Ground Water Management And Ownership
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Wells & Groundwater
Only logged in customers who have purchased this product may leave a review.
Related products
Removal of Hazardous Metals from Groundwater by Reverse Osmosis
Abstract:
This EPA treatment technology project was designed to collect data on the performance of existing water treatment processes in order to remove arsenic on pilot-scale. Our paper contains verification testing of the reverse osmosis membrane module conducted over a 30-day period at the Spiro Tunnel Bulkhead water (Park City, Utah, USA), which is considered to be a ground water. The total arsenic concentration in the feed water averaged 60 ppb during the test period and was reduced to an average of 1 ppb in the treated (permeate) water. The work reported here focused on obtaining accurate readings for arsenic valence states (III) and (V), using an anion exchange resin column. The dominant arsenic species in the abandoned silver mine tunnel feed water was As(V). Results of analysis showed that 70% of the arsenic present in the feed water was in dissolved form. Arsenic speciation for valence states (III) and (V) showed that arsenic (V) represented 76% of the dissolved arsenic in the source water. The method detection limit (MDL) for arsenic using ICP-MS was determined to be 0.1 ppb. Our matrix spiked recovery, spiked blank samples and reference materials deviated only a few percentage points from the listed true values.
Removal of Hazardous Metals from Groundwater by Reverse Osmosis
Abstract:
This EPA treatment technology project was designed to collect data on the performance of existing water treatment processes in order to remove arsenic on pilot-scale. Our paper contains verification testing of the reverse osmosis membrane module conducted over a 30-day period at the Spiro Tunnel Bulkhead water (Park City, Utah, USA), which is considered to be a ground water. The total arsenic concentration in the feed water averaged 60 ppb during the test period and was reduced to an average of 1 ppb in the treated (permeate) water. The work reported here focused on obtaining accurate readings for arsenic valence states (III) and (V), using an anion exchange resin column. The dominant arsenic species in the abandoned silver mine tunnel feed water was As(V). Results of analysis showed that 70% of the arsenic present in the feed water was in dissolved form. Arsenic speciation for valence states (III) and (V) showed that arsenic (V) represented 76% of the dissolved arsenic in the source water. The method detection limit (MDL) for arsenic using ICP-MS was determined to be 0.1 ppb. Our matrix spiked recovery, spiked blank samples and reference materials deviated only a few percentage points from the listed true values.
Distribution Basics II
DISTRIBUTION BASICS CEU TRAINING COURSE Second Edition
Review of water distribution systems and related treatment fundamentals. This course will cover the basic requirements of the Safe Drinking Water Act and general water distribution principles. You will not need any other materials for this course. Water Distribution, Well Drillers, Pump Installers, and Water Treatment Operators. The target audience for this course is the person interested in working in a water treatment or distribution facility and/or wishing to maintain CEUs for certification license or to learn how to do the job safely and effectively, and/or meet education needs for promotion.
Final Examination for Credit
The opportunity to pass the final comprehensive examination is limited to three attempts per course enrollment.
Distribution Basics II
DISTRIBUTION BASICS CEU TRAINING COURSE Second Edition
Review of water distribution systems and related treatment fundamentals. This course will cover the basic requirements of the Safe Drinking Water Act and general water distribution principles. You will not need any other materials for this course. Water Distribution, Well Drillers, Pump Installers, and Water Treatment Operators. The target audience for this course is the person interested in working in a water treatment or distribution facility and/or wishing to maintain CEUs for certification license or to learn how to do the job safely and effectively, and/or meet education needs for promotion.
Final Examination for Credit
The opportunity to pass the final comprehensive examination is limited to three attempts per course enrollment.
