and compared for both systems. Conclusions are summarized in the chapter ‘General conclusions’ and ‘Recommendations for further research’ are given.
Quick View

Design Of Aerobic Granular Sludge Reactors

Introduction Since several years, conventional wastewater treatment has been dealing with low volumetric loading rates and a high energy consumption (Van Haandel & Van der Lubbe, 2007; Pronk et al., 2017). Especially with the increasing standard of living and an increasing amount of households connected to a sewage system constant improvements are needed (Vlaamse milieumaatschappij, 2019a). The question arises how these challenges can be met in an efficient way. Over the past 20 years, aerobic granular sludge is presented as a promising technology to meet these challenges. Conventional activated sludge flocs, i.e. suspended microorganisms forming bulky aggregates, are converted into compact aerobic granules. This results in 25-75% less land area, 20-50% less energy and up to 7-17% less costs compared to conventional activated sludge plants (Pronk et al, 2017). The conventional use of aerobic granular sludge is in batch systems, but continuous systems are under research as well (Jahn et al., 2019). The aim of this thesis is to gain further insight in continuous processes with aerobic granular sludge. Given that the current continuous systems are not depreciated, yet cannot meet the demand for higher treatment capacity, continuous aerobic granular sludge systems seem promising. Better settleability of granules could lead to higher biomass concentrations in the existing continuous systems, possibly resulting in a higher treatment capacity. Before researching how to get stable granules in a continuous flow reactor, it is needed to investigate the overall effect of granules on the performance of continuous reactors. In this thesis it is questioned if refurbishment of the current continuous activated sludge plants into continuous aerobic granular sludge plants would be advantageous in terms of treatment capacity and energy consumption, in order to meet the effluent criteria. This was investigated by developing the comparison between continuous systems with activated sludge and with aerobic granular sludge. The comparative study is obtained in different steps. In the literature review, a state-of-the-art on current wastewater treatment with activated sludge and aerobic granular sludge is given. Both the typical aerobic granular sludge implementation in batch systems and perspectives on aerobic granular sludge in continuous systems are discussed and compared based on literature findings. The chapter ‘Materials and methods’ describes the mathematical model based on the Benchmark Simulations Model No. 1 (BSM1) in Matlab-Simulink. A continuous activated sludge system serves as the reference model. Furthermore, this model is adapted to make it representable as a continuous design with aerobic granular sludge based on two characteristics: better settleability and diffusion limitation. In the chapter ‘Results and discussion’, the differences between both continuous systems are elucidated to answer the research question. Both the maximal treatment capacity and energy consumption in order to meet the effluent criteria were calculated and compared for both systems. Conclusions are summarized in the chapter ‘General conclusions’ and ‘Recommendations for further research’ are given.

Piping Isometrics

. An isometric drawing is a type of pictorial drawing in which three sides of an object can be seen in one view. . It’s popular within the process piping industry because it can be laid out and drawn with ease and portrays the object in a realistic view.
Quick View

Piping Isometrics

. An isometric drawing is a type of pictorial drawing in which three sides of an object can be seen in one view. . It’s popular within the process piping industry because it can be laid out and drawn with ease and portrays the object in a realistic view.
Newsletter
Stay up to date with our latest news and articles.
Your email is safe with us, we don`t spam.
Newsletter
Stay up to date with our latest news and articles.
Your email is safe with us, we don`t spam.
    0
    Your Cart
    Your cart is emptyReturn to Shop
    ×