Nanotechnology in Groundwater Remediation
Introduction:
In recent years, nano science and technology has introduced a new dimension to scientific disciplines and technology sectors due to its ability to exhibit super functional properties of materials at nano-dimensions. There is a remarkable rise in research and development in all developed countries and many developing countries pertaining to this field. Organizations such as Universities, public research institutes and industrial R&D laboratories focus strongly on this new technology to benefit from its scientific and technological advantages [1]. Nanotechnology is a multidisciplinary field that applies engineering and manufacturing principles at molecular level [2]. In broad terms, nanotechnology is the development and use of techniques to study physical phenomena and construct structures in the physical size range of 1–100 nanometers (nm) as well as the incorporation of these structures into applications [3]. The past couple of decades have been dedicated to the synthesis, characterization, and application of nanomaterials Nanotechnology has revolutionized a multitude of sectors such as the electronic, chemical, biotechnology and biomedical industries [4]. Whereas various industries produce different varieties of nanomaterials there are increasing efforts to use nanotechnology in environmental engineering to protect the environment by pollution control, treatment and as a remedial measure to long term problems such as contaminated waste sites [5]. This technique has proved to be an effective alternative to the conventional practices for site remediation. Further research has also been carried out and its application is found useful in the treatment of in drinking water.
Nanotechnology in Groundwater Remediation
Introduction:
In recent years, nano science and technology has introduced a new dimension to scientific disciplines and technology sectors due to its ability to exhibit super functional properties of materials at nano-dimensions. There is a remarkable rise in research and development in all developed countries and many developing countries pertaining to this field. Organizations such as Universities, public research institutes and industrial R&D laboratories focus strongly on this new technology to benefit from its scientific and technological advantages [1]. Nanotechnology is a multidisciplinary field that applies engineering and manufacturing principles at molecular level [2]. In broad terms, nanotechnology is the development and use of techniques to study physical phenomena and construct structures in the physical size range of 1–100 nanometers (nm) as well as the incorporation of these structures into applications [3]. The past couple of decades have been dedicated to the synthesis, characterization, and application of nanomaterials Nanotechnology has revolutionized a multitude of sectors such as the electronic, chemical, biotechnology and biomedical industries [4]. Whereas various industries produce different varieties of nanomaterials there are increasing efforts to use nanotechnology in environmental engineering to protect the environment by pollution control, treatment and as a remedial measure to long term problems such as contaminated waste sites [5]. This technique has proved to be an effective alternative to the conventional practices for site remediation. Further research has also been carried out and its application is found useful in the treatment of in drinking water.
Using Compound Specific Isotope Analysis (CSIA) in Groundwater Assessments
Introduction:
The atoms of a particular element must have the same number of protons and electrons, but they can have different numbers of neutrons. When atoms differ only in the number of neutrons, they are referred to as isotopes of each other. If a particular isotope is not radioactive, it is called a stable isotope. Because they differ in the number of neutrons, isotopes differ in mass, and they can be separated using a mass spectrometer. In recent years mass spectrometers have been joined to gas chromatographs to allow separation of individual organic compounds in a mixture, followed by combustion of each separate organic compound to carbon dioxide, and then determination of the ratio of isotopes in the carbon dioxide with a mass spectrometer. Even more recently, new techniques of sample preparation, such as purge and trap or solid phase micro-extraction, have made it possible to obtain adequate material for analyses from water with low concentrations of organic contaminants. For the first time, it is possible to perform Compound Specific Isotope Analysis (CSIA) on dissolved organic contaminants such as chlorinated solvents, aromatic petroleum hydrocarbons, and fuel oxygenates, at concentrations in water that are near their regulatory standards. Biodegradation can come about through natural biological processes, or through active in situ bioremediation. When organic contaminants are degraded in the environment, the ratio of stable isotopes will often change, and the extent of degradation can be recognized and predicted from the change in the ratio of stable isotopes; CSIA has great promise to improve our understanding of the behavior of organic contaminants at hazardous waste sites. Better understanding can lead to better decisions on the remedies that are selected. CSIA can also be used to monitor the progress of natural attenuation or active biological remediation, and identify remedies that are not performing as expected. The U.S. Environmental Protection Agency requires that data quality objectives be developed for the methods and procedures that are used to characterize hazardous waste sites. The U.S. EPA also requires that the data that are used to make decisions must meet predetermined goals for data quality, including the accuracy, precision, and sensitivity of the measurement, and the extent to which the sample submitted for analysis are representative of the environmental medium being sampled. Other regulatory agencies world-wide have similar expectations. Because CSIA is a new approach in environmental investigations, there are no widely accepted standards for accuracy, precision and sensitivity, and no established approaches to document accuracy, precision, sensitivity and representativeness. This Guide is intended for managers of hazardous waste sites who must design sampling plans that will include CSIA and specify data quality objectives for CSIA analyses, for analytical chemists who must carry out the analyses, and for staff of regulatory agencies who must review and approve the sampling plans and data quality objectives, and who must review the data provided from the analyses. This Guide provides recommendations and suggestions to site managers, chemists and regulators. The recommendations and suggestions in this Guide are not legal guidance, and the site managers, chemists, and regulators may negotiate among themselves to develop objectives and approaches that are most appropriate for their site.
Using Compound Specific Isotope Analysis (CSIA) in Groundwater Assessments
Introduction:
The atoms of a particular element must have the same number of protons and electrons, but they can have different numbers of neutrons. When atoms differ only in the number of neutrons, they are referred to as isotopes of each other. If a particular isotope is not radioactive, it is called a stable isotope. Because they differ in the number of neutrons, isotopes differ in mass, and they can be separated using a mass spectrometer. In recent years mass spectrometers have been joined to gas chromatographs to allow separation of individual organic compounds in a mixture, followed by combustion of each separate organic compound to carbon dioxide, and then determination of the ratio of isotopes in the carbon dioxide with a mass spectrometer. Even more recently, new techniques of sample preparation, such as purge and trap or solid phase micro-extraction, have made it possible to obtain adequate material for analyses from water with low concentrations of organic contaminants. For the first time, it is possible to perform Compound Specific Isotope Analysis (CSIA) on dissolved organic contaminants such as chlorinated solvents, aromatic petroleum hydrocarbons, and fuel oxygenates, at concentrations in water that are near their regulatory standards. Biodegradation can come about through natural biological processes, or through active in situ bioremediation. When organic contaminants are degraded in the environment, the ratio of stable isotopes will often change, and the extent of degradation can be recognized and predicted from the change in the ratio of stable isotopes; CSIA has great promise to improve our understanding of the behavior of organic contaminants at hazardous waste sites. Better understanding can lead to better decisions on the remedies that are selected. CSIA can also be used to monitor the progress of natural attenuation or active biological remediation, and identify remedies that are not performing as expected. The U.S. Environmental Protection Agency requires that data quality objectives be developed for the methods and procedures that are used to characterize hazardous waste sites. The U.S. EPA also requires that the data that are used to make decisions must meet predetermined goals for data quality, including the accuracy, precision, and sensitivity of the measurement, and the extent to which the sample submitted for analysis are representative of the environmental medium being sampled. Other regulatory agencies world-wide have similar expectations. Because CSIA is a new approach in environmental investigations, there are no widely accepted standards for accuracy, precision and sensitivity, and no established approaches to document accuracy, precision, sensitivity and representativeness. This Guide is intended for managers of hazardous waste sites who must design sampling plans that will include CSIA and specify data quality objectives for CSIA analyses, for analytical chemists who must carry out the analyses, and for staff of regulatory agencies who must review and approve the sampling plans and data quality objectives, and who must review the data provided from the analyses. This Guide provides recommendations and suggestions to site managers, chemists and regulators. The recommendations and suggestions in this Guide are not legal guidance, and the site managers, chemists, and regulators may negotiate among themselves to develop objectives and approaches that are most appropriate for their site.
Distribution Foreman
Distribution Foreman CEU Training Course Description
Water Distribution, Well Drillers, Pump Installers, and Water Treatment Operators. The target audience for this course is the person interested in working in a water treatment or distribution facility and wishing to maintain CEUs for certification license or to learn how to do the job safely and effectively, and/or to meet education needs for promotion. This course will cover the necessary water distribution information for the intermediate level of water distribution/water treatment operator. This course consists of 4 chapters of increasing subject/task difficulty. Because of the explanation of Water Distribution and Water Treatment Methods and related water fundamentals and a detailed understanding of pumps and motors, this is an excellent course that applies to both Water Treatment and Distribution Operators. This course also covers in detail: Disinfection, Chlorine, O3 and disinfection alternatives, and byproduct fundamentals. Water Quality, Tastes, and Odor Problems, MCL/EPA Rules, and a basic understanding of how the rules were created and implemented will be covered. This course will also cover advanced groundwater production and protection with problem-solving solutions.
Distribution Foreman
Distribution Foreman CEU Training Course Description
Water Distribution, Well Drillers, Pump Installers, and Water Treatment Operators. The target audience for this course is the person interested in working in a water treatment or distribution facility and wishing to maintain CEUs for certification license or to learn how to do the job safely and effectively, and/or to meet education needs for promotion. This course will cover the necessary water distribution information for the intermediate level of water distribution/water treatment operator. This course consists of 4 chapters of increasing subject/task difficulty. Because of the explanation of Water Distribution and Water Treatment Methods and related water fundamentals and a detailed understanding of pumps and motors, this is an excellent course that applies to both Water Treatment and Distribution Operators. This course also covers in detail: Disinfection, Chlorine, O3 and disinfection alternatives, and byproduct fundamentals. Water Quality, Tastes, and Odor Problems, MCL/EPA Rules, and a basic understanding of how the rules were created and implemented will be covered. This course will also cover advanced groundwater production and protection with problem-solving solutions.
Iron And Manganese Removal From Groundwater
Abstract:
Drinking water supplies are based on ground water resources all over the world. At some localities problems with higher concentrations of iron and manganese found in ground water. These higher concentration of these metals result in metallic taste of water, effect color and flavor of food and cause staining of different products like paper, cloths, and plastics. Therefore World Health Organization has approved the treatment of water if concentrations of iron and manganese are higher than 0.3mg/L and 0.1 mg/L. Several techniques have been applied to remove iron and manganese from groundwater. The issue of higher concentrations of iron and manganese in groundwater wells at Grindalsmoen in Elverum Municipality in the south eastern part of Norway has been investigated by a PHREEQC geochemical model. The aim of this investigation was to analyze the relationships between oxygen levels and precipitation rates of iron and manganese. For this purpose geochemical simulations were performed with PHREEQC model with radial and linear flow. Results proved that concentration of oxygen at the water works (at its corresponding partial pressure) is high enough to precipitate the level of iron and manganese found in groundwater. The concentration of oxygen in equilibrium air at our desired temperature of 6 degree centigrade was 12.3 mg/l calculated by PHREEQC. Geochemical simulations were performed by the one dimensional column flow and radial flow towards well. The phenomenon of sorption was also included in model to see the adsorption behavior of iron and manganese. Overall this geochemical study has provided satisfactory results.
Iron And Manganese Removal From Groundwater
Abstract:
Drinking water supplies are based on ground water resources all over the world. At some localities problems with higher concentrations of iron and manganese found in ground water. These higher concentration of these metals result in metallic taste of water, effect color and flavor of food and cause staining of different products like paper, cloths, and plastics. Therefore World Health Organization has approved the treatment of water if concentrations of iron and manganese are higher than 0.3mg/L and 0.1 mg/L. Several techniques have been applied to remove iron and manganese from groundwater. The issue of higher concentrations of iron and manganese in groundwater wells at Grindalsmoen in Elverum Municipality in the south eastern part of Norway has been investigated by a PHREEQC geochemical model. The aim of this investigation was to analyze the relationships between oxygen levels and precipitation rates of iron and manganese. For this purpose geochemical simulations were performed with PHREEQC model with radial and linear flow. Results proved that concentration of oxygen at the water works (at its corresponding partial pressure) is high enough to precipitate the level of iron and manganese found in groundwater. The concentration of oxygen in equilibrium air at our desired temperature of 6 degree centigrade was 12.3 mg/l calculated by PHREEQC. Geochemical simulations were performed by the one dimensional column flow and radial flow towards well. The phenomenon of sorption was also included in model to see the adsorption behavior of iron and manganese. Overall this geochemical study has provided satisfactory results.
Reviews
There are no reviews yet.